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Periodic supply vessel planning
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Weekly master schedule
Each vessel is sailing one or more voyages that don’t overlap

Each voyage has a duration (in days) and a fixed departure time

Waiting/idle time in weekly master schedule

Inter-voyage slacks

• Idle days between voyages

Intra-voyage slacks

• Waiting for opening hours at installations and for opening at supply base
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PSVPP definition 
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Research goals
Develop an efficient optimization-based decision 
support tool for the deterministic PSVPP able to 
construct schedules for large real-life problem 
instances

Develop a methodology for the supply vessel 
planning under demand and weather uncertainty
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Planning challenges
Periodic routing problem

planning horizon: a week

days as periods

Fleet composition
heterogeneous

Multi-day route duration

Time windows each day at installations and at supply base

Spread of departures to an installation

Uncertainty
Weather conditions
Demand
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A methodology enabling construction of weekly vessel schedules 
for large-size instances of deterministic problem
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PSVPP - FC

PSV 1 V1 V4 V8 V3 V6 V9

PSV2 V2 V5 V7 V2 V5 V7

PSV3 V3 V6 V9 V1 V4 V8

Saturday SundaySundayMonday TuesdayWednesdayThursday Friday Saturday Monday TuesdayWednesdayThursday Friday
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ALNS heuristic
Adaptive Large Neighborhood
Search metaheuristic

Three destroy operators

Three repair operators

A set of improvement 
operators

Acceptance criteria
Simulated annealing

Algorithm 1 ALNS 

1: Set the cost of the best found solution C* = ; 

2: for   restarts do 

3: Construct initial solution s0;  

4: s*←s0; c
* = C(s*); s←s; 

6: for 𝜌 iterations do  

7: η←select the number of visits and υ←voyages to be removed; 

8: ψ←select destroy operator; 

9: s''←ψ(z,q,S); remove visits; 

10: insert an idle vessel and empty voyages into s''; 

11:       ο← select insert operator; 

12: s'←ο(s'', η, S); insert visits; 

13:       remove empty voyages; 

14: if S=∅ and s' is feasible then 

15:     do 

16:  number of voyages reduction; 

17:  fleet size reduction; 

18:  deep greedy relocation; 

19:  fleet size reduction; 

20:  deep greedy swap; 

21:  fleet size reduction; 

22:     while s' improves; 

23        if ρcur ≤ ρ  

23:  if C s'  ≤ C(s*) then  

24:      s*←s'; s←s'; 

25:  else if C(s') ≤ C(s) then 

26:                       s←s'; 

27:  else if accept(s, s') then 

28:                       s←s'; 

29:  end if             

30:      else if C(s') ≤ C(s*) then  

31:            s*←s'; s←s'; 

32:      else s←s* 

33:    end if   

34:  end for;    

35: end for;        

36: return s*; 
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Weather varies dynamically
wave height, wave direction, wind speed

Weather impacts sailing and service
longer voyages, more vessels, reduced service level

If wave height exceeds 4,5-5 meters the vessel has to wait for better weather to 
service installations (WOW)

Weather is considered as an univariate variable of significant wave height

Uncertain weather conditions yield time- and location inter-dependent uncertain 
sailing and service time parameters. In this case

Uncertain weather conditions change over time and even in the same time period are different in 
different distant locations. 

The arrival of a vessel at an installation depends on the sequence of the previous visits on the voyage, 
on the voyage start time and on changing weather conditions during voyage execution.

