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Introduction

Introduction

Any ‘space’ is determined by the algebra of functions on it.

Gelfand-Naimark theorem

Serre-Swan theorem

Spectral triples by A. Connes

Quantum groups approach to noncommutative geometry:

allow one to generalize ‘classical’ ideas to ‘deformed’ versions: e.g.
q-deformation SUq(2)

providing insights into a more general structure by using the Hopf
algebra language to rephrase ideas and concepts

quantum symmetry as a guide

may hold the key to dealing with one of the major unsolved problems
in physics: quantum gravity
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Differential calculus and Quiver calculus

Noncommutative differential forms

Definition (1-forms)

Let A be an algebra. We say a pair (Ω1,d) is (generalised) first order
differential calculus over A, if

1) Ω1 is a A-bimodule;

2) d : A→ Ω1 linear map, called derivative, such that

d(ab) = (da)b+ adb, ∀ a, b ∈ A;

3) (dropped) Ω1 = span{adb}.

When A is an Hopf algebra, one can require Ω1 to be left covariant if 1)
Ω1 in addition is a left comodule with the coaction ∆L : Ω1 → H ⊗ Ω1

being a bimodule map and 2) the derivation is a left comodule map. A
calculus Ω1 is bicovariant if it is both left and right covariant.
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Differential calculus and Quiver calculus

Noncommutative differential forms

Definition (Higher forms)

We say (Ω(A) = ⊕n≥0Ωn, d) with Ω0 = A is a (generalised) differential
graded algebra (DGA) over A if

1) Ω is a graded algebra, i.e., Ωi ∧ Ωj ⊆ Ωi+j for i, j ≥ 0;

2) d : Ωi → Ωi+1 is a degree 1 map such that d2 = 0 and graded Leibniz
rule, i.e.,

d(ξ ∧ η) = (dξ) ∧ η + (−1)|ξ|ξ ∧ (dη), ∀ ξ, η ∈ Ω;

3) (dropped) Ω is generated by A and Ω1 as an algebra.

The advantage of Ω1 being bicovariant is that one can construct DGAs via

Woronowicz-Nichols algebra Ωw(A) = A·.<B−(Λ1)

Quantum Shuffle algebra Ωsh(A) = A·.<Sh−(Λ1) (generalised one),
etc
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Differential calculus and Quiver calculus

Quiver calculus on finite sets

Example (and Proposition)

Let A = k(X) be the algebra of functions on a finite set X.

{
Differential calculi Ω1 on A

} 1−1←−→
{

Directed graphs Q̄ = (X,E)

without loops and multiple edges

}
{

Generalised Ω1 on A
} 1−1←−→

{
Quivers Q containing a digraph Q̄

with Q0 = Q̄0 = X

}

Q : ◦ ◦ containing digraph Q̄ : ◦ ◦

Quiver allows for loops and multiple edges.
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Differential calculus and Quiver calculus

Hopf quivers

The path coalgebra denoted by kQc is the k-space spanned by the paths of
Q with comultiplication and counit defined by ∆(x) = x⊗ x, ε(x) = 1 for
each x ∈ Q0, and

∆(p) = s(α1)⊗ p+

n−1∑
i=1

α1 · · ·αi ⊗ αi+1 · · ·αn + p⊗ t(αn), ε(p) = 0.

for each non-trivial path p = α1 · · ·αn.

A quiver Q is said to be a Hopf quiver if the corresponding path coalgebra
kQc admits a length-graded Hopf algebra structure.

For a Hopf quiver, Q0 is necessarily a group and Q1 is determined by
ramification datum R =

∑
C∈CRCC.

Let G be a group and S ⊂ G be a subset such that e /∈ S. The Cayley
graph associated to (G,S) is defined as the directed graph having one
vertex at each g ∈ G and directed edges g → h whenever g−1h ∈ S.
If a Hopf quiver has no loops and no multiple edges then it is a Cayley graph.
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Differential calculus and Quiver calculus

Hopf quiver calculus on finite groups

Example (and Theorem)

Let A = k(G) be the algebra of functions on a finite group G.

