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What is ‘risky risk’?

• Actuarial assessments often based on an underlying model:
Our basic assumption.

• If X is a risk variable, then
Reality: M −→ X .
Our model: M̂ −→ X̂ .
Draw conclusions from M̂.

• Why is M̂ 6= M?
(1) The future is unknown!
(2) The past isn’t perfectly known.
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Two examples.

Disability modelling:

(1) Disability intensites decades ahead needed.
They may change!

(2) What we have to go on is limited:
Disability data scarce.

Large claims insurance:

(1) The future is next year.
Not that different from the present one (?).

(2) Limited number of events for model building.
Data often very scarce.
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Outline of the talk.

• Discuss two case studies:
(1) Disability evaluation.
(2) A supreme court decision on captive risk.

• General comments on
(1) Approach to error.
(2) What the academic world should do (perhaps).
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Case 1: Disability modelling.

• Disability intensities depend on
age,
covariates such as

gender, salary, company type,
company size, rural/urban.

• Use of models:
To quantify portfolio risk.
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Disability modelling: approach.

• Two main techniques:
Regression (log-linear, GLM)
Intensity modelling with covariates.

• Intensity modelling natural:
The unifying viewpoint.
Software available.

• Mathematical formulation.
Proportional hazard:
intensity λ(t; x), covariates x = (x1, . . . , xp):
λ(t; x) = λ0(t)eβ1x1+···+βpxp .
λ0(t): Intensity when x = 0.

Erik Bølviken, Department of Mathematics, University of Oslo Risky risk assessments.



Data from a Norwegian insurance companya.

• Description of data:
340000 individuals over seven years.
Average age 39 and average time observed 3 years.
Around 2000 disabilities (0.6%).

• Cox regressionb,c handles irregular data patterns.

aMyking, A.M. (2020). Modellering og risiko i uføreportføljer.
Master thesis, Department of Mathematics, University of Oslo.
b Cox, D. (1972). Regression models and life-tables. Journal Royal
Statistical Society.
cEfron, B. (1977). The efficiency of Cox’s likelihood function for censored

data. Journal American Statistical Association.
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Fitted baseline integrated intensity

• The plot:
The integrated intensity:

∫ t
t0
λ0(s)ds, t0 = 18

for a woman earning 500000 NOK.

• Curvature: Higher intensity at higher age.
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Regression coeffcients

• Estimated coefficients (standard error in parenthesis).

Male versus female -0.34 (0.05)
Income (in 100000 NOK) -0.14 (0.01)
Urban versus rural -0.35 (0.07)
Sector: Production versus primary 0.51 (0.18)
Sector: Services versus primary 0.38 (0.18)
Company size: Middle versus small 0.17 (0.05)
Company size: Large versus small 0.19 (0.06)

• Everything statistically significant.

Erik Bølviken, Department of Mathematics, University of Oslo Risky risk assessments.



Disability cost

• Portfolio calculations:
Standard actuarial methods,
adding all payments × probabilities.

• Test case:
Portfolio with 50000 active individuals.
Average age 41 years.
Disability pension 250000 NOK anually up to 67.
A lot of other conditions.

• Expected, discounted, net cost: 807.5 million NOK.

• What might the error in this assessment be?
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Errors when projecting disability cost.

• Important:
How disabilities develope in the future.
Judgment more than quantitative analysis.

• Error we can quantify:
Uncertainty in what we have seen,
i.e in the disability model.

• Method: Bootstrappinga

Simulating historical data, refitting model,
recalculating cost. Repeating 100 times or more.

aEfron, B. again
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Estimation error in example.

• Based on 1000 simulations.

• Historical data:
n = 346000 or n = 86500 individuals
Same percentage of disabled, same age distribution.

• Results caused by estimation error:
n = 346000 n = 86500

Bias 1.1% −8.8%
SD 22.9% 44.8%

• SD ≈ a/
√
n where a depends on situationa.

How sensitively does a vary?

a Bølviken, E and Myking, A.M. (2020). How much data does disability

modelling require? (under preparation).
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Case 2: Large claims insurance.

• Solvency Capital for Captive.

• Captive: Insurance company owned by a mother company.

• My example: Captive CX insuring oil company CO,
both owned by mother MO.

• Big tax incentives for CX to charge CO high premia.
In Norway:Oil tax 55% above the normal 23%!
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A legal dispute almost 20 years ago.

• Participants:
CX and MO against the Norwegian government.

• Issue: Had CX and MO been too greedy?
Had premia been too high compared to the risk?

• Taxman position:
The solvency capital was too low.

• Two legal issues:
1 Was the solvency capital below 99%?
2 If it was, the activty of CX might no be insurance (?).
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Information to go on.

• CX had 8 clients with maximal responsibility (US$):
Company Year 1 year 2 year 3 year 4

D1 47 86 120 147
D2 45 68 72 144
D3 34 34 34 144
D4 34 34 49 49
D5 17 72 107 127
D6 29 64 154 114
D7 17 72 167 127
D8 28 68 88 119

• Summary for CX (US$):
Year 1 year 2 year 3 year 4

Total premia 45 64 161 55
Total reinsurance premia 10 19 16 8
Solvency Capital 25 40 80 131
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Approach to solvency issue.

• Information on expected number of claims λ unavailable.

• Claim statistics (22 events) available,
Pareto distribution fitted,

f (z) = (α/β)(1 + z/β)−(1+α) with α ≈ 6.
E (Z ) = β/(α− 1).

• But how to deal with claim frequency:
Use the formula P = (1 + γ)λE (Z )
where P is premium and γ the loading
and solve for λ.
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Conclusions in court.

• CX under-capitalized in year 1-3, more doubtfull in year 4.

• But what about uncertainty?

• Outcome court battle:
Court of appeals: The government won completely.
Supreme court: Goverment lost 3-2 on Issue 2.
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Uncertainty in risk conclusions.

• The risk evaluation in court depended on
claim distribution (uncertain),
the loading which was varied.

• Was the court interested in uncertainty at all?

• Should we be?
(1) When evaluating solvency capital?
(2) When evaluating expected cost?
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Attidue towards “risk in risk”: Personal view

• We should not quantifying all kinds of uncertainty.
Bayesian analyses lose transparency.

• Bootstrap techniques as in Example 1:
Yield some of the uncertainty.

• Personal judgment on top of everything.
Good communication from the analyst essential.
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What should professors be doing? Personal view

• Is too much time spent on mathematical issues
and on complex, unjustifiable models?

• More emphasis on software to deal with “risk in risk”.

• More emphasis on promoting communication skill.
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