# Spectral theory of weighted Fourier algebras of (locally) compact quantum groups

Hun Hee Lee (이훈희)

Seoul National University

Based on joint works with U. Franz (Besancon), M. Ghandehari (Delaware)/J. Ludwig (Lorraine)/N. Spronk (Waterloo)/L. Turowska (Gothenberg)

August 9, 2019

### Overview

Motivations

The case of compact quantum groups and  $SU_q(2)$ 

The case of non-compact (quantum) groups

# Fourier algebras on locally compact groups

- The Fourier algebra A(G) of a locally compact group G is
  - 1.  $A(G) = VN(G)_*$ , where  $VN(G) \subseteq B(L^2(G))$  is the group von Neumann algebra OR
  - 2.  $A(G) = L^1(\widehat{G})$ , where  $\widehat{G}$  is the dual quantum group OR
  - 3.  $A(G) = \{f * \check{g} : f, g \in L^2(G)\} \subseteq C_0(G)$ , where  $\check{g}(x) = g(x^{-1})$ .
- A(G) is a (non-closed) subalgebra of  $C_0(G)$ , which is still a commutative Banach algebra under its own norm.
- (Prop, Eymard '64) We have a homeomorphism

$$Spec A(G) \cong G, \ \varphi_x \mapsto x,$$

where  $\varphi_X$  is the evaluation at the point x. Here,  $\operatorname{Spec} A(G)$  is the Gelfand spectrum, i.e. all (bounded) non-zero multiplicative linear maps from A(G) into  $\mathbb{T}$ .

# Fourier algebras of compact groups and their weighted versions

• G: a compact group.

$$A(G) = \{ f \in C(G) : \|f\|_{A(G)} = \sum_{\pi \in Irr(G)} d_{\pi} \|\hat{f}(\pi)\|_{1} < \infty \},$$

where  $\hat{f}(\pi) = \int_{\mathcal{G}} f(x)\pi(x)^* dx \in M_{d_{\pi}}$  is the Fourier coefficient of f at  $\pi$ .

• For a weight function  $w: {\rm Irr}(G) \to [1,\infty)$  we can define the weighted space A(G,w) with the norm

$$||f||_{A(G,w)} = \sum_{\pi \in Irr(G)} w(\pi) d_{\pi} ||\hat{f}(\pi)||_{1}.$$

• When w satisfies a "sub-multiplicativity" we have

$$A(G, w) \subseteq A(G) \subseteq C(G)$$

which are commutative Banach algebras under their own norms.

# The spectrum of weighted Fourier algebras on compact groups

• (Q) G: a compact group,  $w: {\rm Irr}(G) \to (0,\infty)$  a weight function

$$Spec A(G, w) = ?$$

• (A) For a compact (Lie) group G we have

$$G \subseteq \operatorname{Spec} A(G, w) \subseteq G_{\mathbb{C}},$$

where  $G_{\mathbb{C}}$  is the complexification of G.

• (Why?) We have  $Pol(G) \subseteq A(G, w)$  densely and (by Chevalley)

Spec Pol(
$$G$$
)  $\cong G_{\mathbb{C}}$ .

## Examples

• (Ex)  $G = \mathbb{T}$  and  $w_{\beta} : \mathbb{Z} \to (0, \infty), n \mapsto \beta^{|n|}, \beta \geq 1$ :

$$\operatorname{\mathsf{Spec}} A(\mathbb{T}, \mathsf{w}_\beta) \cong \{c \in \mathbb{C} : \frac{1}{\beta} \leq |c| \leq \beta\} \subseteq \mathbb{C}^* = \mathbb{T}_\mathbb{C}.$$

Moreover, we have

$$igcup_{eta>1}\operatorname{\mathsf{Spec}} \mathsf{A}(\mathbb{T}, \mathsf{w}_eta)\cong \mathbb{C}^*=\mathbb{T}_\mathbb{C}.$$

• (Ex, Ludwig/Spronk/Turowska, '12) G = SU(2) with  $w_{\beta} : \operatorname{Irr}(SU(2)) = \frac{1}{2}\mathbb{Z}_{+} \to (0, \infty), \ s \mapsto \beta^{2s}, \ \beta \geq 1.$ 

$$\operatorname{Spec} A(SU(2), w_{\beta}) \cong \{ U \begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix} V : U, V \in SU(2), \frac{1}{\beta} \leq |c| \leq \beta \}$$

and

$$\bigcup_{\alpha>1}\operatorname{Spec} A(SU(2),w_{\beta})\cong SL_2(\mathbb{C})=SU(2)_{\mathbb{C}}.$$

• (Rem) Bounded weights are not interesting!

