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Fourier algebras on locally compact groups

• The Fourier algebra A(G ) of a locally compact group G is

1. A(G ) = VN(G )∗, where VN(G ) ⊆ B(L2(G )) is the group von
Neumann algebra OR

2. A(G ) = L1(Ĝ ), where Ĝ is the dual quantum group OR
3. A(G ) = {f ∗ ǧ : f , g ∈ L2(G )} ⊆ C0(G ), where

ǧ(x) = g(x−1).

• A(G ) is a (non-closed) subalgebra of C0(G ), which is still a
commutative Banach algebra under its own norm.

• (Prop, Eymard ‘64) We have a homeomorphism

SpecA(G ) ∼= G , ϕx 7→ x ,

where ϕx is the evaluation at the point x . Here, SpecA(G ) is
the Gelfand spectrum, i.e. all (bounded) non-zero
multiplicative linear maps from A(G ) into T.
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Fourier algebras of compact groups and their weighted
versions

• G: a compact group.

A(G ) = {f ∈ C (G ) : ‖f ‖A(G) =
∑

π∈Irr(G)

dπ‖f̂ (π)‖1 <∞},

where f̂ (π) =
∫
G f (x)π(x)∗dx ∈ Mdπ is the Fourier coefficient

of f at π.
• For a weight function w : Irr(G )→ [1,∞) we can define the

weighted space A(G ,w) with the norm

‖f ‖A(G ,w) =
∑

π∈Irr(G)

w(π)dπ‖f̂ (π)‖1.

• When w satisfies a “sub-multiplicativity” we have

A(G ,w) ⊆ A(G ) ⊆ C (G ),

which are commutative Banach algebras under their own
norms.
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The spectrum of weighted Fourier algebras on compact
groups

• (Q) G: a compact group, w : Irr(G )→ (0,∞) a weight
function

SpecA(G ,w) =?

• (A) For a compact (Lie) group G we have

G ⊆ SpecA(G ,w) ⊆ GC,

where GC is the complexification of G .

• (Why?) We have Pol(G ) ⊆ A(G ,w) densely and (by
Chevalley)

Spec Pol(G ) ∼= GC.
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Examples
• (Ex) G = T and wβ : Z→ (0,∞), n 7→ β|n|, β ≥ 1:

SpecA(T,wβ) ∼= {c ∈ C :
1

β
≤ |c | ≤ β} ⊆ C∗ = TC.

Moreover, we have⋃
β≥1

SpecA(T,wβ) ∼= C∗ = TC.

• (Ex, Ludwig/Spronk/Turowska, ‘12) G = SU(2) with
wβ : Irr(SU(2)) = 1

2Z+ → (0,∞), s 7→ β2s , β ≥ 1.

SpecA(SU(2),wβ) ∼= {U
[
c 0
0 c−1

]
V : U,V ∈ SU(2),

1

β
≤ |c | ≤ β}

and ⋃
β≥1

SpecA(SU(2),wβ) ∼= SL2(C) = SU(2)C.

• (Rem) Bounded weights are not interesting!
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Quantum extensions

• (Q) How about the case of a compact quantum group G?

• (Preparations)

• Discrete dual quantum group Ĝ:

c0(Ĝ) = c0 -
⊕

s∈Irr(G)

Mns , `∞(Ĝ) = `∞-
⊕

s∈Irr(G)

Mns .

• c00(Ĝ): the subalgebra of c0(Ĝ) consisting of finitely supported
elements.

• The right Haar weight ĥR on `∞(Ĝ) is given by

ĥR(X ) =
∑

s∈Irr(G)

dsTr(XsQ
−1
s )

for X = (Xs)s∈Irr(G) ∈ c00(Ĝ), where Qs is the deformation
matrix for Schur orthogonality and ds is the quantum
dimension.



Motivations The case of compact quantum groups and SUq(2) The case of non-compact (quantum) groups

Preparations: continued

• (Fourier transform on Ĝ):

F = F Ĝ : c00(Ĝ)→ Pol(G), X 7→ (X · ĥR ⊗ id)U,

where U = ⊕s∈Irr(G)u
(s) is the multiplicative unitary for a

choice of mutually inequivalent irreducible unitary
representations of G, (u(s))s∈Irr(G).

