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Abstract

These are the lecture notes for a mini-course given by the author at the University of
Oslo in June 2019. They present the essentials of duality for C*-dynamical systems, and
briefly outline recent research done jointly with S. Kaliszewski and Magnus Landstad
on the Baum-Connes Conjecture.

1 Introduction

In these lectures I’ll present the essentials of C∗-dynamical systems and crossed products. A
C∗-dynamical system is an action of a locally compact group on a C∗-algebra. The crossed
product of the system is a C∗-algebra with the same representation theory. I’ll focus on
crossed-product duality, where the goal is to recover the action from the crossed product.
We will see how to do this up to tensoring with the compacts. When the group is abelian this
can be accomplished using the Pontryagin dual group. But for nonabelian groups we need
coactions, which are dual to actions. This introduces a lack of symmetry into the theory, so
we will also need to see how to recover a coaction from its crossed product.

I’ll emphasize the method of universal properties throughout, which allows us to define
the main components in terms of how they work rather than how they can be constructed.
I’ll also freely use the pedagogical method of “black boxes”, meaning I’ll develop much of
the theory axiomatically rather than from scratch, and in most cases I’ll give at most an
outline of the proof.

At the end I’ll briefly outline an application of the theory to recent efforts to “fix” the
Baum-Connes Conjecture.
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2 Prelude on multipliers

All ideals of C∗-algebras will be tacitly assumed to be closed and two-sided. By a homo-
morphism between C∗-algebras we will always mean a *-homomorphism. We use the same
convention for representations and isomorphisms. Unless otherwise stated, A and B will
denote C∗-algebras and H a (complex) Hilbert space. AutA will denote the group of all
automorphisms of A, i.e., of all isomorphisms from A into itself.

Definition 2.1. An ideal I of a C∗-algebra A is essential if there is no nonzero ideal J of
A such that IJ = 0.

Definition 2.2. A multiplier algebra of a C∗-algebra A is a C∗-algebra M(A) containing
A as an essential ideal such that for every C∗-algebra B containing A as an essential ideal
there is a unique homomorphism π : B → M(A) extending the inclusion map A ↪→ M(A).
A multiplier of A is an element of M(A).

Every C∗-algebra has a multiplier algebra: represent A faithfully and nondegenerately
on a Hilbert space H, then take

M(A) = {T ∈ B(H) : TA ∪ AT ⊆ A},

the idealizer of A in B(H). This makes it obvious that every multiplier algebra is unital.

Remark 2.3. The universal property of M(A) makes it unique up to (unique) isomorphism.
In practice, we choose one and call it “the” multiplier algebra of A.

Example 2.4. If X is a locally compact Hausdorff space, then M(C0(X)) = Cb(X).

Example 2.5. If H is a Hilbert space, then M(K(H)) = B(H), where K(H) denotes the
C∗-algebra of compact operators on H.

Definition 2.6. The strict topology on M(A) is the locally convex topology generated by
the seminorms

m 7→ ‖ma‖ and m 7→ ‖am‖ for a ∈ A,

and is the weakest topology making the maps m 7→ ma and m 7→ am continuous.

M(A) is a complete topological vector space with the strict topology, and is in fact the
strict completion of A.
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Definition 2.7. A homomorphism π : A→M(B) is nondegenerate if π(A)B = B.

Strictly (sorry!) speaking, we mean that span{π(A)B} = B, but by the Hewitt-Cohen
theorem this implies that actually π(A)B = B, i.e., every element of B can be factored as
π(a)b for some a ∈ A and b ∈ B.

Example 2.8. A representation π : A → B(H) on Hilbert space is nondegenerate in the
usual sense (namely, π(A)H = H) if and only if the homomorphism π : A → M(K(H)) is
nondegenerate in the sense of Definition 2.7.

Every nondegenerate homomorphism π : A → M(B) has a unique extension to a homo-
morphism π : M(A)→M(B), which is necessarily unital and strictly continuous. In practice
we usually just abuse the notation by writing π for π.

3 Locally compact groups

Definition 3.1. A locally compact group is a group G equipped with a locally compact
Hausdorff topology such that the operations (s, t) 7→ st and s 7→ s−1 are continuous.

Example 3.2. R, Z, T.

Example 3.3. Matrix groups, Lie groups.

Example 3.4. Non-examples: the unitary group U(H) of a Hilbert space and the unitary
multipliers UM(A) of a C∗-algebra. These are usually given the strong operator and strict
topologies, respectively, and are not locally compact except in the finite-dimensional case.

G will denote a locally compact group from now on.

Definition 3.5. A representation U : G→M(A) is a strictly continuous unitary homomor-
phism. We also say that U is a representation in M(A).

