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Fourier algebras on locally compact groups

e The Fourier algebra A(G) of a locally compact group G is
1. A(G) = VN(G)., where VN(G) C B(L?(G)) is the group von
Neumann algebra OR
2. A(G) = L}(G), where G is the dual quantum group OR
3. A(G)={fxg:f,g € %G)} C G(G), where
E(x) =g(x1).
e A(G) is a (non-closed) subalgebra of Cy(G), which is still a
commutative Banach algebra under its own norm.

e (Prop, Eymard ‘64) We have a homeomorphism
SpecA(G) = G, px — X,

where @ is the evaluation at the point x. Here, SpecA(G) is
the Gelfand spectrum, i.e. all (bounded) non-zero
multiplicative linear maps from A(G) into T.
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Fourier algebras of compact groups and their weighted
versions
e G: a compact group.

AG) ={f € C(G):IIflay= . drllf(m)l < oo},
w€lrr(G)

where f fG )*dx € My_ is the Fourier coefficient
of f at 7.

e For a weight function w : Irr(G) — [1, 00) we can define the
weighted space A(G, w) with the norm

1fllawy = D wmdellf(m)]1:
w€lrr(G)
e When w satisfies a “sub-multiplicativity” we have
A(G,w) € A(G) € C(G),

which are commutative Banach algebras under their own
norms.
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The spectrum of weighted Fourier algebras on compact
groups

® (Q) G: a compact group, w : Irr(G) — (0, 00) a weight
function
SpecA(G, w) =?

e (A) For a compact (Lie) group G we have
G C SpecA(G,w) C Gg,

where G¢ is the complexification of G.
e (Why?) We have Pol(G) C A(G, w) densely and (by
Chevalley)
Spec Pol(G) = Gc.
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Examples
e (ExX) G=Tand ws:Z — (0,00), n+> ", 3> 1:

Spec A(T, ws) = {c € C: 3 < || < ) CC" = T,

Moreover, we have

U Spec A(T, wg) = C* = Tc.
B>1
¢ (Ex, Ludwig/Spronk/Turowska, ‘12) G = SU(2) with
wg : Irr(SU(2)) = 3Z4 — (0,00), s+ 5%, 3> 1.
0

SpecA(SU(2), ws) = {U {g Cl} ViU,V eSUQ), = < |c < B}

1
s
and
|J Spec A(SU(2), ws) = SL,(C) = SU(2)c.
B>1

¢ (Rem) Bounded weights are not interesting!
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Quantum extensions

¢ (Q) How about the case of a compact quantum group G?
¢ (Preparations)

e Discrete dual quantum group G:

o(G)=co- P M, (¥@G)=r>- P M,

s€lrr(G) selrr(G)

° Coo(@)i the subalgebra of co(@) consisting of finitely supported

elements. R R
e The right Haar weight hg on £°°(G) is given by
hr(X) = > diTe(X. Q)

selrr(G)

for X = (X)semr(c) € Coo(@), where Qs is the deformation
matrix for Schur orthogonality and ds is the quantum
dimension.
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Preparations: continued

¢ (Fourier transform on @)
F =FC: co(G) = Pol(G), X — (X - hg ® id)U,

where U = ¢ (c) u(®) is the multiplicative unitary for a
choice of mutually inequivalent irreducible unitary
representations of G, (u(s))sehr(G).

(The Fourier algebra A(G)) We define
A(G) = £°(G). = VN(G).

equipped with the multiplication A*, which is the preadjoint
of A, the canonical co-multiplication on £°(G).
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Preparations: continued 2

e We have a natural embedding coo(@) — AG), X — X - hr,
which allows to extend the Fourier transform F to A(G) as
follows.

F:AG) = G(G), v~ (v®id)U.
e For the element X - hg € A(G) with X = (X;) € Coo(@) we

get the concrete norm formula as follows.

IX hrllagy= > ds-|IX:Qs Y1
sEIrr(G)
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Weighted Fourier algebras on compact quantum groups

e (Def/Prop) For a weight function w : Irr(G) — [1, o0)
satisfying a “sub-multiplicativity” we define

|X - ERHA(G,W) = Z w(s)ds - ||XSQS_1||1
selrr(G)

and we have contractive inclusions of Banach algebras

A(G,w) € A(G) € C(G).
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Spectral theory for A(G, w): Scenario 1

* (Q) SpecA(G, w) = 7 Any connection to “complexification”?

e (A) We can see the complexification of the maximal classical
closed subgroup of G.

