SMARTboost learning for tabular data

Paolo Giordani¹

¹Norwegian Business School, Oslo

March 2022

What is SMARTboost?

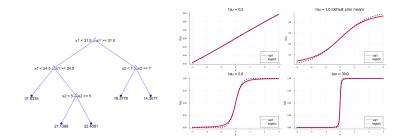
- Boosting not of standard regression trees, but of 'trees' with smooth threshold.
- Expected to be more accurate with continuous or mixed discrete-continuous features.
- Modeling choices and heuristics to reduce the high computing costs.
- Thoughtful default priors greatly reduce the need for CV.
- Priors also improve performance with small *n* and/or small SNR.
- Open source Julia code. R wrapper coming soon.

https://github.com/PaoloGiordani/SMARTboost.jl

Intro: the what and why of SMARTboost Gradient Boosted Machines Boosting trees and XGBoost

æ

Standard and Smooth Trees



Intro: the what and why of SMARTboost Gradient Boosted Machines Boosting trees and XGBoost

Why SMARTboost?

Originally designed to be more effective than GBM for finance data, which are often:

- **1** Low SNR and panel data \Rightarrow Low *effective* sample size.
- ❷ Highly persistent and/or non-stationary features ⇒ more frequent need to extrapolate.

A second paper will test on a broader range of ML datasets.

Intro: the what and why of SMARTboost Gradient Boosted Machines Boosting trees and XGBoost

Why low effective sample size

- Panel data with substantial cross-correlation, e.g. equal weighted portfolio of SP500 stocks ≈ 5 uncorrelated stocks.
- Low SNR. e.g. $R^2 = 0.02 (0.01)$ requires roughly 50 (100) times larger *n* than $R^2 = 0.5$ to have the same var(f(x)).

• $n = 500 \times 20 \times 12 = 120k$ could be $\approx n = 12$ at $R^2 = 0.5$.

I want something that can do well at low SNR but also be able to recover very complex functions if n and/or SNR allow it.

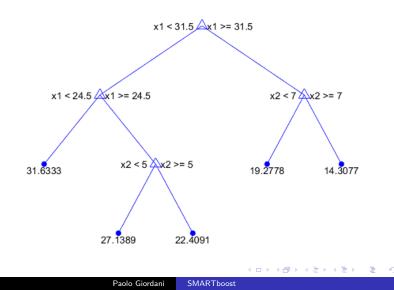
Boosting Trees

"Boosting lives at the cutting edge of modern prediction methodology. They fit models of breathtaking complexity ... and are routinely used as prediction engines in a wide variety of industrial and scientific applications." Efron and Hastie (2016)

- Current default method for tabular data, particularly heterogeneous data. Unified methodology for regression and classification.
- Several open-source, multi-platform, industry-quality implementations: XGBoost (Chen and Guestrin 2016), LightGBM (Microsoft), CatBoost (Yandex).
- Fairly similar performance. I focus on the best-known, XGBoost. Used in many ML platforms: Google's Al Cloud, Amazon's Azure, Uber's Michelangelo.

Intro: the what and why of SMARTboost Gradient Boosted Machines Boosting trees and XGBoost

A Simple Regression Tree (or Decision Tree)



Intro: the what and why of SMARTboost Gradient Boosted Machines Boosting trees and XGBoost

Regression Trees

With a single tree:

$$E(y_i|x_i) = \sum_{m=1}^M \beta_m I(x_i \in R_m),$$

where the dummies $I(x_i \in R_m)$ are non-overlapping and the estimation of β_m is straightforward given $I(x_i \in R_m)$, which in turn depends on all parent split variables and split points. Full optimization impossible: heuristic greedy optimizers.

Boosting Trees for regression problems

- A single tree, however deep, fits and forecasts poorly. Ensembles of trees much more promising. Full optimization impossible. MCMC (BART) challenging.
- Boosting can be seen as a heuristic to fit an ensemble of *B* trees (or other base):

$$E(y|x) = \sum_{b=1}^{B} T_b(x;\theta_b)$$

• Recursively fits the residuals from the previous ensemble.

Boosting trees

- Initialize $f_0(x_i) = 0$, $r_i = y_i$, for i = 1, ..., n. Then repeat step 2) B times.
- **2** Fit a single tree T_b to $r_{1:n}$. Update $\hat{f}_b(x_i) = \hat{f}_{b-1}(x_i) + \lambda T_b(x_i)$ and $r_i = y_i - \hat{f}_b(x_i)$, where $0 < \lambda \le 1$.
- Now world-class fit and predictions in many problems.