Example 3.6. A strong (equivalently, weak) operator continuous representation on Hilbert
space

U : G→ U(H) ⊆ B(H) = M(K(H)).
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Definition 3.7. A group algebra of G is a C∗-algebra C∗(G) together with a representation
iG : G → M(C∗(G))) such that for every representation U : G → M(A) there is a unique
nondegenerate homomorphism πU : C∗(G) → M(A), called the integrated form of U , such
that the diagram

G
iG //

U $$

M(C∗(G))

πU!
��

M(A)

commutes.

In order to prove the existence of the group algebra, we need a construction. We follow a
strategy that is ubiquitous in C∗-algebra theory: we first define a *-algebra using properties
of G, then complete this in a universal C∗-norm. The *-algebra will be the compactly
supported continuous functions Cc(G), equipped with a convolution-type product. For this
we need a very special kind of measure on G, called a Haar measure, with the following
properties: it is a nonzero regular Borel measure µ that is invariant under left translation:

µ(sE) = µ(E) for all s ∈ G and Borel E ⊆ G.

This invariance can also be characterized by∫
G

f(st) dµ(t) =

∫
G

f(t) dµ(t) for all f ∈ Cc(G), s ∈ G.

Happily, every locally compact group has a Haar measure. Moreover, it is unique up
to positive multiples. Just like for Lebesgue integration, we write

∫
G
f(t) dt rather than∫

G
f(t) dµ(t).

Example 3.8. Lebesgue measure on R, or more generally Rn.

Example 3.9. Counting measure on Z.

Example 3.10. Normalized arclength measure on the circle group T. Here “normalized”
means we scale so that the measure of the whole group is 1. This is a common convention
for compact groups.

On some groups, a Haar measure is not invariant under right translation. However,
E 7→ µ(Es) is another Haar measure, so there is ∆(s) > 0 such that

µ(Es) = ∆(s)µ(E).
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This gives a continuous homomorphism ∆: G → (0,∞), called the modular function of
G. The measure E 7→ µ(E−1) is right-invariant, and in fact we could just as well have
taken right-invariance for the definition of Haar measure. But left-invariance is the adopted
convention. Groups whose Haar measures are also right-invariant are precisely those whose
modular function is trivial in the sense that ∆(s) = 1 for all s ∈ G, and these groups are
unsurprisingly called unimodular. Abelian, discrete, and compact groups, among others, are
all unimodular. But the ax+ b group is not.

Theorem 3.11. C∗(G) exists and is unique up to isomorphism

Outline of proof. The construction uses the convolution *-algebra Cc(G) with operations

(f ∗ g)(s) =

∫
G

f(t)g(t−1s) dt

f ∗(s) = ∆(s)−1f(s−1).

Every representation U of G integrates to a (nondegenerate) representation πU of Cc(G):

πU(f) =

∫
G

f(s)Us ds,

and routine estimates show that the operator norm of πU(f) is bounded above by the 1-
norm ‖f‖1. Thus there is a largest C∗-norm on Cc(G), and we can take C∗(G) to be the
completion. Then every representation of G has an integrated form, which is a nondegenerate
representation of C∗(G).

We get a representation iG : G → M(C∗(G)) by extending continuously the action on
Cc(G) given by

(sf)(t) = f(s−1t)

(fs)(t) = ∆(s−1)f(ts−1).

Every (nondegenerate) representation of C∗(G) extends canonically to M(C∗(G)), and then
composing with iG gives a representation of G. It’s not hard to verify that this gives an
inverse to the integrated-form construction. Essential uniqueness now follows as an easy
exercise — this is a key feature of the method of universal properties.

In practice, we suppress the notation πU , and just write U for both the representation of
G and its integrated form. We also identify G with its image under iG.
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Definition 3.12. The regular representation λ of G on L2(G) is by left translation:

(λsξ)(t) = ξ(s−1t) for s, t ∈ G, ξ ∈ L2(G).

The reduced group algebra C∗r (G) is λ(C∗(G)).

To avoid confusion, frequently we call C∗(G) the full group algebra. Actually, there is
another version of the regular representation using right translation instead of left:

Definition 3.13. The right regular representation ρ of G on L2(G) is by right translation:

(ρsξ)(t) = ξ(ts)∆(s)1/2.

The delta function ∆ appears in the formula for ρs to make the operator preserve the
2-norm. To avoid confusion, sometimes we call λ the left regular representation.

I state the following theorem, without any comment about proof, because it is so con-
venient. C∗(G) is nice because of the universal property, but is obnoxiously large. C∗r (G)
is easier to work with since it is concretely represented on a familiar Hilbert space, so it is
good to know that in many cases the two group algebras coincide.

Theorem 3.14. The integrated form λ : C∗(G) → C∗r (G) is faithful, which we write as
“C∗(G) = C∗r (G)”, if and only if G is amenable.

Amenable means there is a positive translation-invariant linear functional on L∞(G),
and is satisfied when G is compact or abelian, for example. The most famous examples of
nonamenable groups are the free groups Fn for n > 1.