* (Why?) Pol(G) C A(G, w) densely and Spec Pol(G) is
actually the (abstract) complexification of G = SpecA(G),
which is the maximal classical closed subgroup of G.

o (Thm) Let wy(s) = 5%, s € 3Z,, then we have

SpecA(SUq(2), wg) = {p € C\{0} :

w=l5 %

<lpl < B}

| =

1%

0 1| €M(C):IVilee = B}

| IS
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Spectral theory for A(G, w): Scenario 2

e An immediate limitation of SpecA(G, w) comes from the fact
that the algebra A(G, w) is non-commutative.

e G: a compact Lie group
Spec Pol(G) = Gc= Spec Co(Ge) = sp Co(Ge),

where sp Co(Gg) is the C*-algebra spectrum, which is the set
of equivalence classes of all irreducible x-representation
7 : Co(Ge) — B(H) for some Hilbert space H.
o 7 espC(Ge), m: Co(Ge) — B(H)
= Jx € G¢ such that 7 = py : Co(Ge) — C
= ¢y : H(Gc) — C, where H(Gg) is the algebra of
holomorphic functions on Gc.
= x : Pol(G) — C, a homomorphism since
Pol(G) C H(Gg).
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Quantum double

e For a compact quantum group G we have the quantum
double G x G by Podles/Woronowicz.

® The associated C*-algebra is given by
G(G x G) = C(G) ® p(G) with the co-multiplication

Ac = (id ® Ty @ id)(A © A),
where Y is the *-isomorphism given by
Y0 C(G) ® oo(G) = o(C) ® C(G), a® x +— U(x ® a)U*.

e The left (and right) Haar weight on Co(G ™ @) is given by
h ® hg, where h is the Haar state on C(G).
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The case of G = 5U4(2), 0 < g <1

e Qur choice of complexification G¢ is G x ((A} which we write
SLq(2,C).

e sp Co(SLg(2,C)) = sp C(SUqg(2)) x sp co(SUq(2)).

o A: the x-algebra of all elements affilliated to Co(SLg(2, C))
Ahnol: a subalgebra of A generated by the coefficient
“function”s «, /3,7, 0 of SLq(2,C)

Q : Anot — Pol(SU4(2)) a bijective homomorphism given by
Q(a) = ag, Q(B) = —qc;, Q(7) = cq and Q(J) = a, where
aq and ¢4 are canonical SUgy(2) generators.

e From 7 : Co(S5L4(2,C)) — B(H)
= 7 : A — B(H), the canonical extension
= ¢ =70 Q 1:Pol(SUs(2)) = Anot € A — B(H),
homomorphism
=V € [Lsen(e)(Mn, @ B(H)) associated element.
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The case of G = SU,(2): continued

o We begin with

m € sp Go(SLg(2,C)) — (mc, ma) € sp C(SUq(2)) xsp co(SUq(2))

with the associated elements
V,Ve; Vd € [Iserm(c)(Mns ® B(H)) respectively.

e (Prop) We have v = v.v4 and v, is a unitary (no contribution
to norm).

e For the above reason we may focus on the case
—_—

1
m=1mq €spco(SUqg(2)) = {As: s € 524},

where A, s € %ZJF are irreducible ANg-matrices by
Podles/Woronowicz.
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The case of G = SU,(2): continued 2

e (Thm) Let s be the unital homomorphism associated to As.
Then, ¢ extends to a bounded map on A(SUq4(2), wp) if and

only if |g|™° < B. Moreover, we have

sp Co(SLq(2,C))

= sp C(SUq4(2)) x U {As s € %Z+,g05 is bounded on A(S5Uq4(2), wg)}.
B=>1
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Remarks before the journey to non-compact world

e We only focused on a weight function w defined on Irr(G),
which immediately has some problem for a group like
ax + b-group, whose unitary dual is essentially (support of the
Plancherel measure) is a two-points set, so that the weight
functions are automatically bounded, which is not interesting.

e However, there is a canonical way of extending “weight"s from
(abelian) subgroups, which can be applied to all Lie groups.

e There is another way of producing weights using Laplacian.
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The case of R: a prelude for non-compact cases
ew:R—(0,00)a weight function.

SpecA(R, w) = SpecLl(]R w) =7
e For v € SpecA(R, w) we have ¢ : A(R,w) ——C.

T]—'@/
c=(®)
e Note that ¢ is determined by its restriction ¢|4 and its

transferred version ¢ := |4 0 FR. COO(]R) —Cisa
multiplicative linear functional w.r.t. convolution product.

e We can check 1 satisfies the Cauchy functional equation

(x4 y) =(x)(y) forae x,y€ f&,

so that ¢(x) = e, x € R for some ¢ € C. This observation
establishes the correspondence

¢ € SpecCX(R) < ¢ € C = Re.
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The case of R: continued

~

e The Paley-Wiener theorem implies for any f € C2°(R) the

Fourier transform F®(f) extends to an entire function on C
and we have

o(FE(F)) :/Ae"cxf(x)dx — FR(f)(—0).
R

In other words, the functional ¢ is nothing but the evaluation
at the point —c € C.

e In summary, we have a dense subalgebra A in A(R, w) which
leads us to the “abstract Lie" description of the
complexification C = R¢ via the Cauchy functional equation.
Moreover, any elements in SpecA(R, w) can be understood as
point evaluations on points of C = R¢ for the functions in A.

e The final step would be checking the norm condition on ¢.
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The case of the Heisenberg group H

1 x =z
H=<(y,z,x) = 1 yl:x,y,zeR» =(RxR)xR.
y
1

For any a € R* we have an irreducible unitary representation
(v, 2,x)&(t) = e P g(—x + 1), € € L(R).