It is problematic or even impossible to model weather conditions using analytical 
expressions (without assumptions and simplifications), so a discrete-event
simulation is used to estimate sailing and service times and voyage duration
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Weather data
▪ Define number of grid points to cover all installations
▪ Statistical estimates of the sea state to consider 
- significant wave height
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SWH Norway-MET 2012-02-28 12:00 UTC

▪ Safety limits split weather time-series into 
sequence of high and low weather windows
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Simulation-optimization method enabling construction of 
schedules under weather uncertainty for given levels of 
robustness parameter
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State State 1 State 2 State 3 State 4

Probability January 0,36 0,25 0,18 0,21

Probability July 0,92 0,05 0,02 0,01
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Start state probabilities

January

State 

1

State 

2

State 

3

State 

4

State 1 0,92 0,08 0,00 0,00

State 2 0,12 0,74 0,13 0,01

State 3 0,00 0,21 0,65 0,14

State 4 0,00 0,00 0,13 0,87

Transition matrix
Weather 

state

Wave 

height 

[m]

Sailing speed 

decrease  

[kn]

Increase 

in service 

time

1 < 2.5 0 0 %

2 <2.5,3.5] 0 20 %

3 <3.5,4.5] -2 30 %

4 >=4.5 -3 WOW

Weather states

Weather modeling with Markov chain
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Voyage simulation
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Generation of voyage input set
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Methodology enabling construction of robust schedules for 
large-size PSVPP instances with weather uncertainty
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Weather modeling with time-series
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▪ Data is sampled from an operational spectral wave model used by MET
- a number of time series for a particular set of locations have been requested

- each time-series represents a data set with 54-years of observations based on a 3-hour 
period

▪ Statistic estimates of weather conditions modeled based on

- splitting each of the annual time-series into the number of blocks with equal amount of 
observations on monthly basis

- construction of time-series consists of random sampling a sequence of blocks from a 
predefined subset of all historical annual time-series

▪ Synchronized generation of time-series for  3 univariate sea state estimates 
(significant wave height Hs, mean wave direction , wind speed Wsp)

▪ Simulated Hs and Wsp form univariate time-series used to derive auxiliary 
time-series of alternating durations of high-state and low-state weather 
states for generation of weather windows
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Dynamic slacks
inter-voyage

intra-voyage

Introduce parameter  to control voyage slacks duration
enforcing the minimal duration of the voyage’s slacks which are dependent on voyage duration 

For voyages without TWs:
s is the required inter-voyage slack duration
t is the voyage duration

For voyages with TWs;
si is the required intra-voyage slack at the installation i with a TW 
ti is the travel time to an installation i or to the base from a previous installation with a TW, or 
from the base

Robustness control

    /  ts

 / ii ts

inst1 inst2 inst3 inst4

Base Service Service Service Service Base Next voyage

t2

TW TW

2s 4s

4t2t

Bs

Bt

21

Irina Gribkovskaia, Seminar in Statistics and Data Science, UiO, June 8th 2022

Supply vessel planning  Deterministic Weather uncertainty  Demand uncertainty  Demand and weather uncertainty  Collaboration

Service Service 

Vessel 1 B GRA B VAL WEL B

Voyage TW Voyage TW

TBR TSC KVB OSC



1: Set  = 0 and set the value of 𝜂;  

2: Run ALNS ( ); 

3: z(): solution provided by the ALNS; 

4: C(): cost of the solution z(); 

5: n(): number of vessels in z(); 

6: Set 𝑛0 = n() and nmax > 𝑛0 

7: for j = 𝑛0 to nmax   

8:      Set  =  + 0.5;    

9:   while n() = j do 

10:             Run ALNS()    

11:              = 1.5 ;  
12:         end while  

13:              = /2;     

14:             Set  0 =  ;   

15:   for 𝑖 = 1 to 𝜂 do   

16:        run ALNS ( );  
17:        if 𝑛() ≤  𝑗 then   

18:                    Save z() in a list R 

19:              S ←Simulate  z() in a list R 

20:    =  + 0/2i;  

21:        else  

22:               =  − 0/2i;    

23:        end if 

24:        end for    

25: end for              

26: return R and S 

Maximum robustness search
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Simulation model

Service level:

vp - number of performed visits 

v  - total number of the planned visits

σ = vp/v

replication, an estimate of the expected service level   of solution z() is returned.   