When G is abelian, the group algebra C∗(G) is commutative, and it follows, essentially
by definition, that characters of G (that is, continuous homomorphisms from G to the circle
group T) correspond bijectively to characters of C∗(G) (that is, nonzero homomorphisms
from C∗(G) to C). The characters of G form a group with pointwise multiplication, and
with an appropriate topology this turns out to be another locally compact abelian group,
called the Pontryagin dual group and denoted by Ĝ. The Gelfand transform from C∗(G) to

C0(Ĝ) (which by Gelfand’s theorem is an isomorphism) is called the Fourier transform of
G. The Pontryagin duality theorem says that doing it twice gets you back:̂̂

G = G.

Example 3.15. By the elementary theory of classical Fourier series and Fourier transforms,
Ẑ = T and R̂ = R, so T̂ = Z and R is self-dual.
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4 Actions

Definition 4.1. An action (A,α) of G (also called a C∗-dynamical system) is a homomor-
phism α : G → AutA such that the maps s 7→ αs(a) : G → A are continuous for every
a ∈ A.

Example 4.2. Every action on a commutative C∗-algebra arises from an action of G on a
locally compact Hausdorff space, by Gelfand’s theorem. Two fundamental special cases are
(C0(G), lt) and (C0(G), rt), where G acts on itself by left or right translation, respectively.

Example 4.3. The trivial action of G on C is self-explanatory, and more generally we can
let G act trivially on any C∗-algebra.

Example 4.4. An inner (or unitary) action (A,AdU) of G is determined by a representation
U : G→M(A), and is given by

AdUs(a) = UsaU
∗
s for s ∈ G, a ∈ A.

Example 4.5. A Z-action is determined by a single automorphism of A.

Definition 4.6. A covariant representation (π, U) : (A,α) → M(B) of an action of G con-
sists of a nondegenerate homomorphism π : A→M(B) and a representation U : G→M(B)
such that

π ◦ αs = AdUs ◦ π for s ∈ G.

We also say that (π, U) is a covariant representation of (A,α) in M(B). If B is the compact
operators K(H) on a Hilbert space H, we say that (π, U) is a covariant representation on
H.

Example 4.7. For f ∈ C0(G) let Mf ∈ B(L2(G)) be the multiplication operator

(Mfξ)(s) = f(s)ξ(s) for ξ ∈ L2(G), s ∈ G.

Then (M,λ) is a covariant representation of the action (C0(G), lt) in M(K(L2(G)) =
B(L2(G)), alternatively on L2(G).

Definition 4.8. A crossed product of (A,α) is a C∗-algebra AoαG together with a covariant
representation (iA, iG) : (A,α) → M(A oα G) such that for every covariant representation
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(π, U) : (A,α)→ M(B) there is a unique nondegenerate homomorphism π × U : Aoα G→
M(B), called the integrated form of (π, U), such that the diagram

A
iA //

π
%%

M(Aoα G)

π×U!
��

G
iGoo

Uyy
M(B)

commutes.

Theorem 4.9. Aoα G exists and is unique up to isomorphism.

Outline of proof. The argument is similar to Theorem 3.11, using a convolution algebra
Cc(G,A) with operations

(f ∗ g)(s) =

∫
G

f(t)αt(g(t−1s)) dt f ∗(s) = ∆(s−1)αs(f(s−1))∗

(iA(a)f)(s) = af(s) (iG(t)f)(s) = αt(f(t−1s))

(fiA(a))(s) = f(s)αs(a) (fiG(t))(s) = f(st−1)∆(t−1).

The integrated form π × U is given on Cc(G,A) by

π × U(f) =

∫
G

π(f(s))Us ds.

In the display ending the above proof it’s a good exercise to derive the bottom row from
the one above it using adjoints.

Definition 4.10. Given two actions (A,α) and (B, β), a homomorphism π : A→ B is α−β
equivariant if

π ◦ αs = βs ◦ π for s ∈ G.

An isomorphism π : (A,α)→ (B, β) is an equivariant homomorphism that is also an isomor-
phism of A onto B. If such an isomorphism exists, we say that the actions (A,α), (B, β) are
isomorphic, written (A,α) ' (B, β).

Example 4.11. If π : A→ B is α− β equivariant, then

(iB ◦ π, iβG) : (A,α)→M(B oβ G)
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is a covariant homomorphism, and we write the integrated form as

π oG : Aoα G→ B oβ G.

For f ∈ Cc(G,A) we have

(π oG)(f) = π ◦ f ∈ Cc(G,B).

Example 4.12. C∗(G) = Cotrivial action G. This is a special case of the following example.

Example 4.13. A otrivial action G ' A ⊗max C
∗(G), since in this case covariant represen-

tations are just commuting homomorphisms, which by universal properties correspond to
homomorphisms of the maximal tensor product.

