# Noncommutative Riemannian Geometry on finite groups and Hopf quivers

Wenqing Tao Joint work with: Prof. Shahn Majid

Universiteit Hasselt

5/Aug/2019

#### Introduction

Any 'space' is determined by the algebra of functions on it.

- Gelfand-Naimark theorem
- Serre-Swan theorem
- Spectral triples by A. Connes

#### Introduction

Any 'space' is determined by the algebra of functions on it.

- Gelfand-Naimark theorem
- Serre-Swan theorem
- Spectral triples by A. Connes

Quantum groups approach to noncommutative geometry:

- allow one to generalize 'classical' ideas to 'deformed' versions: e.g. q-deformation  $SU_q(2)$
- providing insights into a more general structure by using the Hopf algebra language to rephrase ideas and concepts
- quantum symmetry as a guide
- may hold the key to dealing with one of the major unsolved problems in physics: quantum gravity

#### Outline

1 Differential calculus and Quiver calculus

- 2 Connections and quantum metrics
- Quantum principal bundle

I. Differential calculus and Quiver calculus

#### Noncommutative differential forms

#### Definition (1-forms)

Let A be an algebra. We say a pair  $(\Omega^1, d)$  is (generalised) first order differential calculus over A, if

- 1)  $\Omega^1$  is a A-bimodule;
- 2)  $d: A \to \Omega^1$  linear map, called **derivative**, such that

$$d(ab) = (da)b + adb, \ \forall a, b \in A;$$

3) (dropped)  $\Omega^1 = \operatorname{span}\{a db\}.$ 

When A is an Hopf algebra, one can require  $\Omega^1$  to be **left covariant** if 1)  $\Omega^1$  in addition is a left comodule with the coaction  $\Delta_L:\Omega^1\to H\otimes\Omega^1$  being a bimodule map and 2) the derivation is a left comodule map. A calculus  $\Omega^1$  is **bicovariant** if it is both left and right covariant.

#### Noncommutative differential forms

## Definition (Higher forms)

We say  $(\Omega(A) = \bigoplus_{n>0} \Omega^n, d)$  with  $\Omega^0 = A$  is a **(generalised) differential** graded algebra (DGA) over A if

- 1)  $\Omega$  is a graded algebra, i.e.,  $\Omega^i \wedge \Omega^j \subseteq \Omega^{i+j}$  for  $i, j \geq 0$ ;
- 2)  $d: \Omega^i \to \Omega^{i+1}$  is a degree 1 map such that  $d^2 = 0$  and graded Leibniz rule, i.e.,

$$d(\xi \wedge \eta) = (d\xi) \wedge \eta + (-1)^{|\xi|} \xi \wedge (d\eta), \ \forall \xi, \eta \in \Omega;$$

3) (dropped)  $\Omega$  is generated by A and  $\Omega^1$  as an algebra.

The advantage of  $\Omega^1$  being bicovariant is that one can construct DGAs via

- Woronowicz-Nichols algebra  $\Omega_w(A) = A \bowtie B_-(\Lambda^1)$
- Quantum Shuffle algebra  $\Omega_{\rm sh}(A) = A \bowtie \operatorname{Sh}_{-}(\Lambda^1)$  (generalised one), etc

## Quiver calculus on finite sets

Example (and Proposition)

Let A = k(X) be the algebra of functions on a finite set X.

$$\left\{ \text{Differential calculi } \Omega^1 \text{ on } A \right\} \overset{1-1}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Directed graphs } \bar{Q} = (X, E) \\ \text{without loops and multiple edges} \end{array} \right\}$$

$$\left\{ \text{Generalised } \Omega^1 \text{ on } A \right\} \overset{1-1}{\longleftrightarrow} \left\{ \begin{matrix} \text{Quivers } Q \text{ containing a digraph } \bar{Q} \\ \text{with } Q_0 = \bar{Q}_0 = X \end{matrix} \right\}$$

$$Q: \bigcirc \circ \Longrightarrow \circ \ \ \text{containing digraph} \ \bar{Q}: \ \ \circ \longrightarrow \circ$$

Quiver allows for loops and multiple edges.

