Risky risk assessments.

Erik Bølviken, Department of Mathematics, University of Oslo

30. september 2020

• • = • • = •

Erik Bølviken, Department of Mathematics, University of Oslo Risky risk assessments.

• Actuarial assessments often based on an underlying model: Our basic assumption.

• If X is a risk variable, then Reality: $M \longrightarrow X$. Our model: $\widehat{M} \longrightarrow \widehat{X}$. Draw conclusions from \widehat{M} .

• Why is
$$\widehat{M} \neq M$$
?
(1) The future is unknown!
(2) The past isn't perfectly known.

Disability modelling:

(1) Disability intensites decades ahead needed. They may change!(2) What we have to go on is limited:

Disability data scarce.

Large claims insurance:

- (1) The future is next year.
 - Not that different from the present one (?).
- (2) Limited number of events for model building. Data often very scarce.

- Discuss two case studies:
 - (1) Disability evaluation.
 - (2) A supreme court decision on captive risk.
- General comments on
 - (1) Approach to error.
 - (2) What the academic world should do (perhaps).

• Disability intensities depend on

age, covariates such as gender, salary, company type, company size, rural/urban.

• Use of models:

To quantify portfolio risk.

 Two main techniques: Regression (log-linear, GLM) Intensity modelling with covariates.

 Intensity modelling natural: The **unifying** viewpoint. Software available.

• Mathematical formulation.

Proportional hazard: intensity $\lambda(t; \mathbf{x})$, covariates $\mathbf{x} = (x_1, \dots, x_p)$: $\lambda(t; \mathbf{x}) = \lambda_0(t)e^{\beta_1 x_1 + \dots + \beta_p x_p}$. $\lambda_0(t)$: Intensity when $\mathbf{x} = 0$.

Data from a Norwegian insurance company^a.

Description of data:

340000 individuals over seven years. Average age 39 and average time observed 3 years. Around 2000 disabilities (0.6%).

• **Cox regression**^{b,c} handles irregular data patterns.

^aMyking, A.M. (2020). Modellering og risiko i uføreportføljer. Master thesis, Department of Mathematics, University of Oslo. ^b Cox, D. (1972). Regression models and life-tables. *Journal Royal Statistical Society.* ^cEfron, B. (1977). The efficiency of Cox's likelihood function for censored data. *Journal American Statistical Association.*

Fitted baseline integrated intensity

• The plot:

The integrated intensity: $\int_{t_0}^t \lambda_0(s) ds$, $t_0 = 18$ for a woman earning 500000 NOK.

• Curvature: Higher intensity at higher age.

Erik Bølviken, Department of Mathematics, University of Oslo Risky risk assessments.

向 ト イヨ ト イヨト

• Estimated coefficients (standard error in parenthesis).

Male versus female	-0.34 (0.05)
Income (in 100000 NOK)	-0.14 (0.01)
Urban versus rural	-0.35 (0.07)
Sector: Production versus primary	0.51 (0.18)
Sector: Services versus primary	0.38 (0.18)
Company size: Middle versus small	0.17 (0.05)
Company size: Large versus small	0.19 (0.06)

• Everything statistically significant.

• Portfolio calculations:

Standard actuarial methods, adding all payments \times probabilities.

Test case:

Portfolio with 50000 **active** individuals. Average age 41 years. Disability pension 250000 NOK anually up to 67. A lot of other conditions.

- Expected, discounted, net cost: 807.5 million NOK.
- What might the error in this assessment be?

Errors when projecting disability cost.

• Important:

How disabilities develope in the future. Judgment more than quantitative analysis.

Error we can quantify:

Uncertainty in what we have seen, i.e in the disability model.

• Method: Bootstrapping^a

Simulating historical data, refitting model, recalculating cost. Repeating 100 times or more.

^aEfron, B. again

- Based on 1000 simulations.
- Historical data:

n = 346000 or n = 86500 individuals

Same percentage of disabled, same age distribution.

- Results caused by estimation error: n = 346000 n = 86500Bias 1.1% -8.8%SD 22.9% 44.8%
- SD $\approx a/\sqrt{n}$ where *a* depends on situation^{*a*}. **How sensitively does a vary?**
- ^a Bølviken, E and Myking, A.M. (2020). How much data does disability modelling require? (under preparation).

- Solvency Capital for **Captive**.
- Captive: Insurance company owned by a mother company.
- My example: Captive **CX** insuring **oil** company **CO**, both owned by mother **MO**.
- Big tax incentives for CX to charge CO high premia. In Norway:Oil tax 55% above the normal 23%!

A legal dispute almost 20 years ago.

Participants:

CX and MO against the Norwegian government.

- Issue: Had CX and MO been too greedy? Had premia been too high compared to the risk?
- Taxman position:

The solvency capital was too low.

- Two legal issues:
 - 1 Was the solvency capital below 99%?
 - 2 If it was, the activty of CX might no be insurance (?).

Information to go on.

- CX had 8 clients with maximal responsibility (US\$): Company Year 1 year 2 year 3 vear 4 D1 D2 D3 D4 D5 D6 D7 D8
- Summary for CX (US\$):

Solvency Capital	23	40	00	121	
Salvanay Canital	25	40	00	121	
Total reinsurance premia	10	19	16	8	
Total premia	45	64	161	55	
	Year 1	year 2	year 3	year 4	

Erik Bølviken, Department of Mathematics, University of Oslo Risky risk assessments.

- Information on expected number of claims λ unavailable.
- Claim statistics (22 events) available, Pareto distribution fitted, $f(z) = (\alpha/\beta)(1 + z/\beta)^{-(1+\alpha)} \text{ with } \alpha \approx 6.$ $E(Z) = \beta/(\alpha - 1).$
- But how to deal with claim frequency: Use the formula $P = (1 + \gamma)\lambda E(Z)$ where P is premium and γ the loading and solve for λ .

- CX under-capitalized in year 1-3, more doubtfull in year 4.
- But what about uncertainty?
- Outcome court battle:

Court of appeals: The government won completely. Supreme court: Government lost 3-2 on Issue 2.

- The risk evaluation in court depended on claim distribution (uncertain), the loading which was varied.
- Was the court interested in uncertainty at all?
- Should we be?

 (1) When evaluating solvency capital?
 (2) When evaluating expected cost?

- We should not quantifying all kinds of uncertainty. Bayesian analyses lose transparency.
- Bootstrap techniques as in Example 1: Yield **some** of the uncertainty.
- Personal judgment on top of everything. Good communication from the analyst essential.

What should professors be doing? Personal view

- Is too much time spent on mathematical issues and on complex, unjustifiable models?
- More emphasis on software to deal with "risk in risk".
- More emphasis on promoting communication skill.