Definition 4.14. The regular representation
(
(id⊗M) ◦ α̃, 1⊗λ

)
is constructed as follows:

first define a homomorphism
α̃ : A→M(A⊗ C0(G))

by
α̃(a)(b⊗ f)(s) = αs−1(a)bf(s).

Next, let M be the representation of C0(G) on L2(G) by multiplication operators, as in
Example 4.7. Now regard both M and λ as representations into the multiplier algebra
M(K(L2(G))). Then (id ⊗ M) ◦ α̃ is a nondegenerate homomorphism of A to M(A ⊗
K(L2(G))). Similarly, 1M(A) ⊗ λ is a representation of G in M(A ⊗ K(L2(G))). It’s an
exercise to check that the pair ((id ⊗M) ◦ α̃, 1 ⊗ λ) satisfies the covariance property. The
reduced crossed product Aoα,r G is the image of Aoα G under the integrated form

Λ =
(
(id⊗M) ◦ α̃

)
× (1⊗ λ).

Theorem 4.15. Λ is faithful, which we write as “Aoα G = Aoα,r G”, if G is amenable.

Outline of proof. By amenability, λ is faithful on C∗(G), and if π×U is a faithful represen-
tation of Aoα G it is not hard to deduce that

“(π × U)⊗ λ” = (π ⊗ 1)× (U ⊗ λ)

is faithful. But then some standard representation theory shows that this is equivalent to a
regular representation of (A,α).

Example 4.16. C∗r (G) = C otrivial action,r G, since the regular representation of the trivial
action is really just the regular representation of G.
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Theorem 4.17 (Stone-von Neumann Theorem). C0(G) olt G = K(L2(G))

Outline of proof. As mentioned in Example 4.7, (M,λ) is a covariant representation of
(C0(G), lt) on L2(G), and the integrated form M × λ takes the subalgebra Cc(G,Cc(G)) ⊆
Cc(G,C0(G)) to the set of all kernel operators with kernel in Cc(G × G), which is a dense
subset of K(L2(G)). The fact that this representation M × λ of C0(G) olt G is faithful is
deeper, and is usually proved using the theory of induced representations.

Remark 4.18. An immediate consequence: C0(G)oltG = C0(G)olt,rG. Thus, the converse
of Theorem 4.15 is false.

5 Takai-Takesaki crossed-product duality

Throughout this section, G will be abelian.

Definition 5.1. Let (A,α) be an action of G. The dual action α̂ of the dual group Ĝ on
Aoα G is given on the generators by

α̂χ(iA(a)) = iA(a)

α̂χ(iG(s)) = χ(s)iG(s).

The justification that this actually gives an action is an exercise in the universal property
of (iA, iG), together with continuity of uniform limits of continuous functions.

Theorem 5.2 (Takai-Takesaki duality). If (A,α) is an action of G, then

Aoα Goα̂ Ĝ ' A⊗K(L2(G)).

Outline of proof. As Williams [Wil07, discussion following Theorem 7.1] indicates, Raeburn’s
argument [Rae88, Theorem 6] can be reformulated so that the strategy is to verify the steps
in the following chain of isomorphisms:

(Aoα G) oα̂ Ĝ
' // (A⊗ C0(G)) oα⊗rt G

'

tt
(A⊗ C0(G)) oid⊗rt G '

// A⊗ (C0(G) ort G) '
// A⊗K(L2(G)).
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The point is that A is shifted around until it becomes a freely moving object. Of course, the
Stone-von Neumann theorem C0(G) oG ' K(L2(G)) is used at the last step (and the shift
from lt to rt causes no harm).

It’s possible to keep track of what the isomorphism does to the double-dual action of
G, but we refrain from making this precise because the Takai-Takesaki duality theorem will
be superseded by Imai-Takai duality (see Section 7), and at that time we’ll take care of the
double-dual action.

It’s worth pointing out that although we outlined a strategy based upon Raeburn’s paper
from the late 1980’s, the result itself dates from the 1970’s. Takai’s original proof [Tak75]
was heavily representation-theoretic, and was based upon Takesaki’s crossed-product duality
theorem [Tak73] for von Neumann algebras.

6 Coactions

The Takai duality theorem is so useful that everyone wanted a version for nonabelian G. But
then there is no dual group, and consequently no dual action. The fix involves a different
sort of duality, which can ultimately be traced back to Fourier transforms: if G is abelian,
then C∗(G) ' C0(Ĝ) and this leads us to regard C0(G) and C∗(G) as dual structures. An
action (A,α) of G can be characterized in terms of the homomorphism

α̃ : A→M(A⊗ C0(G))

we discussed earlier, and then replacing C0(G) by C∗(G) gives rise to coactions of G. To
prepare for the definition we have to note that one of the conditions on the above α̃ involves
the comultiplication on C0(G), which is the homomorphism

∆G : C0(G)→ Cb(G×G) = M(C0(G)⊗ C0(G))

given by
∆G(f)(s, t) = f(st).