### Quantum extensions

- (Q) How about the case of a compact quantum group  $\mathbb{G}$ ?
- (Preparations)
  - Discrete dual quantum group  $\widehat{\mathbb{G}}$ :

$$c_0(\widehat{\mathbb{G}}) = c_0 - \bigoplus_{s \in \mathsf{Irr}(\mathbb{G})} M_{n_s}, \ \ell^\infty(\widehat{\mathbb{G}}) = \ell^\infty - \bigoplus_{s \in \mathsf{Irr}(\mathbb{G})} M_{n_s}.$$

- $c_{00}(\widehat{\mathbb{G}})$ : the subalgebra of  $c_0(\widehat{\mathbb{G}})$  consisting of finitely supported elements.
- The right Haar weight  $\widehat{h}_R$  on  $\ell^{\infty}(\widehat{\mathbb{G}})$  is given by

$$\widehat{h}_R(X) = \sum_{s \in \operatorname{Irr}(\mathbb{G})} d_s \operatorname{Tr}(X_s Q_s^{-1})$$

for  $X=(X_s)_{s\in {\rm Irr}(\mathbb{G})}\in c_{00}(\widehat{\mathbb{G}})$ , where  $Q_s$  is the deformation matrix for Schur orthogonality and  $d_s$  is the quantum dimension.

### Preparations: continued

• (Fourier transform on  $\widehat{\mathbb{G}}$ ):

$$\mathcal{F} = \mathcal{F}^{\widehat{\mathbb{G}}} : c_{00}(\widehat{\mathbb{G}}) \to \operatorname{Pol}(\mathbb{G}), \ X \mapsto (X \cdot \widehat{h}_R \otimes id)\mathbb{U},$$

where  $\mathbb{U}=\oplus_{s\in \operatorname{Irr}(\mathbb{G})}u^{(s)}$  is the multiplicative unitary for a choice of mutually inequivalent irreducible unitary representations of  $\mathbb{G}$ ,  $(u^{(s)})_{s\in \operatorname{Irr}(\mathbb{G})}$ .

• (The Fourier algebra  $A(\mathbb{G})$ ) We define

$$A(\mathbb{G}) = \ell^{\infty}(\widehat{\mathbb{G}})_* = VN(\mathbb{G})_*$$

equipped with the multiplication  $\widehat{\Delta}_*$ , which is the preadjoint of  $\widehat{\Delta}$ , the canonical co-multiplication on  $\ell^{\infty}(\widehat{\mathbb{G}})$ .

### Preparations: continued 2

• We have a natural embedding  $c_{00}(\widehat{\mathbb{G}}) \hookrightarrow A(\mathbb{G}), \ X \mapsto X \cdot \widehat{h}_R$ , which allows to extend the Fourier transform  $\mathcal{F}$  to  $A(\mathbb{G})$  as follows.

$$\mathcal{F}: A(\mathbb{G}) \to C_r(\mathbb{G}), \ \psi \mapsto (\psi \otimes id)\mathbb{U}.$$

• For the element  $X \cdot \widehat{h}_R \in A(\mathbb{G})$  with  $X = (X_s) \in c_{00}(\widehat{\mathbb{G}})$  we get the concrete norm formula as follows.

$$||X\cdot \widehat{h}_R||_{A(\mathbb{G})} = \sum_{s\in \operatorname{Irr}(\mathbb{G})} d_s\cdot ||X_sQ_s^{-1}||_1.$$

