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High Frequency Data

Financial prices, volumes, number of trades, order time
Intra-day:

transactions tick-by-tick, from TAQ, Refinitiv (ex
Thompson-Reuters), CME
quotes - bid, ask - same sources
limit order books, harder to get but more information
stocks, bonds, futures, currencies, ...

HF data can also be found in internet data, neuroscience,
survival analysis, geoscience, climate recordings, wind
measurements, turbulence, fish, ...
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Evolution of Data Size per Day
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Note: Merck represents a medium-density data. A liquid stock has more than 200,000

trades per day.
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Intraday Trading: almost time continuous

Time Size Price
9:00:05.897 100 601.740
9:00:11.257 100 601.700
9:00:11.340 100 601.730
9:00:12.190 100 601.700
9:00:12.393 500 601.700

Apple 9:00:12.807 200 601.700
April 2, 2012 9:00:13.060 100 601.700

9:00:13.460 100 601.650
9:00:14.240 100 601.700

Number of Trades 9:00:14.913 100 601.700
102,986 9:00:14.913 200 601.700

9:00:15.310 100 601.700
9:00:18.380 100 601.530

...
...

...
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Intraday Trading: almost time continuous
Time Size Price

10:00:00.000985678 65 239.390
10:00:00.010742509 2 239.390
10:00:00.010744971 100 239.390
10:00:00.010748759 6 239.400
10:00:00.010752774 100 239.450

Apple 10:00:00.010887597 1 239.390
April 2, 2020 10:00:00.011109135 34 239.450

10:00:00.019740536 2 239.423
10:00:00.042692078 9 239.440

Number of Trades 10:00:00.044256462 3 239.390
376,731 10:00:00.047250042 20 239.390

10:00:00.064590362 100 239.390
10:00:00.073841728 20 239.430

...
...

...
Observation times are : (1) down to nano-seconds per trade,

(2) non-equidistant, (3) could be endogenous.
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High Dimension

Equity Cross Section: over 4000 stocks are traded at
NYSE. Each day, NYSE has about 1 billion shares being
traded
Options: contracts with varying excise prices, contracts
with varying maturity times (additional dimension for many
stocks)
Order Book: varying depth (additional dimension for every
stock)
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Snapshot of Limit Order Book for E-mini S&P 500
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Snapshot from May 1, 2007: horizontal line shows the five best bid prices (red) and five

best ask prices (green), while vertical line shows the volume of each quote.
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Price movement almost path-continuous, but . . .

Figure: Intraday Sudden Price Movement

(a) 2010 Crash of 2:45pm (b) 2013 Twitter Crash
Left: (a) On May 6 2010: All major US stock indices plunged and rebounded within

about 30 minutes. Dow Jones Industrial Average plunged 998.5 points (about 9%),

most within minutes. Graph source: NYT. Right: (b) On Tuesday April 23, 2013: Dow

quickly plunged 140 points (about 1%) after a false tweet. The S&P 500 lost $121

billion of its value within minutes. Graph source: CNN money



What is High Frequency Data? Methodology Unsupervised Learning in High Frequency Data Covariance Estimation, the S-TSRV

Data Features & Challenges Including Three Trolls

Large amount of data (up to about a million observations a
day for single security)
High frequency: observation interval could be less than
milliseconds.
Price movement almost path-continuous, but rare extreme
events (jumps) could occur.
Microstructure noise is more pronounced in high frequency
data.
Random observation times

Unequal time interval (not in the setting of time series)
Time stamps could be inaccurate when data are from
different sources/exchanges
Trade times are often endogenous.

Cross-sectional data (multiple securities): asynchronicity in
trade time or quote update time
Volume could be intentionally split.
Edge effect in estimators
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How to Handle the High Frequency Data?