{
Bicovariant Ω1 on A

} 1−1←−→
{

Cayley graphs Q̄ w.r.t

a union of nontrivial conjugacy classes C̄

}
{

Generalised bicovariant Ω1 on A
}

1−1←−→
{

Hopf quivers Q containing a Cayley digraph Q̄

with Q0 = Q̄0 = X

}

Q : ◦ ◦ containing Cayley digraph Q̄ : ◦ ◦
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Differential calculus and Quiver calculus

Path algebra vs Path coalgebra

Corollary

Let Ω1(Q̄,Q) be a Hopf digraph-quiver calculus on k(G) of a finite group
G. Then it extends to a DGA as a quotient of the path super-Hopf algebra

kQa by the relation that the element
∑

x∈G,a,b∈C̄ x
(1)−−→ xa

(1)−−→ xab is
central.

Proof. k(G)·.<T−Λ1 ∼= kQa.

On group Hopf algebra kG, where G is not necessary finite, we have

Theorem

Associated to a Hopf quiver containing loops, there is a bicovariant
calculus on kG. It extends to a DGA on the path super-Hopf algebra kQc
with super-derivation given by d = [θ, }, where θ is the sum of loops.

Proof. Ωsh(kG) ∼= kQc.
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Connections and quantum metrics

Connections

Let A be a unital algebra and (Ω1,d) a (generalised) differential calculus
over A.

A (left) connection on a left A-module E is a linear map
∇ : E → Ω1 ⊗A E such that

∇(aω) = da⊗A ω + a∇ω

for all ω ∈ E, a ∈ A.
A connection ∇ is called a (left) bimodule connection if there
exists a bimodule map σ : E ⊗A Ω1 → Ω1 ⊗A E such that

∇(ωa) = (∇ω)a+ σ(ω ⊗A da)

for all ω ∈ E, a ∈ A.
For a standard calculus, the map σ (if it exists) is fully determined by ∇.
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Connections and quantum metrics

Proposition (Connections given by quiver representations)

Let A = k(X) and Ω1(Q̄,Q) digraph-quiver calculus

1 A connection (E,∇) means a quiver representation i.e., a set of
spaces xE (x ∈ X) and maps Lβ : s(β)E → t(β)E (β ∈ Q1), where
we identify this information with

E = ⊕x∈XxE, ∇v =
∑
α∈Q̄1

α⊗A t(α)v +
∑
β∈Q1

β ⊗A Lβ(s(β)v).

where xv is the component of v in xE.

2 A bimodule connection (E,∇, σ) means a left connection and
σ : E ⊗A Ω1 → Ω1 ⊗A E a bimodule map satisfying

σ(v ⊗A α) = −
∑
β∈Q1

β ⊗A Lβ(s(β)vs(α))t(α)

for all arrows α in the digraph Q̄.
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Connections and quantum metrics

Metrics and Levi-Civita connections

A metric is an element g ∈ Ω1 ⊗A Ω1 together with a bimodule map
( , ) : Ω1 ⊗A Ω1 → A such that

g(1) ⊗A (g(2), ω) = ω, (ω, g(1))⊗A g(2) = ω, ∀ω ∈ Ω1,

where g = g(1) ⊗ g(2). One can require that g to be central in Ω1 ⊗A Ω1,
i.e. ag = ga for any a ∈ A.

A bimodule connection (∇, σ) will be called Levi-Civita if

torsion-free: T∇ = 0, where T∇ := ∧∇− d : Ω1 → Ω2;

torsion-compatible: Im(id + σ) ⊂ ker∧ =⇒ T∇ is a bimodule map;

metric-compatible:
∇g := ∇g(1) ⊗A g(2) + (σ ⊗ id)(g(1) ⊗A ∇g(2)) = 0.
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Connections and quantum metrics

Let Q = (Q0, Q1) be a quiver and let n(x, y) = #{x→ y} in Q. We say
Q is symmetric if n(x, y) = n(y, x) for ∀x, y ∈ Q0.