## Hopf quivers

• The path coalgebra denoted by  $\Bbbk Q^c$  is the  $\Bbbk$ -space spanned by the paths of Q with comultiplication and counit defined by  $\Delta(x)=x\otimes x,\ \epsilon(x)=1$  for each  $x\in Q_0$ , and

$$\Delta(p) = s(\alpha_1) \otimes p + \sum_{i=1}^{n-1} \alpha_1 \cdots \alpha_i \otimes \alpha_{i+1} \cdots \alpha_n + p \otimes t(\alpha_n), \quad \epsilon(p) = 0.$$

for each non-trivial path  $p = \alpha_1 \cdots \alpha_n$ .

- A quiver Q is said to be a **Hopf quiver** if the corresponding path coalgebra  $\mathbb{k}Q^c$  admits a length-graded Hopf algebra structure.
- For a Hopf quiver,  $Q_0$  is necessarily a group and  $Q_1$  is determined by ramification datum  $R = \sum_{C \in \mathfrak{C}} R_C C$ .
- Let G be a group and  $S \subset G$  be a subset such that  $e \notin S$ . The **Cayley graph** associated to (G,S) is defined as the directed graph having one vertex at each  $g \in G$  and directed edges  $g \to h$  whenever  $g^{-1}h \in S$ .
- If a Hopf quiver has no loops and no multiple edges then it is a Cayley graph.

# Hopf quiver calculus on finite groups

Example (and Theorem)

Let A = k(G) be the algebra of functions on a finite group G.

$$\left\{ \text{Bicovariant } \Omega^1 \text{ on } A \right\} \overset{1-1}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Cayley graphs } \bar{Q} \text{ w.r.t} \\ \text{a union of nontrivial conjugacy classes } \bar{C} \end{array} \right\}$$

 $\left\{ \mathsf{Generalised} \ \mathsf{bicovariant} \ \Omega^1 \ \mathsf{on} \ A \right\}$ 

$$\stackrel{1-1}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Hopf quivers } Q \text{ containing a Cayley digraph } \bar{Q} \\ \text{with } Q_0 = \bar{Q}_0 = X \end{array} \right\}$$

$$Q: \bigcirc \circ \stackrel{\bigcirc}{ \longleftarrow} \circ \bigcirc \text{ containing Cayley digraph } \bar{Q}: \circ \longleftarrow \circ$$

## Path algebra vs Path coalgebra

#### Corollary

Let  $\Omega^1(\bar{Q},Q)$  be a Hopf digraph-quiver calculus on  $\Bbbk(G)$  of a finite group G. Then it extends to a DGA as a quotient of the path super-Hopf algebra  $\Bbbk Q^a$  by the relation that the element  $\sum_{x\in G,a,b\in \bar{C}}x\xrightarrow{(1)}xa\xrightarrow{(1)}xab$  is central.

**Proof.** 
$$\Bbbk(G) \bowtie T_-\Lambda^1 \cong \Bbbk Q^a$$
.

On group Hopf algebra kG, where G is not necessary finite, we have

#### **Theorem**

Associated to a Hopf quiver containing loops, there is a bicovariant calculus on  $\Bbbk G$ . It extends to a DGA on the path super-Hopf algebra  $\Bbbk Q^c$  with super-derivation given by  $\mathbf{d} = [\theta, \}$ , where  $\theta$  is the sum of loops.

**Proof.** 
$$\Omega_{\operatorname{sh}}(\Bbbk G) \cong \Bbbk Q^c$$
.

II. Connections and quantum metrics

#### Connections

Let A be a unital algebra and  $(\Omega^1, d)$  a (generalised) differential calculus over A.

• A (left) connection on a left A-module E is a linear map  $\nabla: E \to \Omega^1 \otimes_A E$  such that

$$\nabla(a\omega) = \mathrm{d}a \otimes_A \omega + a\nabla\omega$$

for all  $\omega \in E$ ,  $a \in A$ .