Direct modeling to take microstructure noise into account
Hidden semimartingale model

observed log stock price: Yti = Xti + εi ,

Xt is latent log price, semimartingale, say, Ito process

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdBs,

Bt is Brownian motion; µt and σt can be random processes

εi is stationary or iid, or similar
there may also be jumps, but not in this version of the paper

log-price process Xt = (X (1)
t ,X (2)

t , . . . ,X (d)
t ) of d stocks

spot covariance process: ct = σtσ
ᵀ
t

if Xt is continuous: quadratic variation [X ,X ]t =
∫ t

0 csds.
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Correct Bias from Noise and Asynchronicity
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All estimates are computed from intraday data. Left: (c) Ignoring the microstructure

noise over-estimates price volatility. Bias is even more pronounced if one uses ultra

high frequency data; Right: (d) Ignoring the noise and/or interpolation under-estimates

the correlation between equities.
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How to Handle the High Frequency Data?

Data reduction:
Smooth (pre-average or pre-medianize) the tick-by-tick data

Reduces the size of noise, but complicates the model
Induces bias when data are from irregular or asynchronous
times (in-depth critique later, if time permits)
Pre-averaging pulverizes jumps

Estimate the volatility matrix:
Pre-averaging best used as an ingredient in estimation, but
not off the shelf
In this paper, we use the Smoothed TSRV (MZC (2019),
“The algebra of two scales estimation"; more later)
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Before and After Data Smoothing
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By smoothing, you can get ride of most of the noise, but also lose part of the true

dispersion of the data. Our methodology quantifies the loss and recovers the true

dispersion.
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Jump Pulverization: Block Median vs. Block Average
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What if the dimension is also high?

Recall:
log-price process Xt = (X (1)

t ,X (2)
t , . . . ,X (d)

t ) of d stocks
spot covariance process: ct = σtσ

ᵀ
t is d × d

Further data reduction:
Principal Component Analysis (PCA): find the eigenvalues
and eigenvectors of ĉt :
λ

(j)
t , 1 ≤ j ≤ q: eigenvalues of ct in non-ascending order
γ

(j)
t , 1 ≤ j ≤ q: corresponding eigenvectors

Factor Analysis (FA):
Factor model with time-varying factor loadings
dXt = BtdFt + dZt
High dimension of Xt and low dimension of Ft :
(γ

(j)
t−)ᵀdXt ≈ (λ

(j)
t−)

1
2 dF (j)

t : j th factor or PC
Regression on observed or estimated factors
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Standard Chain from Data to Factors: Five Trolls

data→ spot covariance matrix c → PCA→ factor analysis
PCA→ factor analysis: Requires high dimension. PCs
with large eighenvalues can be taken as factors.
(Chamberlain and Rothschild (1983), Connor and
Korajczyk (1986), Stock and Watson (1998, 2002), Bai and
Ng (2002), Fan, Liao and Mincheva (2013) (POET), Pelger
(2017), many others).
covariance matrix c → PCA: Pearson (1901), Hotelling
(1933), ... , Aït-Sahalia and Xiu (2018) (AX).
data→ spot covariance matrix c: The tricky part for high
frequency data: noise, asynchronicity, edge effects, ... An
imprecise estimator can mess up your PCs and factors.
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In this paper

data→ estimated spot covariance matrix ĉt : Updated
semi-frequently, every ∆T seconds. In empirical data:
∆T =2500 seconds. Nine such periods in one trading day
from 9:45 am to 4 pm New York time.
Method: ĉt = S-TSRV matrix. Uses all data in time interval.
Takes account of noise, asynchronicity, and, in particular,
edge effects. (More about this later.)
covariance matrix c → PCA: Follow AX; mostly assume
that big eigenvalues are simple.
PCA→ factor analysis: Follow POET, but the high
frequency data makes the problem simpler (more about
this later)

First some graphs, then back to theory
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Percentage of the Total Variation Explained by
Principal Components (1 day rolling mean)

All trading days between January 2007 and December 2017
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Percentage of the Total Variation Explained by
Principal Components (1 week rolling mean)

All trading days between January 2007 and December 2017
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Why rolling Mean?