The dual version of this is:

Definition 6.1. The comultiplication

δG : C∗(G)→M(C∗(G)⊗ C∗(G))
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is the integrated form of the representation given by

δG(s) = s⊗ s.

We will use the comultiplication to define the dual version of an action. But first, for
technical reasons it is convenient to introduce a special variant of the multiplier algebra:

Definition 6.2. Given two C∗-algebras A,B, we define

M̃(A⊗B) = {m ∈M(A⊗B) : m(1⊗B) ∪ (1⊗B)m ∈ A⊗B}.

Definition 6.3. A coaction (A, δ) of G is an injective nondegenerate homomorphism

δ : A→ M̃(A⊗ C∗(G))

such that
(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ (1)

and
span{δ(A)(1⊗ C∗(G))} = A⊗ C∗(G). (2)

The condition (1) is a dual version of the homomorphism property of an action α : G→
AutA. The last condition (2), which makes sense because δ maps into M̃(A ⊗ C∗(G)), is
called nondegeneracy of the coaction, and is crucial for duality theory. It remains an open
problem whether it is redundant. In the older literature the definition of coaction omitted
this condition, but then every result appealing to duality had to refer to a “nondegenerate
coaction”.

Example 6.4. If G is abelian, a Fourier-transform argument shows that a coaction of G is
just a different way of looking at an action of Ĝ. Dually, an action of G may be considered
as a coaction of Ĝ.

Example 6.5. The trivial coaction on any A is given by

a 7→ a⊗ 1: A→ M̃(A⊗ C∗(G)).

In order to define covariant representations of coactions, we need an auxiliary object
wG defined below. But first we need the following fact concerning multipliers and tensor
products:
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Lemma 6.6. For any C∗-algebra A and locally compact Hausdorff space X,

M(A⊗ C0(X)) 'M(C0(X)⊗ A) ' Cb(X,M
β(A)),

where the notation β indicates that we require continuity in the strict topology of M(A).
Moreover,

M̃(A⊗ C0(X)) ' Cb(X,A).

Of course the underlying facts in the above lemma are the canonical isomorphisms

A⊗ C0(X) ' C0(X)⊗ A ' C0(X,A).

Definition 6.7. The canonical unitary wG is the element of M(C0(G) ⊗ C∗(G)) =
Cb(G,M

β(C∗(G))) given by the canonical embedding G→M(C∗(G)):

wG(s) = s for s ∈ G.

Remark 6.8. Of course, wG is just another name for the embedding iG : G → M(C∗(G))
that I used when introducing C∗(G). But the emphasis here is on the particular connection
with tensor products, and it helps keep track of things to use a new name.

Definition 6.9. A covariant representation (π, µ) : (A, δ)→M(B) is a pair of nondegener-
ate homomorphisms

A π //M(B) C0(G)
µoo

such that the diagram

A δ //

π

��

M(A⊗ C∗(G))

π⊗id
��

M(B)
Ad(µ⊗id)(wG)◦(·⊗1)

//M(B ⊗ C∗(G))

commutes.

Remark 6.10. To parse the bottom arrow, note that since µ is nondegenerate so is

µ⊗ id : C0(G)⊗ C∗(G)→M(B ⊗ C∗(G)).

Thus we can extend uniquely to the multiplier algebra M(C0(G)⊗ C∗(G)) to get a unitary
element

(µ⊗ id)(wG) ∈M(B ⊗ C∗(G)).
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Thus for b ∈ B we can conjugate b⊗ 1M(C∗(G)):

Ad(µ⊗ id)(wG)(b⊗ 1) ∈M(B ⊗ C∗(G)).

This gives a nondegenerate homomorphism

Ad(µ⊗ id(wG)) ◦ (· ⊗ 1) : B →M(B ⊗ C∗(G)).

By nondegeneracy, this map extends uniquely to M(B), so composing with π makes sense.

Remark 6.11. Again, when G is abelian, a Fourier-transform argument shows that co-
variant representations of a coaction of G are just a different way of looking at covariant
representations of the associated action of Ĝ.

Example 6.12. The regular representation of (A, δ) is constructed as follows: Again regard
both the integrated form of the regular representation λ of G and the representation M
of C0(G) as representations into M(K(L2(G))). Then (idA ⊗ λ) ◦ δ and 1M(A) ⊗ M are
representations of A and C0(G) in M(A ⊗ K(L2(G))), and the pair ((id ⊗ λ) ◦ δ, 1 ⊗M) is
a covariant representation, called the regular representation, of (A, δ) in M(A⊗K(L2(G))).
Observe that the λ and M are reversed from their positions in the regular representation of
an action; this is just another instance of the C∗(G)− C0(G) duality.

