Synchronous games and game algebras

Let $\mathcal{G} = (X, X, A, A, \lambda)$ be a synchronous game, i.e.

$$\lambda(x, x, a, b) = 0 \text{ if } a \neq b,$$

(e.g. Hom(G, H)) then winning strategies are characterised by traces on

$$A(\lambda) = A_{X,A}/J(\lambda)$$
 (the game algebra)

with
$$J(\lambda) = \langle e_{x,a}e_{y,b} : \lambda(x,y,a,b) = 0 \rangle$$
.

We have (Helton-Meyer-Paulsen-Satriano, Kim-Paulsen-Schafhauser):

• \mathcal{G} has a perfect C_{qc} strategy iff there exists a non-zero tracial C^* -algebra (\mathcal{A}, τ) and a *-homomorphism $\pi : \mathcal{A}(\lambda) \to \mathcal{A}$. Then

$$p(a,b|x,y) = \tau(e_{x,a}e_{y,b}),$$

- C_{qa} strategy iff we can take $A = R^U$;
- C_q strategy iff we can take A finite-dimensional;
- C_{loc} strategy iff we can take A abelian.

Homomorphism and isomorphism games

For $t \in \{loc, q, qa, qc\}$ and graphs G and H, write $G \to_t H$ if there exists a perfect C_t strategy for the homomorphism game $\operatorname{Hom}(G, H)$. One can define quantum analogues of chromatic numbers and independence numbers $\chi(G)$ and $\alpha(G)$:

• The *t*-chromatic number of a graph *G* is

$$\chi_t(G) = \min\{d : G \to_t K_d\}$$

• The *t*-independence humber of *G* is

$$\alpha_t(G) = \max\{d : K_d \to_t \bar{G}\}.$$

•
$$\chi(G) = \chi_{loc}(G) \ge \chi_{q}(G) \ge \chi_{qa}(G) \ge \chi_{qc}(G)$$
,
 $\alpha(G) = \alpha_{loc}(G) \le \alpha_{q}(G) \le \alpha_{qa}(G) \le \alpha_{qc}(G)$.

A(Hom(G,H)), A(Iso(G,H))

Hom(G, H) games are rich enough to witness differences between C_q , C_{qa} and C_{qc} :

Dykema-Paulsen-Prakash (2019) using Kruglyak-Rabanovich-Samoilenko (2003):

$$\exists G: \chi_q(G) > \chi_{qa}(G)$$

Mancinska-Roberson-Varvitsiotis (2020) using MIP*=RE (2020):

$$\exists G: \alpha_{qc}(G) > \alpha_{qa}(G)$$

Iso(G, H) games are examples of bisynchronous games where

$$\lambda(x, x, a, b) = 0$$
 and $\lambda(x, y, a, a) = 0$ if $x \neq y, a \neq b$.

Perfect strategies are captured by quantum permutation group: $O(S_X^+)$ is generated by $p_{a,x}=p_{a,x}^*=p_{a,x}^2$ s.t. $U=(p_{a,x})_{a,x\in X}$ is a magic unitary, i.e. $\sum_a p_{a,x}=\sum_V p_{b,y}=1$, $x,\ b\in X$.

If A_G and A_H are the adjacency matrices of G and H resp. then

$$\mathcal{A}(Iso(G, H)) = \langle p_{a,x} : U = (p_{a,x})_{a,x} \text{ magic unitary with}$$

 $(A_G \otimes 1)U = U(A_H \otimes 1) \rangle.$

Combining the previous results one gets:

For Iso(G,H) we have:

- $G \simeq_{qc} H$ iff there is a trace on $\mathcal{A}(Iso(G, H))$
- $G \simeq_q H$ iff there is a fin.-dim. repr. of $\mathcal{A}(Iso(G, H))$
- $G \simeq_{loc} H$ iff $G \simeq H$ iff there is a one-dim repr. of $\mathcal{A}(Iso(G, H))$.

$$\begin{split} G \simeq H & \underset{[AMRSSV]}{\Rightarrow} G \simeq_q H & \underset{\not\leftarrow}{\Rightarrow} G \simeq_{qa} H \Rightarrow G \simeq_{qc} H \\ G \simeq_{qc} H \Leftrightarrow G \simeq_{C^*} H & \Leftrightarrow G \simeq_{alg} H \text{ ([BCEHPSW])} \\ * \text{Rep} \mathcal{A}(Iso(G,H)) \neq \emptyset & \mathcal{A}(Iso(G,H)) \neq 0 \end{split}$$

Going quantum-to-quantum

Motivating question I: Suppose the game has quantum inputs/outputs.

What kind of strategies can be used?

Motivating question II: Perhaps a suitable (simpler and genuinely) quantum game can disprove Tsirelson-Connes?

A classical input $(x,y) \leadsto$ the state $\epsilon_{x,x} \otimes \epsilon_{y,y} \in \mathcal{D}_X \otimes \mathcal{D}_Y$ (pos.-semidef. matrix of trace 1) here matrix units: $\epsilon_{x,y}$, $x,y \in X$ in M_X .