2500 seconds based estimators too variable relative to bias
When trading: rolling mean =⇒ less trading cost:

9 period (one day) rolling mean means that only about
(1/9)th of portfolio is updated every 2500 seconds
45 period (one week) rolling mean means that only about
(1/45)th of portfolio is updated every 2500 seconds

Both phenomena documented by plots (a few slides later)
Overnight position uses same weights as period 1 next day
(based on data from trading periods ending at 4 pm on the
preceeding day)
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Unsupervised Learning in Intraday Data: PC1 Portfolio
vs. S&P 100: 1 Day Rolling Mean Eigenvector

All trading days between January 2007 and December 2017
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Eigenvalues and -vectors

ĉTi Estimated covariance matrix of log returns of prices of
70 stocks from the S&P 100.
One every 2500 seconds.
9 x 2769 trading days = 24921 periods of 2500 sec: Ti has
i = 1, · · · ,24921
ĉTi is TSRV based on 5 second averages. 12,460,500
periods of 5 sec
λ̂Ti : largest eigenvalue of ĉTi

γ̂Ti corresponding eigenvector
Similar for higher order eigenvalues, -vectors
If one could trade Xt = log St , the PCk portfolio would have
P/L =

∑τ
i (γ̂Ti−1)ᵀ(XTi − XTi−1)

But this is not possible



What is High Frequency Data? Methodology Unsupervised Learning in High Frequency Data Covariance Estimation, the S-TSRV

The PC Portfolios
The PCk portfolio (log scale): log P/L is

log wτ = log w0 +
τ∑

i=1

log
(
1 +

(
γ̂Ti−1

)ᵀ rTi

)
where

**
γ̂Ti−1 is kth eigenvector

rTi is a vector with jth element r (j)
Ti

= (S(j)
Ti
− S(j)

Ti−1
)/S(j)

Ti−1

r (j)
Ti

are the returns on stocks S(j), j = 1, · · · ,d
Trading algorithm invests fraction

δi−1 =
d∑

j=1

γ̂
(j)
Ti−1

*
of wTi−1 in stocks in the period from Ti−1 to Ti
Fraction 1− δi−1 kept in cash
Holds wTi−1 γ̂

(j)
Ti−1

/S(j)
Ti−1

units of stock S(j) in this time period
Interest rates on cash taken to be zero (nearly the case)
Algorithm is implementable (but need to add trading cost)
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Log vs. non-log Scale

Apparent paradox:
PCA is carried out on log returns of prices: X (j)

t = log S(j)
t

Trading is carried out with returns r (j)
Ti

= (S(j)
Ti
− S(j)

Ti−1
)/S(j)

Ti−1

Necessity:
X (j)

t are approximately additive, suitable for PCA
For trading: cannot add log prices, need r (j)

Ti

Validity under continuous paths (no jumps):
r (j)
Ti

= XTi − XTi−1 + Itô correction term
PCA valid (in a medium term sense) despite correction
term due to Girsanov’s Theorem
The correction term usually improves performance of
trading algorithm

Jumps:
May not be desirable to include a large jump that has
already occurred in the near past
Issue of infinitely many small jumps: unresolved
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How similar can PC1 be to the Value Weighted Index?
A priori: if only one factor driving the market: there is a
covariance matrix argument embedded in the argument for
holding the VW index such as S&P 100 (Markowitz (1952,
1959), Sharpe (1964), Lintner (1965), Black (1972))
However:

Few people believe that there is only one factor driving the
market
Other problem in practice: To resemble an index, portfolio
needs to be self financing
Equivalent statement: Need to standardize first eigenvector
to sum to one: δi−1 ≡ 1
Referee 2 thought it could not be done: (1) the sum could
be close to zero, (2) there could be lots of negative portfolio
weights, and (3) the “PC weights do not aggregate to 1
(their 2-norm is)"

And yet, it can be done, as we shall see presently
A suggestion that PCA may provide a suitable index when
VW argument is not available? (Commodities, etc)
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PC1 is unlike other PCs: Sum of eigenvector >> 0

sums of first eigenvector
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What about negative portfolio weights?