# Weighted Fourier algebras on compact quantum groups

• (**Def/Prop**) For a weight function  $w: {\rm Irr}(\mathbb{G}) \to [1,\infty)$  satisfying a "sub-multiplicativity" we define

$$\|X\cdot\widehat{h}_R\|_{A(\mathbb{G},w)} = \sum_{s\in \operatorname{Irr}(\mathbb{G})} w(s)d_s\cdot ||X_sQ_s^{-1}||_1$$

and we have contractive inclusions of Banach algebras

$$A(\mathbb{G}, w) \subseteq A(\mathbb{G}) \subseteq C_r(\mathbb{G}).$$

# Spectral theory for $A(\mathbb{G}, w)$ : Scenario 1

- (**Q**) Spec $A(\mathbb{G}, w) = ?$  Any connection to "complexification"?
- (A) We can see the complexification of the maximal classical closed subgroup of  $\mathbb{G}$ .
- (Why?)  $\operatorname{Pol}(\mathbb{G}) \subseteq A(\mathbb{G}, w)$  densely and  $\operatorname{Spec}\operatorname{Pol}(\mathbb{G})$  is actually the (abstract) complexification of  $\widetilde{\mathbb{G}} = \operatorname{Spec}A(\mathbb{G})$ , which is the maximal classical closed subgroup of  $\mathbb{G}$ .
- (**Thm**) Let  $w_{\beta}(s) = \beta^{2s}$ ,  $s \in \frac{1}{2}\mathbb{Z}_+$ , then we have

$$\mathsf{Spec} A(SU_q(2), w_\beta) \cong \{ \rho \in \mathbb{C} \setminus \{0\} : \frac{1}{\beta} \le |\rho| \le \beta \}$$
$$\cong \{ V = \begin{bmatrix} \rho & 0 \\ 0 & \rho^{-1} \end{bmatrix} \in M_2(\mathbb{C}) : ||V||_{\infty} \le \beta \}.$$

# Spectral theory for $A(\mathbb{G}, w)$ : Scenario 2

- An immediate limitation of  $\operatorname{Spec} A(\mathbb{G}, w)$  comes from the fact that the algebra  $A(\mathbb{G}, w)$  is non-commutative.
- G: a compact Lie group

Spec 
$$\operatorname{Pol}(G) \cong G_{\mathbb{C}} \cong \operatorname{Spec} C_0(G_{\mathbb{C}}) \cong \operatorname{sp} C_0(G_{\mathbb{C}}),$$

where  $\operatorname{sp} C_0(G_{\mathbb C})$  is the  $C^*$ -algebra spectrum, which is the set of equivalence classes of all irreducible \*-representation  $\pi: C_0(G_{\mathbb C}) \to B(H)$  for some Hilbert space H.

•  $\pi \in \operatorname{sp} C_0(G_{\mathbb C})$ ,  $\pi : C_0(G_{\mathbb C}) \to B(H)$   $\Rightarrow \exists x \in G_{\mathbb C}$  such that  $\pi = \varphi_x : C_0(G_{\mathbb C}) \to {\mathbb C}$   $\Rightarrow \varphi_x : H(G_{\mathbb C}) \to {\mathbb C}$ , where  $H(G_{\mathbb C})$  is the algebra of holomorphic functions on  $G_{\mathbb C}$ .  $\Rightarrow \varphi_x : \operatorname{Pol}(G) \to {\mathbb C}$ , a homomorphism since  $\operatorname{Pol}(G) \subseteq H(G_{\mathbb C})$ .

### Quantum double

- For a compact quantum group  $\mathbb{G}$  we have the quantum double  $\mathbb{G}\bowtie\widehat{\mathbb{G}}$  by Podles/Woronowicz.
- The associated  $C^*$ -algebra is given by  $C_0(\mathbb{G} \bowtie \widehat{\mathbb{G}}) := C(\mathbb{G}) \otimes c_0(\widehat{\mathbb{G}})$  with the co-multiplication

$$\Delta_{\mathbb{C}} = (id \otimes \Sigma_{\mathbb{U}} \otimes id)(\Delta \otimes \widehat{\Delta}),$$

where  $\Sigma_{\mathbb{U}}$  is the \*-isomorphism given by

$$\Sigma_{\mathbb{U}}: C(\mathbb{G}) \otimes c_0(\widehat{\mathbb{G}}) \to c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}), \ \ a \otimes x \mapsto \mathbb{U}(x \otimes a)\mathbb{U}^*.$$

• The left (and right) Haar weight on  $C_0(\mathbb{G} \bowtie \widehat{\mathbb{G}})$  is given by  $h \otimes \widehat{h}_R$ , where h is the Haar state on  $C(\mathbb{G})$ .