Definition 6.13. A crossed product of (A, δ) is a C∗-algebra AoδG together with a covariant
representation (jA, jG) : (A, δ) → M(A oδ G) such that for every covariant representation
(π, µ) : (A, δ) → M(B) there is a unique nondegenerate homomorphism π × µ : A oδ G →
M(B), called the integrated form of (π, µ), such that the diagram

A
jA //

π
$$

M(Aoδ G)

π×µ!
��

C0(G)
jGoo

µ
xx

M(B)

commutes.

Theorem 6.14. Aoδ G exists and is unique up to isomorphism.

Outline of proof. In fact we can get away with just using the regular representation:

jA = (id⊗ λ) ◦ δ
jG = 1⊗M
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Aoδ G = C∗
(
jA(A)jG(C0(G))

)
.

This works basically because a coaction is analogous to an action of an abelian group,
which is amenable. I’ll just mention that it is a bit of a trick to verify that every covariant
representation factors through the regular one. This gives existence, and uniqueness follows
(as usual) from the universal property.

Remark 6.15. Note that, unlike for actions, this time there is no convenient choice of dense
*-subalgebra like Cc(G,A).

Definition 6.16. Given two coactions (A, δ) and (B, ε), a homomorphism π : A→ B is δ−ε
equivariant if the diagram

A δ //

π

��

M̃(A⊗ C∗(G))

π⊗id

��
B ε

//M(B ⊗ C∗(G))

commutes. An isomorphism π : (A, δ) → (B, ε) is an equivariant homomorphism that is
also an isomorphism of A onto B. If such an isomorphism exists, we say that the coactions
(A, δ), (B, ε) are isomorphic, written (A, δ) ' (B, ε).

Remark 6.17. There is subtlety in the above diagram: Since π : A→ B may be degenerate,
in which case π⊗ id : A⊗C∗(G)→ B⊗C∗(G) will be degenerate as well, so we can’t expect
to extend it to

M(A⊗ C∗(G))→M(B ⊗ C∗(G)).

However, by [EKQR06, Proposition A.6] there is a canonical extension

π ⊗ id : M̃(A⊗ C∗(G))→M(B ⊗ C∗(G)).

In fact, the image is in M̃(B ⊗ C∗(G)), although we did not need to know that.

Example 6.18. If π : A→ B is δ − ε equivariant, then

(jB ◦ π, jεG) : (A, δ)→M(B oε G)

is a covariant homomorphism, and the integrated form maps into the crossed product:

π oG : Aoδ G→ B oε G.
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Remark 6.19. In the abelian case, equivariant homomorphisms for coactions of G corre-
spond bijectively to equivariant homomorphisms for actions of the dual group Ĝ.

Example 6.20. C0(G) = Cotrivial coaction G. This a special case of the following example.

Example 6.21. A otrivial coaction G ' A ⊗ C0(G), since covariant representations are just
commuting homomorphisms, and C0(G) is nuclear, so the maximal and minimal tensor
products coincide.

Example 6.22. C∗(G) oδG G ' K(L2(G)). This is the dual version of the Stone-von
Neumann Theorem, and the parallel between them is quite strong: a pair (U, µ) is covariant
for the coaction (C∗(G), δG) if and only if the pair (µ, U) is covariant for the action (C0(G), lt).

7 Imai-Takai duality

Using coactions, the Takai duality theorem can be extended to nonabelian groups.

Definition 7.1. If (A,α) is an action of G, the dual coaction α̂ of G on the crossed product
Aoα G is determined by the covariant representation

a 7→ iA(a)⊗ 1 for a ∈ A
s 7→ iG(s)⊗ s for s ∈ G

of the action (A,α) in M((Aoα G)⊗ C∗(G)).

Example 7.2. The dual of the trivial action of G on C is the coaction δG on C∗(G).

Example 7.3. If π : A→ B is α− β equivariant, then π oG : Aoα G→ B oβ G is α̂− β̂
equivariant.

Definition 7.4. If (A, δ) is a coaction of G, the dual action δ̂ of G on the crossed product

Aoδ G is defined as follows: for s ∈ G the automorphism δ̂s of Aoδ G is determined by the
covariant representation

a 7→ jA(a) for a ∈ A
f 7→ jG(rts(f)) for f ∈ C0(G)

of the coaction (A, δ) in M(Aoδ G).



8 KATAYAMA CROSSED-PRODUCT DUALITY 17

Example 7.5. The dual of the trivial coaction of G on C is the action rt on C0(G).

Example 7.6. If π : A → B is δ − ε equivariant, then π o G : A oδ G → B oε G is δ̂ − ε̂
equivariant.

