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SUMMARY

In my Montreal lectures of 1988, I developed the approach to quantum group putting in the
foreground non–commutative versions of their group rings rather than universal envelopping
algebras.

In this approach, the classical category of vector spaces is replaced by the category of
quadratic algebras.

In this talk, I make a survey of basic properties of these “quantum linear spaces”, and then
extend the relevant definitions and results to the category of operads whose components are
quadratic algebras.
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GROTHENDIECK–VERDIER CATEGORIES:

DEFINITIONS AND EXAMPLES

SOURCE: [BD] M. Boyarchenko, V. Drinfeld. A duality formalism in the spirit
of Grothendieck and Verdier. Quantum Topology, 4 (2013), 447–489.

• DEFINITION. A Grothendieck–Verdier category is a monoidal category (M,⊗)
endowed with a duality functor D and dualizing object K.

Duality functor D is an antiequivalence D : M→Mop such that for each object M,
the functor X 7→ Hom(X ⊗ Y,K) is representable by the object DY .

• EXAMPLES. (i) M:= Bounded derived category of constructible l–adic
sheaves on a scheme of finite type over a field, D := the Verdier duality functor.

(ii) M := the bounded derived category of l–adic sheaves on the quotient stack
AdG) \G with monodical structure defined via convolution.
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• BASIC CATEGORY IN THIS TALK: QUADRATIC ALGEBRAS.
SOURCE: Yu. Manin. Quantum groups and non–commutative geometry,
CRM, Montréal, 1988.

(a) A quadratic algebra is an associative graded algebra A = ⊕∞i=0Ai, where
A0 = k is a fixed ground field, A1 is a finite dimensional linear space
generating A over k, and the graded ideal of all homogeneous relations
is generated by its quadratic part R(A) ⊂ A⊗21 .

Shorthand : A↔ (A1, R(A))

(b) Category QA: Objects := quadratic algebras; morphisms: = graded
homomorphisms over k.
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(c) Monoidal structure(s): there are in fact four natural symmetric monodical
structures on QA: see [M88], p.19.

Here our starting point will be the black product:

A •B ←→ {A1 ⊗k B1, S23(R(A)⊗R(B))},

S23(a1 ⊗ a2 ⊗ b3 ⊗ b4) := a1 ⊗ b3 ⊗ a2 ⊗ b4.

(d) Duality functor QA→ QAop:

A 7→ A! ↔ {A∗1, R(A)⊥},

(f : A→ B) 7→ f ! := the lift of the dual linear map f∗1 : B∗1 → A∗1.
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• THEOREM. (i) (QA, •) is a Grothendieck–Verdier category with the
duality functor ! and dualizing object k[t], that is quadratic algebra with
one–dimensional generating space and no relations.

(ii) It is pivotal category ([BM88], Def. 6.1), but not r–category ([BM88], Def. 1.5),
because its identity object k[ε]/(ε2) is not isomorphic to its dualizing object.

• WHITE PRODUCT IN QA. Although QA is not an r–category, the construction
of the second monoidal structure in QA generally called white product works also
for quadratic algebras.

Explicitly, put as in [M88]:

A ◦B ←→ {A1 ⊗B1, S(23)(R(A)⊗B⊗21 +A⊗21 ⊗R(B))}

Then we have:
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• THEOREM. ([M88], p. 25.) There is a functorial isomorphism in QA:

Hom(A •B,C) ' Hom(A,B! ◦ C).

Thus, B! ◦ C can be identified with the right internal Hom in the Grothendieck–
Verdier monodical category (QA, •) in the sense of [BD13], (2.8):

B! ◦ C ' Hom′(B,C)).



9

QUANTUM COHOMOLOGY OPERADS

AND QUADRATIC ALGEBRAS

• OPERAD OF GENUS ZERO MODULI SPACES. The n–th component
of this operad is the moduli space of stable curves of genus zero with n+ 1
marked points M0,n+1 for n ≥ 2. For n = 1, this component is just a point.

Among n+ 1 marked points (x0, x1, . . . , xn) one is declared initial one, say, x0.

The family of operadic composition maps, here morphisms of smooth
algebraic varieties,

µ(k1, . . . , kj) : M0,j+1 ×M0,k1+1 × · · · ×M0,kj+1 →M0,k1+...kj+1

represents the natural geometric operation which identifies the 0–th marked
point of the curve Cl over M0,kl+1 with the l–th marked point of the curve Cj+1

over M0,j+1.
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ENRICHMENTS

SOURCE: G. M. Kelly. Basic concepts of the enriched category theory.
Cambridge UP (1982).