# The case of $\mathbb{G} = SU_q(2)$ , 0 < q < 1

- Our choice of complexification  $\mathbb{G}_{\mathbb{C}}$  is  $\mathbb{G} \bowtie \widehat{\mathbb{G}}$ , which we write  $SL_q(2,\mathbb{C})$ .
- $\operatorname{sp} C_0(SL_q(2,\mathbb{C})) \cong \operatorname{sp} C(SU_q(2)) \times \operatorname{sp} c_0(\widehat{SU_q(2)}).$
- $\mathcal{A}$ : the \*-algebra of all elements affilliated to  $C_0(SL_q(2,\mathbb{C}))$   $\mathcal{A}_{hol}$ : a subalgebra of  $\mathcal{A}$  generated by the coefficient "function" s  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  of  $SL_q(2,\mathbb{C})$   $Q: \mathcal{A}_{hol} \to \text{Pol}(SU_q(2))$  a bijective homomorphism given by  $Q(\alpha) = a_q$ ,  $Q(\beta) = -qc_q^*$ ,  $Q(\gamma) = c_q$  and  $Q(\delta) = a_q^*$ , where  $a_q$  and  $c_q$  are canonical  $SU_q(2)$  generators.
- From  $\pi: C_0(SL_q(2,\mathbb{C})) \to B(H)$   $\Rightarrow \pi: \mathcal{A} \to B(H)$ , the canonical extension  $\Rightarrow \varphi = \pi \circ Q^{-1}: \operatorname{Pol}(SU_q(2)) \to \mathcal{A}_{\operatorname{hol}} \subseteq \mathcal{A} \to B(H)$ , homomorphism  $\Rightarrow v \in \prod_{s \in \operatorname{Irr}(\mathbb{G})} (M_{n_s} \otimes B(H))$  associated element.

# The case of $\mathbb{G} = SU_q(2)$ : continued

• We begin with

$$\pi \in \operatorname{sp} C_0(SL_q(2,\mathbb{C})) \mapsto (\pi_c,\pi_d) \in \operatorname{sp} C(SU_q(2)) \times \operatorname{sp} c_0(\widehat{SU_q(2)})$$

with the associated elements

$$v, v_c, v_d \in \prod_{s \in \operatorname{Irr}(\mathbb{G})} (M_{n_s} \otimes B(H))$$
 respectively.

- (**Prop**) We have  $v = v_c v_d$  and  $v_c$  is a unitary (no contribution to norm).
- For the above reason we may focus on the case

$$\pi = \pi_d \in \operatorname{sp} c_0(\widehat{SU_q(2)}) = \{A_s : s \in \frac{1}{2}\mathbb{Z}_+\},\$$

where  $A_s$ ,  $s \in \frac{1}{2}\mathbb{Z}_+$  are irreducible  $AN_q$ -matrices by Podles/Woronowicz.

# The case of $\mathbb{G} = SU_q(2)$ : continued 2

• (**Thm**) Let  $\varphi_s$  be the unital homomorphism associated to  $A_s$ . Then,  $\varphi_s$  extends to a bounded map on  $A(SU_q(2), w_\beta)$  if and only if  $|q|^{-s} \leq \beta$ . Moreover, we have

$$\begin{split} & \operatorname{sp} C_0(\mathit{SL}_q(2,\mathbb{C})) \\ & \cong \operatorname{sp} C(\mathit{SU}_q(2)) \times \bigcup \{A_s : s \in \frac{1}{2}\mathbb{Z}_+, \varphi_s \text{ is bounded on } A(\mathit{SU}_q(2), w_\beta)\}. \end{split}$$

# Remarks before the journey to non-compact world

- We only focused on a weight function w defined on Irr(G), which immediately has some problem for a group like ax + b-group, whose unitary dual is essentially (support of the Plancherel measure) is a two-points set, so that the weight functions are automatically bounded, which is not interesting.
- However, there is a canonical way of extending "weight"s from (abelian) subgroups, which can be applied to all Lie groups.
- There is another way of producing weights using Laplacian.