The left regular representation X allows a quasi-equivalence
A2 [ 77|a|da, which tells us that

VN(H) = L*=(R*,|a|da; B(L?(R))), A(H) = L}(R*,]|a|da; S*(L?(R))).

For f € L}(H) we define the group Fourier transfom on H by
FA(F) = (FHF)(@)ack = (F¥(3))acr- € L*(R*; B(L*(R)))

and
() = /H f(g)m*(e)de.
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The case of the Heisenberg group H: continued

e We have the universal complexification

1 x z
He =< (v,z,x) = 1 y|:x,y,zeC
1

e We clearly have the following Cartan type decomposition
He = H - exp(i heis),

where feis is the Lie algebra of H.
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Finding a dense subalgebra of A(H, W)

The Heisenberg group H actually have a “background”
Euclidean structure @3, which shares the Haar measures,
namely the Lebesgue measure with H.

This motivates us to begin with the space of test functions
C>°(R3?) and its R3-Fourier transform image as a function
algebra A on H.

The algebra A can be shown to be inside of A(H, W) densely
regardless of the choice of W, which is highly non-trivial.

For any ¢ € SpecA(H, W) we have ¢ : A(H, W) ——=C.

3
Tﬂ s
A= C2(RY)
Thus, we get 3 = @ o F&° : C°(R3) — C which is
multiplicative with respect to R3-convolution. This leads us to

solving a Cauchy type functional equation on R3 in
distribution sense.
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Some technicalities on A

e For the density of A in A(G, W) we need companion spaces

Def
We define B := F¥°(By) C C>®(H), where

By := {f e L} (R3) : X+ 2D (90 F)(x, y, 2) € L2(R3), Vt > 0, Va},

where 0% refers the partial derivative in the weak sense for the
multi-index «. We endow a natural locally convex topology on By
given by the family of canonical semi-norms.

We also define the space D by

D :=span{Pm,@h: m,n € Z, h € C(R*)} C C=(R*; SY(L*(R))),

where P, is the rank 1 operator on B(L?(R)) given by
Pmn& = (€, pm)@n with respect to the basis {¢,}n,>0 consisting of
Hermite functions.
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Some technicalities on A: continued

e The space By can be called as the space of functions whose
partial derivatives have a “super-exponential” decay. Note
that the space By has already been introduced by Jorgensen
under the name of “hyper-Schwartz space”.

e (Why By?) The super-exponential decay property allows us to
“absorb” the effect of the weight W which is possibly
“exponentially growing”.

e (Why By?7?) It contains the space D whose elements are entire
vectors for A. This allows us to use complex Fourier inversion!
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Entire vectors

e 7: G — B(Hy): a unitary representation of G.
A vector v € H is called an entire vector for 7 if Es(v) < 00
for all s > 0, where

=3 S
P
m=1 m:
We denote the space of all entire vectors for m by D ().

e Roughly speaking the mapping g € G — 7(g)v extends to an
analytic mapping to the whole G¢.
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Entire vectors: continued

Thm by Goodman

Let G be a connected solvable Lie group which is separable, type |
and unimodular. Let f € L?(G) be an entire vector for A, then we
have
£ (~—1\£G
[ sup lIm (D) adn(©) < o
G v€Q:
for any t > 0, where || - ||1 is the trace class norm. Moreover, f is
analytically entended to G¢ with the analytic continuation f¢ given
by the absolutely convergent integral

foly) = /ETr(wéw—l)fG(a))du(g), Y e Ge.
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Entire vectors: continued 2

Thm by Goodman

Let G be a connected solvable Lie group which is separable, type |
and unimodular. A function f € L?(G) is an entire vector for X if
and only if

ranfC(¢) C D (%) p-almost every ¢ and

sup |[75 (v HFC(E)|Bdu(€) < oo for any t > 0,
G’YGQt

where the set Q; is given by Q; = {expX : X € gc, ||X]|| < t}

e Using the above we can show that all the elements in D are
entire vectors for \.
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The case of the Heisenberg groups: conclusion

Thm

Let h be the Lie subalgebra corresponding to the subgroup
H = Hy 7 of H. Then we have

SpecA(H, W) = {g-exp(iX') : g € H, X" € h,exp(iX") € SpecA(H, Wy)}
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Future directions

e Compact quantum groups other than SUg(2).

e Non-compact quantum groups such as quantum E(2)-group.
How about their complexification?
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Thank you for your attention
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