Revised online version http//www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf

• The general construction of enrichment of a category A by a category B starts with
a replacement of all morphism sets HomA(X,Y ) by objects of the category B.
At the next step we must lift composition maps

HomA(Y,Z)×HomA(X,Y )→ HomA(X,Z)

to appropriate morphisms in B which requires also the introduction of a bifunctorial
composition ⊗ between objects of B replacing set-theoretic direct prooduct ×.
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It follows that B must be a monoidal category. Finally, all the usual categorical
axioms must be lifted to a class of commutative diagrams in B.

• An additional condition in the treatment of enrichment by monoidal categories
is the idea of its closedness.

A monoidal category is called closed if each functor of right tensor multiplication by
a fixed object ∗ 7→ ∗ ⊗ Y has a right adjoint ∗ 7→ [Y, ∗], that is:

HomV0(X ⊗ Y,Z) = HomV0(X, [Y, Z]).

Kelly also introduces unit and counit functors

d : X 7→ [Y,X ⊗ Y ], e : [Y, Z]⊗ Y 7→ [Y, Z]⊗ Z.
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THEOREM. The category of quadratic algebras QA admits the “self”–enrichment
by the symmetric monoidal category (QA, •) with unit K[t]/(t2), where the black
product • is defined on objects by

(A1, R(A)) • (B1, R(B)) := (A1 ⊗K B1, S(23)(R(A)⊗K R(B))).

PROOF. (i) We start with an explicit description of the lifts of sets HomQA(A,B).
We denote such a lift by HomQA(A,B) and define it as

HomQA(A,B) := A! ◦B

where white product ◦ is defined on objects of QA by

(A1, R(A)) ◦ (B1, R(B)) := (A1 ⊗K B1, S(23)(R(A)⊗K B⊗21 +A⊗21 ⊗K R(B))).
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(ii) Now we must define the enriched composition morphisms (Kelly’s notation MABC)

HomQA(B,C) •HomQA(A,B)→ HomQA(A,C)

that is
(B! ◦ C) • (A! ◦B)→ A! ◦ C.

We can use functorial identifications

HomQA(A •B,C) = HomQA(A,B! ◦ C)

in which a morphism in QA induced by the linear map f : A1 ⊗B1 → C1 is identified
with the morphism in QA induced by the linear map g : A1 → B∗1 ⊗ C1 as is standard
in the category of vector spaces.
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(III) The compatibility with quadratic relations is checked directly. In order to
pass to the general multiplication morphisms, we must iterate these identifications.

Identity morphisms idA : A→ A in QA are lifted to the Kelly’s identity elements
jA : K[t]/(t2)→ A! ◦A.

The composition law (Kelly’s MABC) is our morphism µ = µABC .

Finally, we must check the associativity and unit axioms for this enrichment.
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OPERADS AND THEIR ENRICHMENTS

SOURCE: [BM] D. Borisov, Yu. Manin. Generalized operads and their inner
cohomomorphisms.
Birkhäuser Verlag, Progress in Math., vol. 265 (2007), 247–308.

• We will use here the version of definition of operads according to which an
operad P over a symmetric monoidal category (A,⊗) ( “ground category”)
is a monoidal/tensor functor (Γ,

∐
)→ (A,⊗) where Γ is a category of finite

(eventually labeled) graphs with disjoint union
∐

and morphisms including graftings.

• In our context, graphs will be forests having one labeled root at each connected
component, and a numbering (complete ordering) by {1, . . . , n} of all leaves on each
connected component. (In [BM], we say “flags” in place of more common “leaves”).
Grafting will connect roots to leaves.
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• Denote by P(n) the image of the tree with one root and n leaves totally ordered
by labels {1, . . . , n}, n ≥ 1. We will refer to the family of objects P(n), eventually
endowed with right Sn-actions, as a collection, and refer to P(n) as n–ary component
of P, or else component of arity n.

• The data completely determining such an operad is a set of morphisms in the
ground category

P(k)⊗P(m1)⊗P(m2)⊗ · · · ⊗P(mk)→ P(n), n = m1 +m2 + · · ·+mk (∗)

indexed by unshuffles of {1, 2, . . . n}. They are called operadic compositions or
multiplications.

The relevant notion of cooperad is obtained by inversion of arrows in (*).
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• DEFINITION. Given a Kelly enrichment of the ground category (A,⊗) by (B,×),
we will call the enriched operad the family of respective lifts of morphisms (*)

IB → HomA(P(k)⊗P(m1)⊗P(m2)⊗ · · · ⊗P(mk),P(n)). (∗∗)

Consider now an operad P over the ground category (QA, •).