• (The Fourier algebra A(G)) We define

A(G) = `∞(Ĝ)∗ = VN(G)∗

equipped with the multiplication ∆̂∗, which is the preadjoint
of ∆̂, the canonical co-multiplication on `∞(Ĝ).
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Preparations: continued 2

• We have a natural embedding c00(Ĝ) ↪→ A(G), X 7→ X · ĥR ,
which allows to extend the Fourier transform F to A(G) as
follows.

F : A(G)→ Cr (G), ψ 7→ (ψ ⊗ id)U.

• For the element X · ĥR ∈ A(G) with X = (Xs) ∈ c00(Ĝ) we
get the concrete norm formula as follows.

||X · ĥR ||A(G) =
∑

s∈Irr(G)

ds · ||XsQ
−1
s ||1.
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Weighted Fourier algebras on compact quantum groups

• (Def/Prop) For a weight function w : Irr(G)→ [1,∞)
satisfying a “sub-multiplicativity” we define

‖X · ĥR‖A(G,w) =
∑

s∈Irr(G)

w(s)ds · ||XsQ
−1
s ||1

and we have contractive inclusions of Banach algebras

A(G,w) ⊆ A(G) ⊆ Cr (G).
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Spectral theory for A(G,w): Scenario 1

• (Q) SpecA(G,w) = ? Any connection to “complexification”?

• (A) We can see the complexification of the maximal classical
closed subgroup of G.

• (Why?) Pol(G) ⊆ A(G,w) densely and Spec Pol(G) is
actually the (abstract) complexification of G̃ = SpecA(G),
which is the maximal classical closed subgroup of G.

• (Thm) Let wβ(s) = β2s , s ∈ 1
2Z+, then we have

SpecA(SUq(2),wβ) ∼= {ρ ∈ C\{0} :
1

β
≤ |ρ| ≤ β}

∼= {V =

[
ρ 0
0 ρ−1

]
∈ M2(C) : ||V ||∞ ≤ β}.
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Spectral theory for A(G,w): Scenario 2

• An immediate limitation of SpecA(G,w) comes from the fact
that the algebra A(G,w) is non-commutative.

• G : a compact Lie group

Spec Pol(G ) ∼= GC∼= SpecC0(GC) ∼= spC0(GC),

where spC0(GC) is the C ∗-algebra spectrum, which is the set
of equivalence classes of all irreducible ∗-representation
π : C0(GC)→ B(H) for some Hilbert space H.

• π ∈ spC0(GC), π : C0(GC)→ B(H)
⇒ ∃x ∈ GC such that π = ϕx : C0(GC)→ C
⇒ ϕx : H(GC)→ C, where H(GC) is the algebra of
holomorphic functions on GC.
⇒ ϕx : Pol(G )→ C, a homomorphism since
Pol(G ) ⊆ H(GC).
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Quantum double

• For a compact quantum group G we have the quantum
double G on Ĝ by Podles/Woronowicz.

• The associated C ∗-algebra is given by
C0(G on Ĝ) := C (G)⊗ c0(Ĝ) with the co-multiplication

∆C = (id ⊗ ΣU ⊗ id)(∆⊗ ∆̂),

where ΣU is the ∗-isomorphism given by

ΣU : C (G)⊗ c0(Ĝ)→ c0(Ĝ)⊗ C (G), a⊗ x 7→ U(x ⊗ a)U∗.

• The left (and right) Haar weight on C0(G on Ĝ) is given by
h ⊗ ĥR , where h is the Haar state on C (G).
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The case of G = SUq(2), 0 < q < 1

• Our choice of complexification GC is G on Ĝ, which we write
SLq(2,C).

• spC0(SLq(2,C)) ∼= spC (SUq(2))× sp c0(ŜUq(2)).

• A: the ∗-algebra of all elements affilliated to C0(SLq(2,C))
Ahol: a subalgebra of A generated by the coefficient
“function”s α, β, γ, δ of SLq(2,C)
Q : Ahol → Pol(SUq(2)) a bijective homomorphism given by
Q(α) = aq, Q(β) = −qc∗q , Q(γ) = cq and Q(δ) = a∗q, where
aq and cq are canonical SUq(2) generators.