Negative fraction of the first eigenvector γ̂(1)
Ti−1

:

ni =
d∑

j=1

(
γ̂

(1,j)
Ti−1

)−
/

d∑
j=1

γ̂
(1,j)
Ti−1

where x− = max(−x ,0),

For different amounts of averaging:

ni over 11 years 2007-2017

first eigenvector mean 95th %ile max

daily rolling 0.011 0.067 0.538
weekly rolling 0.0012 0.0053 0.0778

not rolling 1480.94

Histogram of log(ni): next page
If needed, build limits on the negative part into the portfolio
selection, or even calculation of the eigenvector
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Log Negative Part of 1 Day Rolling Eigenvector

distribution of log negative part of first eigenvector
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Allowing for higher Trading Cost in PC1: 5 Days
Rolling Mean Eigenvector

All trading days between January 2007 and December 2017
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Basic Financial Measures for PC1

S&P 100 PC1 daily rolling PC1 weekly rolling

annual returns 5.3% 12.5% 11.1%
cumulative returns 58.8% 138.0% 122.2%

annual volatility 15.6% 24.3% 23.2%
Sharpe ratio 34.0% 51.4% 47.8%
Sortino ratio 43.5% 72.0% 67.7%

daily turnover 0 58.3% 11.2%
maximum drawdown 56.2% 65.3% 65.5%

alpha 0 0 0
beta 1 1.44 1.40

Annual returns. Volatilities were computed using the S-TSRV, and similarly
for the semi-variances that go into the Sortino ratio. For the computation of

alpha and beta, S&P 100 (OEF) is used as market proxy, and monthly returns
have been used in the regression. For all the three series, the maximum

drawdown occurred at market close on 5 March, 2009.
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Higher Order PC Portfolios
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Higher Order PC Portfolios

Higher order PCs are different from PC1: δi−1 straddle zero
This is natural: if PC1 is close to the “market", then the
higher order PCs should be close to market-neutral
How to standardize the eigenvectors?
Some form of constraint on leverage?
Preceding plot uses eigenvectors with norm one
Sign: for higher order eigenvectors: “continuity method":

assign sign(γ̂
(h)
Ti

) so that sign{(γ̂(h)
Ti

)ᵀγ̂
(h)
Ti−1
} ≥ 0.

Relationship to Fama-French
Other additional data: volume, text (Tracy Ke and others)
Volatility of drift (close to observed AVAR approach)
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Relationship between Eigenvalue One and Two

log PC2 before and after regression on log PC1
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Relationship between Eigenvalue One and Two: 45
period (one week) average

log PC2 before and after regression on log PC1
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And now for some theory

From Covariance Matrix ĉt to PCA
From PCA to realized POET
From Data to Covariance Matrix ĉt
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From Covariance Matrix ĉt to PCA

λ
(j)
t , 1 ≤ j ≤ q: eigenvalues of ct in non-ascending order

and γ(j)
t , 1 ≤ j ≤ q: corresponding eigenvectors,

λ
(j)
t , γ(j)

t on form F (ct ), where F are analytic functions

Spot estimators λ̂(j)
t , γ̂(j)

t on form F (ĉt ) (AX)
Integrated quantities by accumulation of spot estimators
Analysis different from AX because of more complicated ĉt
(three trolls, epecially edge effect)
Correction term similar to AX, but also containing effect of
noise
SRC, Corrected integrated quantities have consistency,
asymptotic normality:

a−1
n

(
Ṽ (∆Tn,X ; F )−

∫ T
0

F (cs) ds
)

L−→WT ,

where a−1
n ∆Tn → 0 and a−3/2

n ∆Tn →∞ as n→∞.
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Illustration of complexity

Table: Error Size Comparison under Different Choices of ∆Tn and an

Types of Error

RDiscrete RSpot-V RSpot-B E
(

RSpot-B
)
− ϕBias

∆Tn
RExpansion

∆Tn → 0 and Op (∆Tn) Op (∆Tn) Op (∆Tn) op (∆Tn) Op
(

∆T 2
n

)
infn a−1

n ∆Tn > 0

a−1
n ∆Tn → 0 and Op

(
a4

n∆T−2
n

)
a−3/2

n ∆Tn →∞ Op (∆Tn) Op (an) Op
(

a2
n∆T−1

n

)
= op (an) Op

(
a3

n∆T−1
n

)
supn a−3/2

n ∆Tn <∞
and a−2

n ∆Tn →∞ Op (∆Tn) Op (an) Op
(

a2
n∆T−1

n

)
Op
(

a4
n∆T−2

n

)
Op
(

a3
n∆T−1

n

)

RDiscrete: Discretization error: RSpot-V and RSpot-B: Martingale term and bias term .