## The case of $\mathbb{R}$ : a prelude for non-compact cases

- $w: \widehat{\mathbb{R}} \to (0, \infty)$  a weight function. Spec $A(\mathbb{R}, w) = \operatorname{Spec} L^1(\widehat{\mathbb{R}}, w) = ?$
- For  $\varphi \in \mathrm{Spec} A(\mathbb{R},w)$  we have  $\varphi : A(\mathbb{R},w) \longrightarrow \mathbb{C}$ .
- Note that  $\varphi$  is determined by its restriction  $\varphi|_{\mathcal{A}}$  and its transferred version  $\psi := \varphi|_{\mathcal{A}} \circ \mathcal{F}^{\widehat{\mathbb{R}}} : C_c^{\infty}(\widehat{\mathbb{R}}) \to \mathbb{C}$  is a multiplicative linear functional w.r.t. convolution product.
- ullet We can check  $\psi$  satisfies the Cauchy functional equation

$$\psi(x+y) = \psi(x)\psi(y)$$
 for a.e.  $x, y \in \widehat{\mathbb{R}}$ ,

so that  $\psi(x)=e^{icx}$ ,  $x\in\widehat{\mathbb{R}}$  for some  $c\in\mathbb{C}$ . This observation establishes the correspondence

$$\varphi \in \operatorname{\mathsf{Spec}} C^{\infty}_{c}(\widehat{\mathbb{R}}) \Leftrightarrow c \in \mathbb{C} = \mathbb{R}_{\mathbb{C}}.$$

### The case of $\mathbb{R}$ : continued

• The Paley-Wiener theorem implies for any  $f \in C_c^{\infty}(\widehat{\mathbb{R}})$  the Fourier transform  $\mathcal{F}^{\widehat{\mathbb{R}}}(f)$  extends to an entire function on  $\mathbb{C}$  and we have

$$\varphi(\mathcal{F}^{\widehat{\mathbb{R}}}(f)) = \int_{\widehat{\mathbb{R}}} e^{icx} f(x) dx = \mathcal{F}^{\widehat{\mathbb{R}}}(f)(-c).$$

In other words, the functional  $\varphi$  is nothing but the evaluation at the point  $-c \in \mathbb{C}$ .

- In summary, we have a dense subalgebra  $\mathcal{A}$  in  $A(\mathbb{R}, w)$  which leads us to the "abstract Lie" description of the complexification  $\mathbb{C}=\mathbb{R}_{\mathbb{C}}$  via the Cauchy functional equation. Moreover, any elements in  $\operatorname{Spec} A(\mathbb{R}, w)$  can be understood as point evaluations on points of  $\mathbb{C}=\mathbb{R}_{\mathbb{C}}$  for the functions in  $\mathcal{A}$ .
- The final step would be checking the norm condition on  $\varphi$ .

#### Motivations 0000

## The case of the Heisenberg group **H**

• 
$$\mathbb{H} = \left\{ (y, z, x) = \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\} = (\mathbb{R} \times \mathbb{R}) \rtimes \mathbb{R}.$$

ullet For any  $a\in\mathbb{R}^*$  we have an irreducible unitary representation

$$\pi^{a}(y,z,x)\xi(t)=e^{-ia(ty-z)}\xi(-x+t),\;\xi\in L^{2}(\mathbb{R}).$$

• The left regular representation  $\lambda$  allows a quasi-equivalence  $\lambda\cong\int_{\mathbb{R}^*}^\oplus\pi^a|a|da,$  which tells us that

$$VN(\mathbb{H}) \cong L^{\infty}(\mathbb{R}^*, |a|da; B(L^2(\mathbb{R}))), \ A(\mathbb{H}) \cong L^1(\mathbb{R}^*, |a|da; S^1(L^2(\mathbb{R}))).$$

