Explicit Rieffel Induction Module for quantum groups

Damien Rivet

August 8, 2019

Work in progress

Motivations

```
G - complex semi-simple Lie group (Ex : G = SL_n(\mathbb{C})) G = KAN (Ex : K = SU(n), A = \{\text{diagonals with positives entries}\}, N = \{\text{unipotent upper triagular matrices}\}) B = TAN - Borel subgroup, L = TA - Levi factor.
```

Motivations

$$G$$
 - complex semi-simple Lie group (Ex : $G = SL_n(\mathbb{C})$) $G = KAN$ (Ex : $K = SU(n)$, $A = \{\text{diagonals with positives entries}\}$, $N = \{\text{unipotent upper triagular matrices}\}$)

B = TAN - Borel subgroup, L = TA - Levi factor.

there exists a $C^*(L)$ -Hilbert module $\mathcal{E}(G/N)$ s.t. $\forall \ \mu \in \hat{\mathcal{T}}$, $\lambda \in \hat{\mathcal{A}}$:

$$\operatorname{\mathsf{Ind}}\nolimits^{\mathsf{G}}_{\mathsf{B}}\mu \otimes \lambda \otimes \mathbf{1} \cong \mathcal{E}(\mathsf{G}/\mathsf{N}) \otimes_{\mathsf{C}^*(\mathsf{L})} \mathbb{C}_{\mu \otimes \lambda}$$

We can thus re-express Harish-Chandra results :

$$C_r^*(G) = \bigoplus_{\mu \in \hat{T}} \mathcal{K}(\mathcal{E}(G/N) \otimes_{C_r^*(L)} C_0(\hat{A})_{\mu})^W$$

Convolution algebra

Let $(\mathcal{A}(\mathbb{G}), \phi_{\mathbb{G}})$ be an algebraic quantum group (or more generally, a bornological quantum group).

We define $\mathcal{D}(\mathbb{G})$ as the *-algebra s.t. $\mathcal{D}(\mathbb{G}) = \mathcal{A}(\mathbb{G})$ as a space and with product and involution

$$f * g = id \otimes \phi_{\mathbb{G}}((1 \otimes S^{-1}(g))\Delta(f)), \ \forall f, g \in \mathcal{D}(\mathbb{G}), \ f^* = \overline{S(f)}\delta_{\mathbb{G}}.$$

In Sweedler notations it gives $f * g = \phi_{\mathbb{G}}(S^{-1}(g)f_{(2)})f_{(1)}$.

Closed quantum subgroup

Let's consider another algebraic (or bornological) quantum group $(\mathcal{A}(\mathbb{B}), \phi_{\mathbb{B}})$. Suppose we have a (bounded) Hopf *-morphism

$$\pi: \mathcal{A}(\mathbb{G}) \twoheadrightarrow \mathcal{A}(\mathbb{B}).$$

We thus say that π identifies $\mathcal{A}(\mathbb{B})$ as a closed quantum subgroup of $\mathcal{A}(\mathbb{G})$.

Closed quantum subgroup

Let's consider another algebraic (or bornological) quantum group $(\mathcal{A}(\mathbb{B}), \phi_{\mathbb{B}})$. Suppose we have a (bounded) Hopf *-morphism

$$\pi: \mathcal{A}(\mathbb{G}) \twoheadrightarrow \mathcal{A}(\mathbb{B}).$$

We thus say that π identifies $\mathcal{A}(\mathbb{B})$ as a closed quantum subgroup of $\mathcal{A}(\mathbb{G})$.

The map π can be seen as $\pi: \mathcal{D}(\mathbb{G}) \to \mathcal{D}(\mathbb{B})$, which is no longer a morphism but induces a right $\mathcal{D}(\mathbb{B})$ -module structure on $\mathcal{D}(\mathbb{G})$:

$$f \cdot h = \phi_{\mathbb{B}}(S^{-1}(h)\pi(f_{(2)})\gamma)f_{(1)}, \ f \in \mathcal{D}(\mathbb{G}), \ h \in \mathcal{D}(\mathbb{B}).$$

Here $\gamma=\pi(\delta_{\mathbb{G}}^{-\frac{1}{2}})\delta_{\mathbb{B}}^{\frac{1}{2}}$ (we assume $\delta_{\mathbb{B}}^{\frac{1}{2}}\in\mathcal{M}(\mathcal{D}(\mathbb{B})),\delta_{\mathbb{G}}^{\frac{1}{2}}\in\mathcal{M}(\mathcal{D}(\mathbb{G}))$

Conditional expectation

The map

$$E: \mathcal{D}(\mathbb{G}) \to \mathcal{D}(\mathbb{B}), \ E(f) = \pi(f)\gamma$$

has the weak conditional expectation properties :

- $E(f^*) = E(f)^*$,
- $E(f \cdot h) = E(f) * h.$

Remark: In the case where \mathbb{B} is also open in \mathbb{G} , this map is a conditional expectation, it has been treated by Kalantar, Kasprzak, Skalski, Sołtan [Induction for locally compact quantum groups revisited, 2017]

The induction module

The space $\mathcal{D}(\mathbb{G})$ can be seen as a right $\mathcal{D}(\mathbb{B})$ -module. Then

$$\langle f,g\rangle_{C^*(\mathbb{B})}=E(f^**g),\ f,g\in\mathcal{D}(\mathbb{G}),$$

defines a $\mathcal{D}(\mathbb{B})$ -inner product. $\mathcal{D}(\mathbb{G})$ can be completed to a $C^*(\mathbb{B})$ -Hilbert module $\mathcal{E}(\mathbb{G})$, equipped a left *-action of $C^*(\mathbb{G})$.