• PROPOSITION. The enrichment of P in the Kelly enrichment of (QA, •) by QA
is given by a family of quadratic algebras

(P(k)⊗P(m1)⊗P(m2)⊗ · · · ⊗P(mk))! ◦P(m1 +m2 + · · ·+mk)

endowed with a family of elements in the linear spaces

(P(k)⊗P(m1)⊗P(m2)⊗ · · · ⊗P(mk))∗1 ⊗P(m1 +m2 + · · ·+mk)1 (∗ ∗ ∗)

indexed by unshuffles and having vanishing squares.
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PROOF. As was shown earlier, for any three quadratic algebras A,B,C we have
canonical identifications

HomQA(A •B,C) = HomQA(A,B! ◦ C).

Putting here A = K[t]/(t2) which is the unit object in (QA, •), we get

HomQA(B,C) = HomQA(K[t]/(t2), B! ◦ C)

= {d ∈ B∗1 ⊗ C1 |S(23)(d
⊗2) ∈ R(B)⊥ ⊗ C⊗21 + (B∗1)⊗2 ⊗R(C)}.

In order to pass from this general case to (***), it remains to choose

B1 = P(k)⊗P(m1)⊗P(m2)⊗ · · · ⊗P(mk))1, C1 = P(m1 +m2 + · · ·+mk)1.

This completes the proof.
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• REMARK. Family of elements (***) with vanishing squares satisfies also some
additional identities that follow from the operadic axioms. Their explicit form
can be obtained in several steps.

(i) Write the respective axiom as a class of commutative diagrams in QA.

(ii) Break each commutative diagram into a family of neighboring commutative
triangles and replace it by a sequence of equalities of elements in the Kelly’s
enrichments.

Namely, a commutative square gf = eh in QA where f : A→ B, g : B → C,
h : A→ D, e : D → C, can be lifted to the equality of the respective elements
defined with the help of Kelly’s morphisms:

MABC : HomQA(B,C) •HomQA(A,B)→ HomQA(A,C)

that is
(B! ◦ C) • (A! ◦B)→ A! ◦ C

and similarly MADE.
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GENUS ZERO MODULAR OPERAD

Here I will describe the main motivating example of the shuffle operad in
the category QA: the genus zero modular (co)operad (also called tree–level
cyclic CohFT (co)operad) P .

• The component of arity n for n ≥ 2 of P is the cohomology ring

P (n) := H∗(M0,n+1,Q)

where M0,n+1 is the moduli space (projective manifold) parametrising stable
curves of genus zero with n+ 1 labelled points. Component of arity 1 is Q.

• Structure morphisms (cooperadic comultiplications)

P (m1 +m2 + · · ·+mk)→ P (k)⊗ P (m1)⊗ P (m2)⊗ · · · ⊗ P (mk)

are maps induced by the maps of moduli spaces defined point–wise by the
glueing of the respective stable curves:

M0,k+1 ×M0,m1+1 × · · · ×M0,mk+1 →M0,m1+···+mk+1.
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• PROPOSITION. a) For every n ≥ 3, P (n) is a quadratic algebra with
linear space of generators P (n)1 = H2(M0,n+1) of dimension

2n − n(n+ 1)

2
− 1.

b) Comultiplications are morphisms of quadratic algebras.

PROOF. For a) and further details, see Ch. III, sec. 3, in

Yu. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces.
AMS Colloquium Publications, Vol. 47 (1999), xiii+303 pp.

Part b) follows from the fact that any morphism of smooth projective manifolds
X → Y induces a functorial homomorphism of Chow rings f∗ : A∗(Y )→ A∗(X).
Indeed, P (n) := H∗(M0,n+1,Q) are just Chow rings graded by algebraic codimension
of respective cycles.

Algebras classified/encoded by P , will be directly described below.
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• There is another interesting operad G such that components of every arity
in its dual cooperad are quadratic algebras as well. It encodes Gerstenhaber algebras.
Each G(n) can be represented as the homology ring of the Fulton–MacPherson
compactification of the space of configurations of n points in R2.

In the literature, one can find a few other operads such that components of their
dual cooperads are quadratic algebras.

• Additional information about P and P–algebras.

I will briefly recall here a description of P as a functor on the category of trees/forests.

Start with the combinatorial definition of relevant graphs.

(i) A stable tree τ is a diagram of pairwise disjoint finite sets (Vτ , Eτ , Tτ ) and boundary maps

bT : Tτ → Vτ , bE : Eτ → {unordered pairs of distinct vertices}.
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A geometric realization of τ is the CW–complex whose 1–simplexes are (bijective to)
Eτ ∪ Tτ (edges and tails) and 0–simplexes are (bijective to) Vτ ( vertices.)
The geometric realisation of τ must be connected and simply–connected,
i. e. to be a tree.
Each vertex must belong to the boundary of either one tail, or one tail and ≥ 2 edges,
or else or ≥ 3 edges (stability condition).