A correlation $p = \{(p(a, b|x, y)_{a,b} : x, y \in X\} \rightsquigarrow \mathcal{N}_p : \mathcal{D}_{X \times Y} \to \mathcal{D}_{A \times B},$

$$\mathcal{N}_p(\epsilon_{x,x} \otimes \epsilon_{y,y}) = \sum_{a,b \in A} p(a,b|x,y)\epsilon_{a,a} \otimes \epsilon_{b,b}.$$

Note: p is no-signalling \Leftrightarrow

$$\mathrm{Tr}_{A}\mathcal{N}_{\rho}(\epsilon_{x,x}\otimes\epsilon_{y,y})=\mathrm{Tr}_{A}\mathcal{N}_{\rho}(\epsilon_{x',x'}\otimes\epsilon_{y,y})\ \ \text{and}\ \ \mathrm{Tr}_{B}\mathcal{N}_{\rho}(\epsilon_{x,x}\otimes\epsilon_{y,y})=\mathrm{Tr}_{B}\mathcal{N}_{\rho}(\epsilon_{x,x}\otimes\epsilon_{y',y'})$$

<u>Quantisation:</u> (*Duan-Winter*) Quantum channels (completely positive trace preserving)

 $\Gamma: M_{XY} \to M_{AB}$, satisfying no-signalling conditions.

No-signalling:

$$\operatorname{Tr}_A \Gamma(\omega_X \otimes \omega_Y) = \operatorname{Tr}_A \Gamma(\omega_X' \otimes \omega_Y)$$
 and $\operatorname{Tr}_B \Gamma(\omega_X \otimes \omega_Y) = \operatorname{Tr}_B \Gamma(\omega_X \otimes \omega_Y')$

Classes of quantum no-signalling correlations (Todorov-T. (2020))

A family of classical POVM's:

$$\{(E_{x,a})_{a\in A}:x\in X\}$$

~~

$$E = \sum_{x \in A} \sum_{a \in A} \epsilon_{x,x} \otimes \epsilon_{a,a} \otimes E_{x,a} \in M_{XA}(B(H))^{+}$$

A family of quantum POVM's:

Stochastic operator matrix

$$E = (E_{x,x',a,a'}) \in M_{XA}(B(H))^+$$
 such that $\operatorname{Tr}_A E = I \otimes I_X$.

Classes of quantum no-signalling (QNS) correlations

Quantum channels $\Gamma: M_{XY} \to M_{AB}$ with specified Choi matrices $(\Gamma(\epsilon_{x,x'} \otimes \epsilon_{y,y'}))_{x,x',y,y'} \in M_{XYAB}$

Local QNS

of $\Phi \otimes \Psi$

Convex combinations

Quantum QNS

Quantum commuting QNS

$$(\langle E_{x,x',a,a'} \otimes F_{y,y',b,b'} \xi, \xi \rangle), \qquad (\langle E_{x,x',a,a'} F_{y,y',b,b'}, \xi, \xi \rangle),$$

$$\xi \in H_A \otimes H_B \qquad \xi \in H$$

$$Q_{loc} \subset Q_{q} \subset Q_{qa} \subset Q_{qc} \subset Q_{ns}$$

Quantum non-local games

Classical games (X, Y, A, B, λ) :

Rule function
$$\lambda: X \times Y \times A \times B \rightarrow \{0,1\} \rightsquigarrow (P_{(x,y)}, P_{\beta_{x,y}(\lambda)})$$

$$\beta_{x,y}(\lambda) = \{(a,b) : \lambda(x,y,a,b) = 1\},$$

 P_{α} is a projection onto span $\{e_x \otimes e_y : (x,y) \in \alpha\}$

 $\lambda \leadsto \varphi_{\lambda} : \mathsf{Proj}(\mathcal{D}_{XY}) \to \mathsf{Proj}(\mathcal{D}_{AB}), \lor \mathsf{-preserving} \mathsf{\ 0-preserving \ map}.$

Quantum games:

Replace (X, Y, A, B, λ) by $Proj(M_{XY}), Proj(M_{AB})$ and

$$\varphi: \operatorname{\mathsf{Proj}}(M_{XY}) \to \operatorname{\mathsf{Proj}}(M_{AB}),$$

∨-preserving 0-preserving map.

Definition (Todorov-T, 2020)

A QNS correlation $\Gamma: M_{XY} \to M_{AB}$ is a perfect strategy for the quantum non-local game φ if $\langle \Gamma(P), \varphi(P)^{\perp} \rangle := \text{Tr}(\Gamma(P)\varphi(P)^{\perp}) = 0$, $\forall P \in \text{Proj}(M_{XY})$.

Questions and some references

 "Synchronous" and "bisynchronous" quantum games and associated algebras.

Brannan-Harris-Todorov-T, 2021,2022, Bochniak-Kaspzak-Sołtan, 2021.

 Quantum graph homomorphisms and isomorphisms and associated algebras.

Brannan-Chirvasitu-Eifler-Harris-Paulsen-Su-Wasilewski 2020, Brannan-Ganesan-Harris 2020, Ganesan 2022, Brannan-Harris-Todorov-T, 2021,2022

Value of quantum non-local games.
 Cooney-Junge-Palazuelos-Pérez-García 2015, Crann-Levene-Todorov-T-Winter, in progress