RExpansion: Aggregated remainder term. E
(
RSpot-B)− ϕBias

∆Tn
: the bias term contributed

by the edge effect in covariance estimator. ϕBias
∆Tn

is due to irregular sampling and

microstructure noise.
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From PCA to realized POET
Factor Model with time-varying factor loadings:

dXt︸︷︷︸
d×1

= Bt︸︷︷︸
d×q

dFt︸︷︷︸
q×1

+ dZt︸︷︷︸
d×1

with 〈F,Z 〉t ≡ 0 (1)

ct = BtcF
t Bᵀ

t + st where cF
t = 〈F,F〉′t and st = 〈Z ,Z 〉′t

Normalization: cF
t = Iq and Bᵀ

t Bt is diagonal.
Easiest interpretation: Can choose wlog

Bt︸︷︷︸
d×q

= Gt︸︷︷︸
d×q

L1/2
t︸︷︷︸

q×q

with Lt is diagonal, GT
t Gt = Iq, so BT

t Bt = Lt
Factors with scale:
L1/2

t dFt = ((L(11)
t )1/2dF (1)

t , · · · , (L(qq)
t )1/2dF (q)

t ),
approximately replicated by trading strategy
ct = BtB

ᵀ
t + st

Two approaches:
st is block diagonal (AX)
st is sparse (POET)
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Pervasiveness and PCA→ factor analysis

Recall ct : eigenvalues {λ(j)
t }1≤j≤q (in non-ascending order)

and corresponding eigenvectors {γ(j)
t }1≤j≤q

Let BtB
ᵀ
t have eigenvalues {l(j)

t }1≤j≤q (in non-ascending
order) and corresponding eigenvectors {g(j)

t }1≤j≤q

Lt = diag(l
(1)
t · · · l

(q)
t ) and Gt = (g

(1)
t · · · g

(q)
t )

Assume, for all t , that all eigenvalues of the q × q matrix
d−1Bᵀ

t Bt = d−1Lt are distinct and bounded away from 0
and∞ as d →∞. (Pervasiveness.)
Then

for 1 ≤ j ≤ q:
|λ(j)

t − l
(j)
t | ≤ ||st ||, and

||γ(j)
t − g

(j)
t || = O

(
d−1 ‖st‖

)
and for j > q: |λ(j)

t | ≤ ‖st‖
Proof similar to Fan et al. (2013). Weyl’s theorem, etc
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POET becomes simpler in the high frequency setup

ct = BtB
ᵀ
t + st , where st = 〈Z ,Z 〉′t

Constrained least squares (CLS): Go back to original data
matrix and find residuals for given Bt → residual sum of
squares (RSS)
In this case: no need, RSS = trace(st ) (or its estimate)
CLS gives: Bt = arg min

Bt∈Rd×q
trace(st )

In other words: Bt = Γt Λ
1/2
t (or its estimators), where

Λt =diag (λ
(1)
t , λ

(2)
t , . . . , λ

(q)
t ) and Γt = (γ

(1)
t , γ

(2)
t , . . . , γ

(q)
t )

λ
(j)
t , γ

(j)
t from spectral decomposition of ct

Lt = Λt and Gt = Γt

Estimation of q: eyeball, or penalized criterion function
Sparsity enters when estimating st , and possibly modified
estimate of ct

Consistency, convergence rates (see paper)
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The Smoothed TSRV (S-TSRV)

Need ĉt

Synchronous grid {0 = τn,0 < τn,1 < · · · < τn,N = T }

Ȳ (r)
i = prevaveraged price in each interval (τn,i−1, τn,i ]

Pair (J,K ) of scales, J << K ; set b = K + J

Tapered K-scale variation: K ˜[
Ȳ (r), Ȳ (s)

](K )

t =(
1
2

∑b−K
i=1 +

∑N∗(t)−b
i=b−K +1 + 1

2

∑N∗(t)−K
i=N∗(t)−b+1

)(
Ȳ (r)

i+K − Ȳ (r)
i

)(
Ȳ (s)

i+K − Ȳ (s)
i

)
where N∗ (t) = max {1 ≤ i ≤ N : τn,i ≤ t}
Two-scales construction

̂〈
X (r),X (s)

〉
t =

1
(1− b/N) (K − J)

{
K ˜[

Ȳ (r), Ȳ (s)
](K )

t − J ˜[
Ȳ (r), Ȳ (s)

](J)

t

}
.