The induction module

The space $\mathcal{D}(\mathbb{G})$ can be seen as a right $\mathcal{D}(\mathbb{B})$ -module. Then

$$\langle f,g\rangle_{C^*(\mathbb{B})}=E(f^**g),\ f,g\in\mathcal{D}(\mathbb{G}),$$

defines a $\mathcal{D}(\mathbb{B})$ -inner product. $\mathcal{D}(\mathbb{G})$ can be completed to a $C^*(\mathbb{B})$ -Hilbert module $\mathcal{E}(\mathbb{G})$, equipped a left *-action of $C^*(\mathbb{G})$. Now, if K is a *-representation of $C^*(\mathbb{B})$, we can build

$$\mathcal{E}(\mathbb{G})\otimes_{C^*(\mathbb{B})} K$$

which is a representation $C^*(\mathbb{G})$ that we call the induced representation of K.

$$V_{VN(\mathbb{G})}\mathcal{I}_{VN(\mathbb{B})} = \{v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), vx = \hat{\pi}'(x)v \ \forall x \in vN(\mathbb{B})'\}$$

$$V_{N(\mathbb{G})}\mathcal{I}_{VN(\mathbb{B})} = \{ v \in B(L^{2}(\mathbb{B}), L^{2}(\mathbb{G})), \ vx = \hat{\pi}'(x)v \ \forall x \in VN(\mathbb{B})' \}$$

$$C^{*}(\mathbb{B})K$$

$$_{\mathsf{VN}(\mathbb{G})}\mathcal{I}_{\mathsf{VN}(\mathbb{B})} = \{ v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), \ vx = \hat{\pi}'(x)v \ \forall x \in v\mathsf{N}(\mathbb{B})' \}$$

$$C^*(\mathbb{B})K \longrightarrow_{VN(\mathbb{B})} L^2(\mathbb{G}) \otimes K_{VN(\mathbb{G})}$$

$$_{\mathsf{vN}(\mathbb{G})}\mathcal{I}_{\mathsf{vN}(\mathbb{B})} = \{ v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), \ \mathsf{vx} = \hat{\pi}'(\mathsf{x})\mathsf{v} \ \forall \mathsf{x} \in \mathsf{vN}(\mathbb{B})' \}$$

$$C^{*}(\mathbb{B})K \longrightarrow_{\nu N(\mathbb{B})} L^{2}(\mathbb{G}) \otimes K_{\nu N(\mathbb{G})}$$

$$\downarrow \qquad \qquad \qquad \downarrow^{L^{\infty}(\mathbb{G})'}$$

$$\nu N(\mathbb{G})\mathcal{I} \otimes_{\nu N(\mathbb{B})} (L^{2}(\mathbb{G}) \otimes K)_{\nu N(\mathbb{G})}$$

$$_{\mathsf{vN}(\mathbb{G})}\mathcal{I}_{\mathsf{vN}(\mathbb{B})} = \{ v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), \ \mathsf{vx} = \hat{\pi}'(\mathsf{x})\mathsf{v} \ \forall \mathsf{x} \in \mathsf{vN}(\mathbb{B})' \}$$

$$_{\mathsf{vN}(\mathbb{G})}\mathcal{I}_{\mathsf{vN}(\mathbb{B})} = \{ v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), \ \mathsf{vx} = \hat{\pi}'(\mathsf{x})\mathsf{v} \ \forall \mathsf{x} \in \mathsf{vN}(\mathbb{B})' \}$$

$$_{\mathsf{VN}(\mathbb{G})}\mathcal{I}_{\mathsf{VN}(\mathbb{B})} = \{ v \in B(L^2(\mathbb{B}), L^2(\mathbb{G})), \ \mathsf{vx} = \hat{\pi}'(\mathsf{x})\mathsf{v} \ \forall \mathsf{x} \in \mathsf{vN}(\mathbb{B})' \}$$