• From π : C0(SLq(2,C))→ B(H)
⇒ π : A → B(H), the canonical extension
⇒ ϕ = π ◦ Q−1 : Pol(SUq(2))→ Ahol ⊆ A → B(H),
homomorphism
⇒ v ∈

∏
s∈Irr(G)(Mns ⊗ B(H)) associated element.
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The case of G = SUq(2): continued

• We begin with

π ∈ spC0(SLq(2,C)) 7→ (πc , πd) ∈ spC (SUq(2))×sp c0(ŜUq(2))

with the associated elements
v , vc , vd ∈

∏
s∈Irr(G)(Mns ⊗ B(H)) respectively.

• (Prop) We have v = vcvd and vc is a unitary (no contribution
to norm).

• For the above reason we may focus on the case

π = πd ∈ sp c0(ŜUq(2)) = {As : s ∈ 1

2
Z+},

where As , s ∈ 1
2Z+ are irreducible ANq-matrices by

Podles/Woronowicz.
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The case of G = SUq(2): continued 2

• (Thm) Let ϕs be the unital homomorphism associated to As .
Then, ϕs extends to a bounded map on A(SUq(2),wβ) if and

only if |q|−s ≤ β. Moreover, we have

spC0(SLq(2,C))

∼= spC (SUq(2))×
⋃
β≥1

{As : s ∈ 1

2
Z+, ϕs is bounded on A(SUq(2),wβ)}.
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Remarks before the journey to non-compact world

• We only focused on a weight function w defined on Irr(G),
which immediately has some problem for a group like
ax + b-group, whose unitary dual is essentially (support of the
Plancherel measure) is a two-points set, so that the weight
functions are automatically bounded, which is not interesting.

• However, there is a canonical way of extending “weight”s from
(abelian) subgroups, which can be applied to all Lie groups.

• There is another way of producing weights using Laplacian.
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The case of R: a prelude for non-compact cases
• w : R̂→ (0,∞) a weight function.

SpecA(R,w) = SpecL1(R̂,w) =?

• For ϕ ∈ SpecA(R,w) we have ϕ : A(R,w) // C

C∞c (R̂)

F R̂

OO :: .

• Note that ϕ is determined by its restriction ϕ|A and its

transferred version ψ := ϕ|A ◦ F R̂ : C∞c (R̂)→ C is a
multiplicative linear functional w.r.t. convolution product.
• We can check ψ satisfies the Cauchy functional equation

ψ(x + y) = ψ(x)ψ(y) for a.e. x , y ∈ R̂,

so that ψ(x) = e icx , x ∈ R̂ for some c ∈ C. This observation
establishes the correspondence

ϕ ∈ SpecC∞c (R̂)⇔ c ∈ C = RC.
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The case of R: continued

• The Paley-Wiener theorem implies for any f ∈ C∞c (R̂) the

Fourier transform F R̂(f ) extends to an entire function on C
and we have

ϕ(F R̂(f )) =

∫
R̂
e icx f (x)dx = F R̂(f )(−c).

In other words, the functional ϕ is nothing but the evaluation
at the point −c ∈ C.

• In summary, we have a dense subalgebra A in A(R,w) which
leads us to the “abstract Lie” description of the
complexification C = RC via the Cauchy functional equation.
Moreover, any elements in SpecA(R,w) can be understood as
point evaluations on points of C = RC for the functions in A.

• The final step would be checking the norm condition on ϕ.
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The case of the Heisenberg group H

• H =

(y , z , x) =

1 x z
1 y

1

 : x , y , z ∈ R

 = (R× R) oR.

• For any a ∈ R∗ we have an irreducible unitary representation

πa(y , z , x)ξ(t) = e−ia(ty−z)ξ(−x + t), ξ ∈ L2(R).

• The left regular representation λ allows a quasi-equivalence
λ ∼=

∫ ⊕
R∗ π

a|a|da, which tells us that

VN(H) ∼= L∞(R∗, |a|da;B(L2(R))), A(H) ∼= L1(R∗, |a|da;S1(L2(R))).

• For f ∈ L1(H) we define the group Fourier transfom on H by

FH(f ) = (FH(f )(a))a∈R∗ = (f̂ H(a))a∈R∗ ∈ L∞(R∗;B(L2(R)))

and

f̂ H(a) =

∫
H
f (g)πa(g)dg .
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The case of the Heisenberg group H: continued

• We have the universal complexification

HC =

(y , z , x) =

1 x z
1 y

1

 : x , y , z ∈ C

.