Why?
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The importance of getting ĉt right
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Smaller Intervals are Better under S-TSRV: RMSE of
Integrated Largest Eigenvalue Estimates

10 20 30 40 50

0.
05

0.
10

0.
15

0.
20

number of stocks (d)

F
in

ite
−

S
am

pl
e 

R
M

S
E

Delta Tau = 60 seconds
Delta Tau = 15 seconds
Delta Tau = 5 seconds



What is High Frequency Data? Methodology Unsupervised Learning in High Frequency Data Covariance Estimation, the S-TSRV

Some more Theory, about Covariance Estimation

How pre-averaging helps, but also creates problems
How a two-scales construction on top of pre-averaging
yields a well behaved estimator (S-TSRV)
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Pre-Averaging as a Potential Synchronization Device

observation times

X
Y

9:00 9:05 9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50

Simple mean (or weighted mean) of each process in each time
interval. For the stock data in this paper, we use 5 second time
intervals.
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Pre-Averaging can Reduce the Impact of Noise

Observed log stock price: Ytj = Xtj + εj , tj ∈ [0,T ]

dXt = µtdt + σtdBt

Block average for block i , [τi , τi+1):

Ȳi =
1
Mi

∑
τi≤tj<τi+1

Ytj

Reduction of size of noise through block averages:

Ȳi = X̄i + ε̄i

= X̄i + Op(M−1/2
i )

?≈ Xτi + Op(M−1/2
i )

A form of data cleaning

Analogy to trading: splitting a large order

However:
?≈ is not innocuous when times are irregular
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Characterizing Irregular Times Inside a Single Block

Let tj0 : first tj ∈ [τi−1, τi) and set

Ii =


Mi−j

Mi
with probability

∆tj0+j

∆τi

1 with probability
tj0−τi−1

∆τi

0 with probability
τi−tj0+Mi−1

∆τi

where j = 1,2, ...,Mi − 1 and ∆tj0+j = tj0+j − tj0+j−1

Preaveraged RV =
∑

i(∆X̄i)
2 will depend on:

E(Ii) =
∑

tj∈(τi−1,τi ]

Mi − j
Mi

∆tj0+j

∆τi
+

tj0 − τi−1

∆τi

E(I2
i ) =

∑
tj∈(τi−1,τi ]

(
Mi − j

Mi

)2 ∆tj0+j

∆τi
+

tj0 − τi−1

∆τi

You have to use the exact times tj to get E(Ii) and E(I2
i ).
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Cases where Irregular Times are Innocuous

For equidistant observations:

E(Ii) =
1
2

and E(I2
i ) =

1
3

For times distributed by an inhomogenous Poisson
process:

E(Ii) ≈
1
2

and E(I2
i ) ≈ 1

3
(2)

For benign irregularity: observation times that are a fixed
transformation of an equidistant grid:

tn,j = F (i/n) and F is independent of n

(1) is also true.
Benign irregularity is close to (and implies) contiguity to
equidistant times.

For general irregularity, however, you have to use the exact
times tj to get E(Ii) and E(I2

i ).
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Histograms of Irregular Times

Histogram of E(I) across bins
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Histograms of Irregular Times

Histogram of E(I^2) across bins
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Sum of Squares under Irregular Times

Suppose for simplicity: σ2
t ≈ σ2

τi−1
(by contiguity, this is a

smaller order problem) and that the τi are non-random
Obtain

E [(∆X̄i+1)2 | Fτi−1 ] ≈ σ2
τi−1

∆τi(E(1− Ii)2) + σ2
τi

∆τi+1E((Ii+1)2).