Idea of the proof

- **9** Build an injection $\mathcal{E}(\mathbb{G}) \to \mathcal{I}$ with dense image (w.r.t. the weak topology of $B(L^2(\mathbb{B}), L^2(\mathbb{G}))$)
- Show that

$$\Psi: {}_{\nu\mathsf{N}(\mathbb{G})}L^{2}(\mathbb{G}) \otimes \mathcal{E}(\mathbb{G}) \otimes_{C^{*}(\mathbb{B})} K_{\nu\mathsf{N}(\mathbb{G})} \to {}_{\nu\mathsf{N}(\mathbb{G})}\mathcal{I} \otimes_{\mathbb{B}} (L^{2}(\mathbb{G}) \otimes K)_{\nu\mathsf{N}(\mathbb{G})}$$

with

$$\Psi(\xi \otimes a \otimes v) = \Delta(\xi)(a \otimes 1) \otimes v$$

defines an equivalence of bicovariant correspondences

(Thus
$$L^2(\mathbb{G}) \otimes \mathcal{E}(\mathbb{G}) \otimes_{C^*(\mathbb{B})} K \cong L^2(\mathbb{G}) \otimes \text{Ind } K$$
 and so $\mathcal{E}(\mathbb{G}) \otimes_{C^*(\mathbb{B})} K \cong \text{Ind } K$)

Complex semi-simple quantum groups

 K_q - compact semi-simple quantum group

 $G_q = K_q \bowtie \hat{K}_q$ the Drinfeld double

 $B_q = T \bowtie \hat{K}_q$ - Borel quantum subgroup

 $L_q = \mathcal{T} imes \mathcal{A}_q$ (where \mathcal{A}_q designate the weight lattice associated to \mathcal{K}_q)

$$\mathsf{Ex}: \ \mathsf{K}_q = \mathsf{SU}_q(2), \ \mathsf{G}_q = \mathsf{SL}_q(2,\mathbb{C}), \ \mathsf{T} pprox \mathbb{T}, \ \mathsf{A}_q pprox \mathbb{Z}$$

Remark : L_q is not a quantum subgroup but we have

$$\mathcal{D}(B_q) \twoheadrightarrow \mathcal{D}(L_q)$$

Parabolic induction

 B_q is a closed quantum subgroup of G_q :

$$\mathcal{A}(G_q) = \mathcal{A}(K_q) \otimes \mathcal{A}(\hat{K}_q) \twoheadrightarrow \mathcal{A}(B_q) = \mathcal{A}(T) \otimes \mathcal{A}(\hat{K}_q)$$

Let now $(\mu, \lambda) \in \mathbf{P} \times T$. The representation of G_q associated with (μ, λ) is originally defined as

$$\mathsf{Ind}_{\mathsf{B}_q}^{\mathsf{G}_q}\mathbb{C}_{\mu,\lambda} = ig\{\, \xi \in \mathcal{A}(\mathsf{G}_q) \bigm| (\mathit{id} \otimes \pi_{\mathsf{B}_q}) \Delta_{\mathsf{G}_q}(\xi) = \xi \otimes e^\mu \otimes \mathsf{K}_{\lambda+2
ho}\, ig\}$$

Parabolic induction

 B_q is a closed quantum subgroup of G_q :

$$\mathcal{A}(G_q) = \mathcal{A}(K_q) \otimes \mathcal{A}(\hat{K}_q) \twoheadrightarrow \mathcal{A}(B_q) = \mathcal{A}(T) \otimes \mathcal{A}(\hat{K}_q)$$

Let now $(\mu, \lambda) \in \mathbf{P} \times T$. The representation of G_q associated with (μ, λ) is originally defined as

$$\mathsf{Ind}_{B_q}^{\mathsf{G}_q}\mathbb{C}_{\mu,\lambda} = ig\{\, \xi \in \mathcal{A}(\mathsf{G}_q) \ ig| \ (\mathit{id} \otimes \pi_{\mathsf{B}_q}) \Delta_{\mathsf{G}_q}(\xi) = \xi \otimes e^\mu \otimes \mathsf{K}_{\lambda+2
ho} \,ig\}$$

Proposition

$$\mathit{Ind}_{B_q}^{\mathsf{G}_q}\mathbb{C}_{\mu,\lambda} = \mathcal{E}(\mathsf{G}_q) \otimes_{C^*(B_q)} \mathbb{C}_{\mu,\lambda}$$

The Parabolic Induction module

The parabolic induction module can be built as the $C^*(L_q)$ -Hilbert module $\mathcal{E}(G_q) \otimes_{C^*(B_q)} C^*(L_q)$

But we can build the module of "functions on the quotient space ${\it G_q/N_q}$ ":

$$\mathcal{A}(\mathit{G}_q/\mathit{N}_q) := \mathcal{A}(\mathit{K}_q) \otimes \mathcal{A}(\mathit{A}_q)$$

with the $C^*(L_q)$ -inner product

$$\langle a\otimes f,b\otimes g\rangle_{C^*(L_q)}=\phi_{K_q}(\bar{a}b_{(1)})\pi(b_{(2)})\otimes\phi_{A_q}(f^*g_{(1)})g_{(2)}K_{-2\rho}$$

The $C^*(L_q)$ -Hilbert module $\mathcal{E}(G_q/N_q)$ obtained by completing $\mathcal{A}(G_q/N_q)$ is isometrically isomorphic to $\mathcal{E}(G_q) \otimes_{C^*(B_q)} C^*(L_q)$.