Theorem 7.7 (Imai-Takai duality). If (A,α) is an action of G, then(
Aoα Goα̂ G, ̂̂α) ' (A⊗K(L2(G)), α⊗ Ad ρ

)
.

Outline of proof. The argument in [Rae87, Theorem 7] can be reformulated similarly to the

abelian case (Theorem 5.2), which itself depends upon the isomorphism C∗(Ĝ) ' C0(G).

This result was proved using heavily representation-theoretic techniques in [IT78, Theo-
rem 3.6].

8 Katayama crossed-product duality

Symmetrically, we should have a duality starting with coactions.

Definition 8.1. The canonical surjection Φ: AoδGoδ̂G→ A⊗K(L2(G)) is determined by

the covariant representation (Λ, 1⊗ ρ) of the dual action (Aoδ G, δ̂), where Λ is the regular
representation of (A, δ).

Definition 8.2. A coaction δ is called maximal if Φ is injective, and hence an isomorphism.

Example 8.3. Every dual coaction α̂ is maximal.

Theorem 8.4 (Maximal Katayama Duality). If (A, δ) is a maximal coaction of G, then(
Aoδ Goδ̂ G,

̂̂
δ

)
'
(
A⊗K(L2(G)),Ad(1⊗W ) ◦ (δ ⊗∗ id)

)
where

W = (M ⊗ id)(w∗G)
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and δ ⊗∗ id is the coaction of G on A⊗K(L2(G)) given by the composition

A⊗K(L2(G))
δ⊗id //

δ⊗∗id **

M(A⊗ C∗(G)⊗K( L2(G)))

id⊗Σ
��

M(A⊗K(L2(G))⊗ C∗(G)),

where in turn Σ : C∗(G) ⊗ K( L2(G)) → K(L2(G)) ⊗ C∗(G) is the isomorphism determined
by

c⊗ k 7→ k ⊗ c.

Proof. The strategy is as before: rearrange A to decouple it from G, and get K(L2(G)) from
the representations of C0(G) and C∗(G).

Example 8.5. The special case A = C is the Stone-von Neumann Theorem, because rt
is the dual action of the trivial coaction. However, this doesn’t really give an independent
proof of Stone-von Neumann.

Definition 8.6. A coaction δ is normal if the canonical homomorphism jA : A→M(AoδG)
is faithful.

Example 8.7. The regular representation Λ: Aoα G → Aoα,r G is equivariant for α̂ and
a normal coaction α̂r.

Theorem 8.8 (Normal Katayama Duality). If (A, δ) is a normal coaction of G, then there
is a commutative diagram

Aoδ Goδ̂ G
Φ //

Λ

��

A⊗K(L2(G))

Aoδ Goδ̂,r G

'

66

In fact, a coaction is normal if and only if the canonical surjection Φ factors through the
regular representation of the dual action [EKQ04, Proposition 2.2].

Definition 8.9. Let (A, δ) be a coaction.
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(1) A maximalization of δ is a maximal coaction (Am, δm) and a δm − δ equivariant sur-
jection ψ : Am → A such that

ψ oG : Am oδm G→ Aoδ G

is an isomorphism.

(2) A normalization of δ is a normal coaction (An, δn) and a δ − δn equivariant surjection
η : A→ An such that

η oG : Aoδ G→ An oδn G

is an isomorphism.

Theorem 8.10. Maximalizations and normalizations always exist, and are unique up to
isomorphism. Moreover, every coaction (A, δ) fits into a commutative diagram

(Am, δm)
ψ

%%
Λ

��

(A, δ)

η
yy

(An, δn).

Example 8.11. Λ: (Aoα G, α̂)→ (Aoα,r G, α̂
r) is both a normalization of α̂ and a maxi-

malization of α̂r.

9 Landstad duality

Imai-Takai duality allows recovery of an action of G, up to Morita equivalence, from the dual
coaction (and similarly by Katayama duality we can recover a maximal or normal coaction
from its dual action). But if we are given just a bit more data we can recover the original
up to isomorphism (and who could ask for anything more?).

Theorem 9.1 (Landstad duality). Let (B, δ) be a maximal coaction of G, and let U : G→
M(B) be a representation such that

δ(Us) = Us ⊗ s for s ∈ G.

Then there is an action (A,α), unique up to isomorphism, such that

(Aoα G, α̂, iG) ' (B, δ, U).
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In other words, there is an α̂− δ equivariant isomorphism Aoα G→ B taking iG to U .
One way to interpret Landstad duality is that, given not only the dual coaction (AoαG, α̂),
but also the representation iG, we can recover the action not just up to Morita equivalence
but up to isomorphism.