• A connection  $\nabla$  is called a **(left) bimodule connection** if there exists a bimodule map  $\sigma: E \otimes_A \Omega^1 \to \Omega^1 \otimes_A E$  such that

$$\nabla(\omega a) = (\nabla \omega)a + \sigma(\omega \otimes_A da)$$

for all  $\omega \in E$ ,  $a \in A$ .

For a standard calculus, the map  $\sigma$  (if it exists) is fully determined by  $\nabla$ .

#### Proposition (Connections given by quiver representations)

Let  $A = \Bbbk(X)$  and  $\Omega^1(\bar{Q},Q)$  digraph-quiver calculus

• A connection  $(E, \nabla)$  means a quiver representation i.e., a set of spaces  $_xE$   $(x \in X)$  and maps  $L_\beta: _{s(\beta)}E \to _{t(\beta)}E$   $(\beta \in Q_1)$ , where we identify this information with

$$E = \bigoplus_{x \in X} E, \quad \nabla v = \sum_{\alpha \in \bar{Q}_1} \alpha \otimes_A t(\alpha) v + \sum_{\beta \in Q_1} \beta \otimes_A L_{\beta}(s(\beta)) v.$$

where  $_{x}v$  is the component of v in  $_{x}E$ .

② A bimodule connection  $(E, \nabla, \sigma)$  means a left connection and  $\sigma: E \otimes_A \Omega^1 \to \Omega^1 \otimes_A E$  a bimodule map satisfying

$$\sigma(v \otimes_A \alpha) = -\sum_{\beta \in Q_1} \beta \otimes_A L_{\beta}(s(\beta)v_{s(\alpha)})_{t(\alpha)}$$

for all arrows  $\alpha$  in the digraph  $\bar{Q}$ .

## Metrics and Levi-Civita connections

A **metric** is an element  $g\in\Omega^1\otimes_A\Omega^1$  together with a bimodule map  $(\ ,\ ):\Omega^1\otimes_A\Omega^1\to A$  such that

$$g^{(1)} \otimes_A (g^{(2)}, \omega) = \omega, \quad (\omega, g^{(1)}) \otimes_A g^{(2)} = \omega, \quad \forall \omega \in \Omega^1,$$

where  $g=g^{(1)}\otimes g^{(2)}.$  One can require that g to be **central** in  $\Omega^1\otimes_A\Omega^1,$  i.e. ag=ga for any  $a\in A.$ 

A bimodule connection  $(\nabla, \sigma)$  will be called **Levi-Civita** if

- torsion-free:  $T_{\nabla} = 0$ , where  $T_{\nabla} := \wedge \nabla d : \Omega^1 \to \Omega^2$ ;
- torsion-compatible:  $\operatorname{Im}(\operatorname{id} + \sigma) \subset \ker \wedge \implies T_{\nabla}$  is a bimodule map;
- metric-compatible:  $\nabla q := \nabla g^{(1)} \otimes_A g^{(2)} + (\sigma \otimes \mathrm{id})(g^{(1)} \otimes_A \nabla g^{(2)}) = 0.$

Let  $Q=(Q_0,Q_1)$  be a quiver and let  $n(x,y)=\#\{x\to y\}$  in Q. We say Q is **symmetric** if n(x,y)=n(y,x) for  $\forall\,x,y\in Q_0$ .

#### Proposition

The differential  $\Omega^1=kQ_1$  on  $A=k(Q_0)$  admits a central metric if and only if the quiver is symmetric. The metric takes the form

$$g = \sum_{x \to y \in E_Q} \sum_{i,j=1}^{n(x,y)} g_{x \to y}^{ij} x \xrightarrow{(i)} y \xrightarrow{(j)} x,$$
$$(y \xrightarrow{(j)} x, x' \xrightarrow{(k)} y') = (g_{x \to y})^{-1}{}_{jk} \delta_{x,x'} \delta_{y,y'} \delta_y,$$

where  $g_{x \to y} = (g_{x \to y}^{ij})$  is an arbitrary  $n(x,y) \times n(x,y)$  invertible matrices associated to index arrow  $x \to y$ .