• For  $f \in L^1(\mathbb{H})$  we define the group Fourier transfom on  $\mathbb{H}$  by  $\mathcal{F}^{\mathbb{H}}(f) = (\mathcal{F}^{\mathbb{H}}(f)(a))_{a \in \mathbb{R}^*} = (\widehat{f}^{\mathbb{H}}(a))_{a \in \mathbb{R}^*} \in L^{\infty}(\mathbb{R}^*; B(L^2(\mathbb{R})))$  and

$$\widehat{f}^{\mathbb{H}}(a) = \int_{\mathbb{T}} f(g) \pi^{a}(g) dg.$$

# The case of the Heisenberg group $\mathbb{H}$ : continued

• We have the universal complexification

$$\mathbb{H}_{\mathbb{C}} = \left\{ (y,z,x) = egin{bmatrix} 1 & x & z \ & 1 & y \ & & 1 \end{bmatrix} : x,y,z \in \mathbb{C} 
ight\}.$$

We clearly have the following Cartan type decomposition

$$\mathbb{H}_{\mathbb{C}} \cong \mathbb{H} \cdot \exp(i \operatorname{heis}),$$

where  $\mathfrak{heis}$  is the Lie algebra of  $\mathbb{H}$ .

# Finding a dense subalgebra of $A(\mathbb{H}, W)$

- The Heisenberg group  $\mathbb{H}$  actually have a "background" Euclidean structure  $\widehat{\mathbb{R}}^3$ , which shares the Haar measures, namely the Lebesgue measure with  $\mathbb{H}$ .
- This motivates us to begin with the space of test functions  $C_c^{\infty}(\mathbb{R}^3)$  and its  $\mathbb{R}^3$ -Fourier transform image as a function algebra  $\mathcal{A}$  on  $\mathbb{H}$ .
- The algebra  $\mathcal{A}$  can be shown to be inside of  $A(\mathbb{H}, W)$  densely regardless of the choice of W, which is highly non-trivial.
- For any  $\varphi \in \operatorname{Spec} A(\mathbb{H},W)$  we have  $\varphi : A(\mathbb{H},W) \longrightarrow \mathbb{C}$ .

$$\mathcal{F}^{\mathbb{R}^3}$$

$$\mathcal{A} = C_c^{\infty}(\mathbb{R}^3)$$

Thus, we get  $\tilde{\varphi} = \varphi \circ \mathcal{F}^{\mathbb{R}^3} : C_c^{\infty}(\mathbb{R}^3) \to \mathbb{C}$  which is multiplicative with respect to  $\mathbb{R}^3$ -convolution. This leads us to solving a Cauchy type functional equation on  $\mathbb{R}^3$  in distribution sense.

### Some technicalities on A

• For the density of A in A(G, W) we need companion spaces

### Def

We define  $\mathcal{B} := \mathcal{F}^{\mathbb{R}^3}(\mathcal{B}_0) \subseteq C^{\infty}(\mathbb{H})$ , where

$$\mathcal{B}_0:=\{f\in L^1_{\mathrm{loc}}(\mathbb{R}^3): \mathrm{e}^{t(|x|+|y|+|z|)}(\partial^{\alpha}f)(x,y,z)\in L^2(\mathbb{R}^3), \, \forall t>0, \, \forall \alpha\},$$

where  $\partial^{\alpha}$  refers the partial derivative in the weak sense for the multi-index  $\alpha$ . We endow a natural locally convex topology on  $\mathcal{B}_0$  given by the family of canonical semi-norms.

We also define the space  $\mathcal{D}$  by

$$\mathcal{D} := \operatorname{span}\{P_{mn} \otimes h : m, n \in \mathbb{Z}, \ h \in C_c^{\infty}(\mathbb{R}^*)\} \subseteq C_c^{\infty}(\mathbb{R}^*; S^1(L^2(\mathbb{R}))),$$

where  $P_{mn}$  is the rank 1 operator on  $B(L^2(\mathbb{R}))$  given by  $P_{mn}\xi=\langle \xi, \varphi_m\rangle \varphi_n$  with respect to the basis  $\{\varphi_n\}_{n\geq 0}$  consisting of Hermite functions.