Remark 9.2. The proof is quite hard, even when G is abelian (in which case coactions
are not needed); in [Ped79, Theorem 7.8.8], Pedersen takes 1.5 pages to prove the abelian
version, and he needs a proposition and three lemmas to prepare — this is quite a lot for him!
The hard part is constructing a suitable A from the data, and involves a delicate averaging
process. Landstad’s proof [Lan79, Theorem 3] uses the reduced crossed product Aoα,rG and
what are nowadays called “reduced coactions”, which are more-or-less the same as normal
coactions [Rae87, Rae92, Qui94], but use C∗r (G) rather than C∗(G). Theorem 9.1 is a version
for the full crossed product and maximal coaction, and appears in [KQ07, Theorem 3.2].

There is a dual version, recovering coactions (instead of actions) up to isomorphism
[KQR08, Theorem 4.2 and Corollary 4.3].

10 “Fixing” the Baum-Connes Conjecture

The Baum-Connes Conjecture says that the K-theory of the reduced crossed product is
naturally isomorphic to a “topological K-theory” — we won’t discuss either of these directly.
It transpires that the conjecture is false in its original form, because the topological K-theory
is an exact functor of actions, while the reduced crossed product is not, thanks to Gromov’s
discovery of nonexact groups.

Baum wants to fix the conjecture, so together with Guentner and Willett [BGW16] he
searched for an alternative version of the crossed product that would do the job. Although
the full crossed product is an exact functor, it is too big, and leads to failure of the Baum-
Connes conjecture for different reasons. So, Baum-Guentner-Willett initiated the study
of exotic crossed products, lying between the full and reduced ones. The first hurdle is
finding examples of these, and the hard part is that it must be functorial, and it’s certainly
required to be exact. Perhaps in an attempt to stay as far away as possible from the sort of
counterexamples involving full crossed products, the focus is on the minimal exact crossed-
product functor (meaning it should be as close as possible to the reduced crossed product).
This exists uniquely, by abstract nonsense. So the problem is, how to find it?
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Let’s take a closer look: An exotic crossed product

(A,α) 7→ Aoα,e G

is a functor from actions to C∗-algebras that fits into a commutative diagram of natural
surjections:

Aoα G

''
regular representation

��

Aoα,e G

xx
Aoα,r G.

It’s no accident that this looks a lot like the diagram in Theorem 8.10. Although [BGW16]
does not mention coactions, it occurred to us [KLQ13, KLQ16b, KLQ16a, KLQ18] that
since the full and reduced crossed products have dual coactions, we could recast the theory
of exotic crossed products by requiring that A oα,e G carry a version of the dual coaction,
and that it be computed by first taking the full crossed product and then applying a coaction
functor.

Example 10.1. Taking full crossed product and then applying the normalization functor
reproduces the reduced-crossed-product.

I’ll close by describing two sources of coaction functors.

KLQ functors

The first construction begins with the group algebra: consider a quotient map qE : C∗(G)→
C∗E(G) such that:

• the regular representation λ factors through qE, and

• qE is equivariant for δG and a coaction δEG .
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Then for any coaction (A, δ) consider the composition

A δ //

QE

%%

M̃(A⊗ C∗(G))

id⊗qE
��

M̃(A⊗ C∗E(G)).

The image AE = QE(A) carries a quotient δE of the coaction δ, and the assignments (A, δ) 7→
(AE, δE) give a coaction functor τE that we studied in [KLQ16a, KLQ18]. Unfortunately, it
seems quite hard to find nontrivial examples of these functors that are exact. Even worse,
it transpires that the minimal exact crossed product cannot be of the form τE [BEWb,
discussion following Corollary 4.7]. As a result, our interest in KLQ coaction functors has
diminished.

Tensor D functors

Now we generalize somewhat the preceding construction. Replace the quotient map
qE : C∗(G) → C∗E(G) by a homomorphism V : C∗(G) → D that is equivariant for δG and a
coaction ζ. For this construction we also need to modify our coactions using the maximal
tensor product rather than the minimal one: consider the composition

A
δ //

QD

&&

M̃(A⊗max C
∗(G))

id⊗V
��

M̃(A⊗max D).

Then again the image AD = QD(A) carries a quotient δD of δ, and this gives a coaction
functor τD.

It follows from Landstad duality that the coaction (D, ζ) is of the form (C oγ G, γ̂) for
some action γ of G on a unital C∗-algebra C. We are still working out the details, but we
are 95% sure that the functor τD is exact, and composing τD with the full crossed product
recovers the “C-crossed product”

(B,α) 7→ B oα,C G
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introduced in [BGW16]. We know that the minimal such coaction functor reproduces the
minimal C-crossed product studied in [BEW18]. It’s worth mentioning that for all anyone
knows the minimal C-crossed product might in fact be the minimal exact crossed product.

While not all crossed-product functors arise via coaction functors as above, all the “good”
ones — in this case meaning all those that behave well with C∗-correspondences — do. Our
ultimate goal is to derive all the important facts about exotic crossed products from within
the world of coaction functors. We have made significant progress, but much work still
remains.
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