RV of preaveraged signal:∑
i

(∆X̄i+1)2 ≈
∑

i

σ2
τi−1

∆τiE(2I2
i − 2Ii + 1)

good news:
p→ 2

3

∫ T

0
σ2

t dt under benign irregularity

bad news:
p→ ??? for more general irregularity of times

Pre-averaging CANNOT mitigate the effect of irregular
times. – How to proceed next?
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Estimated Moments of Irregular Times

For E(Ii) over the 1620 bins during the day of May 1, 2007,
on S&P 500 E-mini

Min. 1stQu. Median Mean 3rdQu. Max .
0.0000 0.3621 0.4511 0.4476 0.5364 0.8685

For E(I2
i ) over the 1620 bins,

Min. 1stQu. Median Mean 3rdQu. Max .
0.0000 0.2159 0.2984 0.3066 0.3865 0.7958

For E(2I2
i − 2Ii + 1) over the 1620 bins.

Min. 1stQu. Median Mean 3rdQu. Max .
0.5293 0.6715 0.7114 0.7184 0.7583 1.0000
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Twoscales Estimation as Repair of Pre-Averaging

Smoothed TSRV (S-TSRV):
Preaveraging+tapering+two-scales realized variance
The problem from the irregular times disappears as an
algrebraic identity
A good side effect: Effectively data can be synchronized
between different series. In later application, for example,
we pre-average transactions, and each quotes series, in 15
second intervals
Particularly small edge effects. Of great importance when
estimating spot quantities. (Which is the case here.)
Hard to analyze (AVAR, etc). Original background for MZ
paper on “Observed AVAR"
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A Tapered and Smoothed TSRV (S-TSRV)

Two scales, K > J. N = number of intervals [τi−1, τi)
Set single K -scale volatility as

K [̃Ȳ , Ȳ ]
(K )

=
1
2

J∑
i=1

(Ȳi+K − Ȳi)
2

+
N−b∑

i=J+1

(Ȳi+K − Ȳi)
2 +

1
2

N−K∑
i=N−b+1

(Ȳi+K − Ȳi)
2.

where b = K + J

J [̃Ȳ , Ȳ ]
(J)

is similar, by switching J and K
Overall J,K scales TSRV:

〈̂X ,X 〉 =
1

(1− b/N)(K − J)

{
K [̃Ȳ , Ȳ ]

(K )

− J [̃Ȳ , Ȳ ]
(J)
}
.

Benefit of tapering: Complete elimination of edge effect
due to (noise)2: reduction in worst-case edge effect
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Main Theorem (Exact Algebraic Reduction of TSRV)

One-Scale Representation:

〈̂X ,X 〉 =
1

(1− b/N)(K − J)

N−K∑
i=J+1

(Xτi+K−J − Xτi )
2

+ martingale terms︸ ︷︷ ︸
Op(
√

(K−J)/N)

+ edge effect︸ ︷︷ ︸
op(
√

(K−J)/N)

〈̂X ,X 〉 p→[X ,X ]: consistency under irregular times
Edge effect:

1

(1− b/N)(K − J)


− K∑

J+1

+

N−J∑
N−K +1

( 1

2
(ηi − η

′
i )∆Xτi + ηi (Xτi−1 − Xτi−J )

)

+
1

2
(XτK − XτJ )2 +

1

2
(XτN−J − XτN−K )2

}

where ηi = X̄i − Xτi−1 + ε̄i and η′i = Xτi − X̄i − ε̄i .
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Explanation of Theorem

Martingale terms:
U-statistics if E(ε̄i+J | Fi ) = 0 and under the statistical
equivalent martingale measure of X
Contribute only to variance

J must be set large enough to avoid bias
Optimal choice for variance: N = O(n1/2) and K = O(1).
The rate of convergence is Op(N−1/2) = Op(n−1/4), the
best attainable is order Op(n−1/2)

The effect of the irregular times DOES show up in the
variance, as with regular TSRV.
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Conclusions
A vast amount of data: high frequency, high dimension
Building blocks: AX and POET
POET is easier in high frequency: Residuals not required
to be orthogonal
PCA and Factor Estimation depend crucially on the quality
of the estimator of the underlying spot covariance matrix
The spot covariance matrix gets more precise when facing
three trolls: Financial prices have ...

“error" (microstructure noise)
asynchronous observation
edge effects in estimators

First PC very close to value weighted index: theoretically
plausible, form of validation
PC possible export to indices for for non-equity securities
PC2 related to Fama-French factors
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