Proposition

The differential Ω1 = kQ1 on A = k(Q0) admits a central metric if and
only if the quiver is symmetric. The metric takes the form

g =
∑

x→y∈EQ

n(x,y)∑
i,j=1

gijx→yx
(i)−→ y

(j)−−→ x,

(y
(j)−−→ x, x′

(k)−−→ y′) = (gx→y)
−1

jkδx,x′δy,y′δy,

where gx→y = (gijx→y) is an arbitrary n(x, y)× n(x, y) invertible matrices
associated to index arrow x→ y.
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Connections and quantum metrics

Example

We have computed the Riemannian geometry of 4D (inner) generalised
differential calculus of A = k(Z2) associated to the following quiver:

◦
e

◦
g

α1

α2

β1

β2

There is a full 4-functional parameter moduli of quantum Levi-Civita
connections for a given metric.
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Quantum principal bundle

III. Quantum principal bundle
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Quantum principal bundle

Quantum principal bundle

Definition

A quantum principal bundle (P,H, β) means

P a right H-comodule algebra with coaction ρ : P → P ⊗H;

Let A = P coH . P together with a right-covariant standard differential
Ω1(P ) such that

0→ PΩ1(A)P ↪→ Ω1(P )→ P ⊗ Λ1
H → 0

is a well-defined exact sequence, where Ω1(H) = H ⊗ Λ1
H is

bicovariant.

In the standard case, the exactness is interpreted as Hopf-Galois condition,
which means the Galois map

β : P ⊗A P → P ⊗H, a⊗ b 7→ aρ(b)

is a linear isomorphism.
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Quantum principal bundle

Here A = P coH is the coordinate ring of the ’base’ of the bundle, P the
’total space’ and H the ’structure group’.

Example

Over C, let P = Cq[SL2] and H = CZ = C[g, g−1] with Hopf algebra
surjection

π : Cq[SL2]→ C[g, g−1],

(
a b
c d

)
7→
(
g 0
0 g−1

)
which induces a coaction β = (id⊗ π) ◦∆ : Cq[SL2]→ Cq[SL2]⊗ CZ.
The ’quantum sphere’ is defined as the coinvariant subalgebra

S2
q = Cq[SL2] coCZ
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Quantum principal bundle

Example

Consider a finite group G acting on a finite set X with µ : X ×G→ X.
Let P = k(X), H = k(G) with µ∗ : P → P ⊗H. Let Y = X/G
(G-orbits). Then A = P coH = k(Y ) = k(X/G) and β(a⊗A b) = aµ∗(b).
One can check that β is an isomorphism if and only if the G-action is free
(if g has a fix point,then g = e). This implies each orbit Ox has the same
cardinality |G|.
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Quantum principal bundle

Take Ω1(P ) as a digraph Q = (Q0 = X,Q1) and Ω1(H) as a Cayley
graph of a conjugacy class C̄ of G.

Proposition

In the above setting, G acting on a digraph on X gives a quantum
principal bundle if and only if

1 Each orbit Ox has cardinality |G|;
2 The graph within each orbit Ox has valency |C̄|.

Corollary

Let G ⊆ X be a nontrivial subgroup of a finite group X. Let C̄, C̄X define
respectively bicovariant and right-covariant differentials. Then X → X/G
gives a quantum principal bundle if and only if

C̄ = C̄X ∩G.
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Quantum principal bundle

Example

We take X = S3 with C̄X = {u, v, w} (2-cycles) and take G = Z2 = 〈u〉
with C̄ = {u}. Let G act on digraph of X by right translation.

e

u v

uv vu

w

Then X/G = {Oe,Ov,Ow} consists of left cosets.
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Quantum principal bundle

Example (cont.)

w̄ v̄

ē
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Thank you for your attention!
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