(ii) Stable trees are objects of a category, in which every morphism f : τ → σ consists
of three maps

fv : Vτ → Vσ, f t : Tσ → Tτ , fe : Eσ → Eτ .

satisfying certain conditions that we omit.

(iii) Let now F be a finite set of cardinality ≥ 3. Below we will denote by M0,F

the moduli space of stable curves of arithmetic genus zero endowed with a collection
of pairwise different smooth points labelled by F .
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One can define a functor M from the category of stable trees above to
the category of projective algebraic manifolds. On objects, it is defined by

M : τ 7→
∏
v∈Vτ

M0,Fτ (v).

Here Fτ denotes the set of flags of τ that is, (pairs {edge, one vertex of it}),
and Fτ (v) denotes the set of all flags, containing the vertex v.

I omit the definition of M on morphisms.

Let L be an object of the category LinsK of finite–dimensional K–linear superspaces
with a non–degenerate even scalar product. One can define the operad OpEndL
as the functor on stable trees defined on objects by

OpEndL (τ) := L⊗Fτ .

Again, the definition on morphisms is here omitted.
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• DEFINITION. The structure of M–algebra on L is a morphism of functors
OpEndL → H∗M compatible with gluing.

Applying to this operad the general construction sketched above, we obtain the
following concrete result:

• PROPOSITION. The enrichment of action of P upon a quadratic algebra Q
is represented by the family of Kelly enrichments P (n)! ◦Hom (Q⊗n, Q) endowed
with a family of elements described above.

Unfortunately, in the vast supply of examples of P–algebras, furnished
by quantum cohomology, I was unable to find nontrivial actions of P upon
quadratic algebras A rather than upon graded spaces obtained by forgetting
multiplication in A.
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Below I will give some more details about the operad P .

• Generally, an operad can be characterised by the category of algebras that
it classifies.

The operad P classifies algebras endowed with infinitely many multilinear
operations satisfying infinitely many “multicommutativity” properties which
I will briefly recall below.

Let L be a linear (super)space with symmetric even non–degenerate scalar product h.

A morphism of P to its endomorphism operad induces upon L the structure
that I will call here, following E. Getzler, hypercommutative (or hyperCom) algebra.
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• DEFINITION. A structure of cyclic hyperCom–algebra on (L, g) is a sequence
of polylinear multiplications

◦n : L⊗n → L, ◦n(γ1 ⊗ · · · ⊗ γn) =: (γ1, . . . , γn), n ≥ 2

satisfying three axioms:

(i) Commutativity := Sn–symmetry;

(ii) Cyclicity: h((γ1, . . . , γn), γn+1) is Sn+1–symmetric;

(iii) Associativity: for any m ≥ 0, α, β, γ, δ1, . . . , δm∑
{1,...,m}=S1qS2

±((α, β, δi | i ∈ S1), γ, δj | j ∈ S2) =

∑
{1,...,m}=S1qS2

±(α, δi | i ∈ S1), β, γ, δj | j ∈ S2))

with usual signs from superalgebra.
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(iv) (Optional) identity Data and Axiom: e ∈ Leven satisfying

(e, γ1, . . . , γn) = γ1 for n = 1; 0 for n ≥ 2.

• FACT. This direct description of cyclic hyperCom–algebras produces the same
family of algebras that was described above as M–algebras.

• Here are some comments.

1) If ◦n = 0 for n ≥ 3, we get the structure of commutative algebra with invariant
scalar product: g(αβ, γ) = g(α, βγ).

2) Associativity identities for m = 1 are:

((α, β), γ, δ) + ((α, β, δ), γ) = ((α, (β, γ, δ)) + (α, δ, (β, γ))
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3) One of the earliest results of mathematical theory of quantum cohomology
established that for any smooth projective manifold (or a compact symplectic
manifold) V , the superspace

(L, h) := (H∗(V ), Poincaré pairing)

admits a canonical structure of cyclic hyperCom–algebra.

• ON THE SELF-REFLEXIVITY OF QUANTUM COHOMOLOGY.

The idea to introduce a higher level (enriched, or “quantised”) operadic action of P
upon its own components {P (n)} was motivated by the problem which seems as yet
far away from its solution. In the language of classical algebraic geometry, this problem
consists in calculation of Gromov–Witten invariants of genus zero of M0,n, n ≥ 6,
corresponding to those effective curve classes β which lie “to the wrong side” of the
anticanonical hyperplane.

In order to solve this problem, it might be helpful to use very recent results and
methods of V. Dotsenko showing that all cohomology algebras H∗(M0,n are Koszul:

V. Dotsenko. Homotopy invariants for M0,•+1 via Koszul duality. arXiv:1902.06318.
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