## Example

We have computed the Riemannian geometry of 4D (inner) generalised differential calculus of  $A=k(\mathbb{Z}_2)$  associated to the following quiver:

There is a full 4-functional parameter moduli of quantum Levi-Civita connections for a given metric.

III. Quantum principal bundle

# Quantum principal bundle

#### Definition

A quantum principal bundle  $(P, H, \beta)$  means

- P a right H-comodule algebra with coaction  $\rho: P \to P \otimes H$ ;
- $\bullet$  Let  $A=P^{\operatorname{co} H}.$  P together with a right-covariant standard differential  $\Omega^1(P)$  such that

$$0 \to P\Omega^1(A)P \hookrightarrow \Omega^1(P) \to P \otimes \Lambda^1_H \to 0$$

is a well-defined exact sequence, where  $\Omega^1(H)=H\otimes \Lambda^1_H$  is bicovariant.

In the standard case, the exactness is interpreted as Hopf-Galois condition, which means the Galois map

$$\beta: P \otimes_A P \to P \otimes H, \ a \otimes b \mapsto a\rho(b)$$

is a linear isomorphism.

Here  $A=P^{\,{
m co} H}$  is the coordinate ring of the 'base' of the bundle, P the 'total space' and H the 'structure group'.

#### Example

Over  $\mathbb{C}$ , let  $P = \mathbb{C}_q[SL_2]$  and  $H = \mathbb{C}\mathbb{Z} = \mathbb{C}[g,g^{-1}]$  with Hopf algebra surjection

$$\pi: \mathbb{C}_q[SL_2] \to \mathbb{C}[g, g^{-1}], \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix}$$

which induces a coaction  $\beta = (\mathrm{id} \otimes \pi) \circ \Delta : \mathbb{C}_q[SL_2] \to \mathbb{C}_q[SL_2] \otimes \mathbb{C}\mathbb{Z}$ . The 'quantum sphere' is defined as the coinvariant subalgebra

$$S_q^2 = \mathbb{C}_q[SL_2]^{\operatorname{co}\mathbb{C}\mathbb{Z}}$$

#### Example

Consider a finite group G acting on a finite set X with  $\mu: X \times G \to X$ . Let  $P = \Bbbk(X), H = \Bbbk(G)$  with  $\mu^*: P \to P \otimes H$ . Let Y = X/G (G-orbits). Then  $A = P^{\operatorname{co} H} = \Bbbk(Y) = \Bbbk(X/G)$  and  $\beta(a \otimes_A b) = a\mu^*(b)$ . One can check that  $\beta$  is an isomorphism if and only if the G-action is free (if g has a fix point,then g = e). This implies each orbit  $\mathcal{O}_x$  has the same cardinality |G|.

Take  $\Omega^1(P)$  as a digraph  $Q=(Q_0=X,Q_1)$  and  $\Omega^1(H)$  as a Cayley graph of a conjugacy class  $\bar{C}$  of G.

#### Proposition

In the above setting, G acting on a digraph on X gives a quantum principal bundle if and only if

- **1** Each orbit  $\mathcal{O}_x$  has cardinality |G|;
- ② The graph within each orbit  $\mathcal{O}_x$  has valency  $|\bar{C}|$ .

#### Corollary

Let  $G\subseteq X$  be a nontrivial subgroup of a finite group X. Let  $\bar{C}, \bar{C}_X$  define respectively bicovariant and right-covariant differentials. Then  $X\to X/G$  gives a quantum principal bundle if and only if

$$\bar{C} = \bar{C}_X \cap G.$$

#### Example

We take  $X=S_3$  with  $\bar{C}_X=\{u,v,w\}$  (2-cycles) and take  $G=\mathbb{Z}_2=\langle u\rangle$  with  $\bar{C}=\{u\}$ . Let G act on digraph of X by right translation.



Then  $X/G = \{\mathcal{O}_e, \mathcal{O}_v, \mathcal{O}_w\}$  consists of left cosets.

## Example (cont.)



Thank you for your attention!