• We clearly have the following Cartan type decomposition

HC ∼= H · exp(i heis),

where heis is the Lie algebra of H.
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Finding a dense subalgebra of A(H,W )
• The Heisenberg group H actually have a “background”

Euclidean structure R̂3, which shares the Haar measures,
namely the Lebesgue measure with H.
• This motivates us to begin with the space of test functions
C∞c (R3) and its R3-Fourier transform image as a function
algebra A on H.
• The algebra A can be shown to be inside of A(H,W ) densely

regardless of the choice of W , which is highly non-trivial.
• For any ϕ ∈ SpecA(H,W ) we have ϕ : A(H,W ) // C

A = C∞c (R3)

FR3

OO

ϕ̃

99 .

Thus, we get ϕ̃ = ϕ ◦ FR3
: C∞c (R3)→ C which is

multiplicative with respect to R3-convolution. This leads us to
solving a Cauchy type functional equation on R3 in
distribution sense.
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Some technicalities on A
• For the density of A in A(G ,W ) we need companion spaces

Def
We define B := FR3

(B0) ⊆ C∞(H), where

B0 := {f ∈ L1
loc(R3) : et(|x |+|y |+|z|)(∂αf )(x , y , z) ∈ L2(R3), ∀t > 0, ∀α},

where ∂α refers the partial derivative in the weak sense for the
multi-index α. We endow a natural locally convex topology on B0

given by the family of canonical semi-norms.
We also define the space D by

D := span{Pmn⊗h : m, n ∈ Z, h ∈ C∞c (R∗)} ⊆ C∞c (R∗;S1(L2(R))),

where Pmn is the rank 1 operator on B(L2(R)) given by
Pmnξ = 〈ξ, ϕm〉ϕn with respect to the basis {ϕn}n≥0 consisting of
Hermite functions.
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Some technicalities on A: continued

• The space B0 can be called as the space of functions whose
partial derivatives have a “super-exponential” decay. Note
that the space B0 has already been introduced by Jorgensen
under the name of “hyper-Schwartz space”.

• (Why B0?) The super-exponential decay property allows us to
“absorb” the effect of the weight W which is possibly
“exponentially growing”.

• (Why B0??) It contains the space D whose elements are entire
vectors for λ. This allows us to use complex Fourier inversion!
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Entire vectors

• π : G → B(Hπ): a unitary representation of G .
A vector v ∈ Hπ is called an entire vector for π if Es(v) <∞
for all s > 0, where

Es(v) :=
∞∑

m=1

sm

m!
ρm(v).

We denote the space of all entire vectors for π by D∞C (π).

• Roughly speaking the mapping g ∈ G 7→ π(g)v extends to an
analytic mapping to the whole GC.
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Entire vectors: continued

Thm by Goodman

Let G be a connected solvable Lie group which is separable, type I
and unimodular. Let f ∈ L2(G ) be an entire vector for λ, then we
have ∫

Ĝ
sup
γ∈Ωt

||πξC(γ−1)f̂ G (ξ)||1dµ(ξ) <∞

for any t > 0, where || · ||1 is the trace class norm. Moreover, f is
analytically entended to GC with the analytic continuation fC given
by the absolutely convergent integral

fC(γ) =

∫
Ĝ
Tr(πξC(γ−1)f̂ G (ξ))dµ(ξ), γ ∈ GC.
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Entire vectors: continued 2

Thm by Goodman

Let G be a connected solvable Lie group which is separable, type I
and unimodular. A function f ∈ L2(G ) is an entire vector for λ if
and only ifranf̂ G (ξ) ⊆ D∞C (πξ) µ-almost every ξ and∫

Ĝ
sup
γ∈Ωt

||πξC(γ−1)f̂ G (ξ)||22dµ(ξ) <∞ for any t > 0,

where the set Ωt is given by Ωt = {expX : X ∈ gC, ||X || < t}

• Using the above we can show that all the elements in D are
entire vectors for λ.
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The case of the Heisenberg groups: conclusion

Thm
Let h be the Lie subalgebra corresponding to the subgroup
H = HY ,Z of H. Then we have

SpecA(H,W ) ∼= {g ·exp(iX ′) : g ∈ H,X ′ ∈ h, exp(iX ′) ∈ SpecA(H,WH)}.
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Future directions

• Compact quantum groups other than SUq(2).

• Non-compact quantum groups such as quantum E (2)-group.
How about their complexification?
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Thank you for your attention
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