### Some technicalities on A: continued

- The space  $\mathcal{B}_0$  can be called as the space of functions whose partial derivatives have a "super-exponential" decay. Note that the space  $\mathcal{B}_0$  has already been introduced by Jorgensen under the name of "hyper-Schwartz space".
- (Why  $\mathcal{B}_0$ ?) The super-exponential decay property allows us to "absorb" the effect of the weight W which is possibly "exponentially growing".
- (Why  $\mathcal{B}_0$ ??) It contains the space  $\mathcal{D}$  whose elements are entire vectors for  $\lambda$ . This allows us to use complex Fourier inversion!

### Entire vectors

•  $\pi: G \to B(\mathcal{H}_{\pi})$ : a unitary representation of G. A vector  $v \in \mathcal{H}_{\pi}$  is called an entire vector for  $\pi$  if  $E_s(v) < \infty$  for all s > 0, where

$$E_s(v) := \sum_{m=1}^{\infty} \frac{s^m}{m!} \rho_m(v).$$

We denote the space of all entire vectors for  $\pi$  by  $\mathcal{D}^{\infty}_{\mathbb{C}}(\pi)$ .

• Roughly speaking the mapping  $g \in G \mapsto \pi(g)v$  extends to an analytic mapping to the whole  $G_{\mathbb{C}}$ .

### Entire vectors: continued

### Thm by Goodman

Let G be a connected solvable Lie group which is separable, type I and unimodular. Let  $f \in L^2(G)$  be an entire vector for  $\lambda$ , then we have

$$\int_{\widehat{G}} \sup_{\gamma \in \Omega_t} ||\pi_{\mathbb{C}}^{\xi}(\gamma^{-1})\widehat{f}^{G}(\xi)||_1 d\mu(\xi) < \infty$$

for any t>0, where  $||\cdot||_1$  is the trace class norm. Moreover, f is analytically entended to  $G_{\mathbb C}$  with the analytic continuation  $f_{\mathbb C}$  given by the absolutely convergent integral

$$f_{\mathbb{C}}(\gamma) = \int_{\widehat{G}} \operatorname{Tr}(\pi_{\mathbb{C}}^{\xi}(\gamma^{-1})\widehat{f}^{G}(\xi)) d\mu(\xi), \ \gamma \in \mathcal{G}_{\mathbb{C}}.$$

### Entire vectors: continued 2

### Thm by Goodman

Let G be a connected solvable Lie group which is separable, type I and unimodular. A function  $f \in L^2(G)$  is an entire vector for  $\lambda$  if and only if

$$\begin{cases} \operatorname{ran} \widehat{f}^G(\xi) \subseteq \mathcal{D}^\infty_{\mathbb{C}}(\pi^\xi) \; \mu\text{-almost every } \xi \text{ and} \\ \int_{\widehat{G}} \sup_{\gamma \in \Omega_t} ||\pi^\xi_{\mathbb{C}}(\gamma^{-1}) \widehat{f}^G(\xi)||_2^2 d\mu(\xi) < \infty \text{ for any } t > 0, \end{cases}$$

where the set  $\Omega_t$  is given by  $\Omega_t = \{\exp X : X \in \mathfrak{g}_\mathbb{C}, \ ||X|| < t\}$ 

• Using the above we can show that all the elements in  $\mathcal D$  are entire vectors for  $\lambda$ .

# The case of the Heisenberg groups: conclusion

### Thm

Let  $\mathfrak{h}$  be the Lie subalgebra corresponding to the subgroup  $H=H_{Y,Z}$  of  $\mathbb{H}$ . Then we have

 $\operatorname{Spec} A(\mathbb{H}, W) \cong \{g \cdot \exp(iX') : g \in \mathbb{H}, X' \in \mathfrak{h}, \exp(iX') \in \operatorname{Spec} A(H, W_H)\}$ 

### Future directions

- Compact quantum groups other than  $SU_q(2)$ .
- Non-compact quantum groups such as quantum E(2)-group. How about their complexification?

# Thank you for your attention