Algorithm 3 Simulation model 

1: Solution z( ); 

2: Weather data; 

3: Number of visits v(z) in z( ); 

4:     for i = 1 to  do 

5:          Generate weather scenario for the selected time horizon; 

6:          Set v(i) = 0;  

7:         for each voyage j in z( )  do 

8:              Simulate weather; 

9:                Calculate the number of performed visits vp(𝑗) within voyage j TW;  

10:              v(i) = v(i) + vp(𝑗); 

11: end for each 

12:        (i) = v(i)/v(z); 

13:   end for       

14:   return 
=

=



1

/)(
i

i  

 Computational experiments 
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Trade-off analysis
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Methodology allowing for construction of vessels schedules 
with minimized expected total cost under uncertain demand
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Demand uncertainty

High degree of variation

Insufficient deck capacity

Rescheduling

Extra voyages

Change of planned voyages

Spot vessels

Reduced service level
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1Start End

Chance-constraint optimization
2 3 4

P{𝐷 𝑣 ≤ Cv} ≥ p

Fast Fourier Transformation:
Fv Cv ≥ p

p – reliability level

ALNS with incorporated chance-constraints able to construct 
schedules with a certain reliability level against uncertain demand 

F
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Schedule simulation

Recourse actions:

• Planned voyages

• Charter vessels unplanned 

voyages

• Spot vessel voyage

Recourse actions are performed if:

• Vessel capacity violation

• Overlap constraint violation
✓ Service time dependence on cargo 

volume
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Spot V
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Optimization-simulation algorithm
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Computational experiments
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Methodology for construction of vessels schedules with the minimized expected cost 
under uncertain demand and weather conditions

ALNS metaheuristic able to construct schedules with a certain reliability level

Chance-constraints

Slacks for robustness

Discrete event simulation model

Recourse actions: operational modifications to eliminate infeasibilities caused simultaneously by 
uncertain demand and weather conditions 

Score function: to resolve the trade-off between the schedules cost and the reliability level 
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Reliability level control

ALNS generates schedules with defined reliability 
level against demand and weather uncertainty

Introduced parameter p as lower bound on the 
probability of voyage capacity-feasibility

Introduce parameter  to control  voyage slacks 
duration to account for voyage TW-feasibility

 / ii ts

P{𝐷 𝑣 ≤Cv} ≥ p
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ALNS heuristic

ALNS generates schedules with 
reliability (, p) against demand 
and weather uncertainty
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Schedule simulation
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Optimization-simulation method
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Post-optimization procedure
Results of preliminary experiments showed that schedules generated with 
the same levels of reliability parameters may have small difference in cost 
while relatively large (4-6%) difference in schedule probability of feasibility. 

We have discovered that among the schedules with approximately same 
probability of feasibility those having lower variability of voyages’ 
probability of feasibility have a higher potential to yield the lowest expected 
cost. 

We assumed that it is because with the high variability, the bottlenecks (in voyage 
capacity and TW) in the schedule are narrower and more costly modifications are 
required to ensure feasibility. 

We propose a post-optimization procedure aimed to select from the 
schedules with small deviation in cost from the best-cost solution a 
schedule with the higher probability of feasibility and the lower variability 
and cost
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Score function
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Computational experiments
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The high cyclical cost surges for the instance with 26 installations resulting 
in the fleet size increase occur when for each value of p (up to 0.6) the 
algorithm imposes the higher requirements to the reliability level against 
weather uncertainty (by increasing the value of ). 

Declines in the planned cost resulting in the fleet size decrease take place 
when the algorithm proceeds to the next solution with the higher reliability 
to demand uncertainty and no reliability requirements to weather. 

The difference in the degree of the planned costs fluctuations between the 
two instances can be explained by the larger natural inter-voyage slacks in 
in the schedules for the instance with 14 installations. The schedules for 
the instance with 14 installations are not as tight as the schedules for the 
instance with 26 installations, and thus have higher feasibility probability 
than the required minimum set by  and p

Analysis of results 
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Collaboration in supply vessel planning
Collaborative planning

Usefulness

Building a coalition
Several offshore operators

Sharing resources
Supply vessels

Sharing costs
Charter cost

Travel costs

Sharing emissions
responsibility
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