Boosting Trees for regression problems

- A single tree, however deep, fits and forecasts poorly. Ensembles of trees much more promising. Full optimization impossible. MCMC (BART) challenging.
- Boosting can be seen as a heuristic to fit an ensemble of *B* trees (or other base):

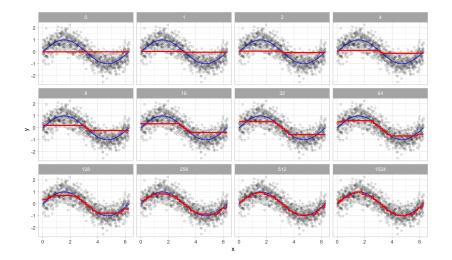
$$E(y|x) = \sum_{b=1}^{B} T_b(x;\theta_b)$$

• Recursively fits the residuals from the previous ensemble.

Boosting trees

- Initialize $f_0(x_i) = 0$, $r_i = y_i$, for i = 1, ..., n. Then repeat step 2) B times.
- General Fit a single tree *T_b* to *r*_{1:n}. Update $\hat{f}_b(x_i) = \hat{f}_{b-1}(x_i) + \lambda T_b(x_i)$ and *r_i* = *y_i* − $\hat{f}_b(x_i)$, where 0 < $\lambda \leq 1$.
 - Now world-class fit and predictions in many problems.

Boosting in action



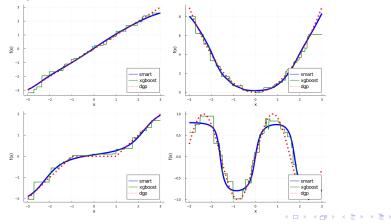
 GBM
 Intro: the what and why of SMARTboos

 SMARTboost
 Gradient Boosted Machines

 Simulations and applications
 Boosting trees and XGBoost

"Why Does XGBoost Win Every Forecasting Competition?"

Understandable with binary features. Otherwise surprising that step functions should do so well ...



Paolo Giordani

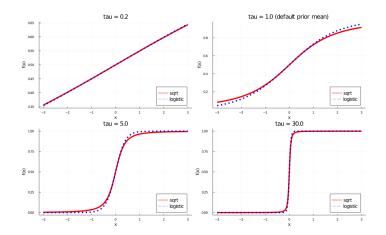
SMARTboost

XGBoost wins forecasting competitions because ...

- Can capture additive nonlinearities and interaction effects in high dimensions (large p), with any combination of continuous and discrete variables.
- Automatic feature selection.
- Robust to leverage points, and messy, noisy, highly non-Gaussian features. Little affected by feature transformation.
- Model complexity is determined automatically by pseudo-out-of-sample fit.

Smooth trees SMARTboost

Smooth Trees



<ロ> (日) (日) (日) (日) (日)

æ

Why aren't smooth trees used?

- The idea of a Fuzzy Tree goes back to Chang and Pavlidis (1977) and Jang (1994). Olaru and Wehenkel (2003), De Rosa and Medeiros (2008).
- Linero and Yang (2018) fully Bayesian (MCMC) estimation of an ensemble of probabilistic trees.
- More flexible. Should perform better in many instances. Yet never used.
- Computations are several orders of magnitude slower. Current solutions not practical.

Why are smooth trees so slow?

A single smooth tree can be written as

$$\mathbf{y} \sim N(\mathbf{G}\boldsymbol{\beta}, \sigma^2 \mathbf{I}),$$
 (1)

where at every node, we need to: a) build the full $G(\iota, \tau, \mu)$, which is $(n, 2^{depth})$, b) compute the full matrix G'G. Boosting calls for evaluating a split at every quantile of every feature, and now also to optimize over the smoothness parameter τ .

Smooth trees SMARTboost

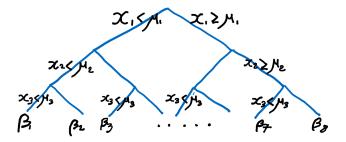
SMARTboost

- A different base (Symmetric Trees) is roughly 10-20 times faster and often fits better, particularly at low SNR.
- A set of algorithms and short-cuts to further increase speed with no or minimal loss of fit.
- A set of Bayesian priors (MAP inference) to reduce the need for cv and hence computing time, and improve performance for low signal-to-noise.

Resulting in great performance even with low SNR and for many DGPs, and feasible for 'large' n (in the millions).

Symmetric trees

A Symmetric Tree (or Oblivious Tree) restricts the splitting variable and point to be the same for all nodes at a given depth. For standard trees, fitting is not any faster. Implemented in CatBoost because forecasting is faster, and at least as good on average. For smooth trees of depth 4 (5), it is 8 (17) times faster.



Symmetry is restrictive for one tree, but not for an ensemble of trees

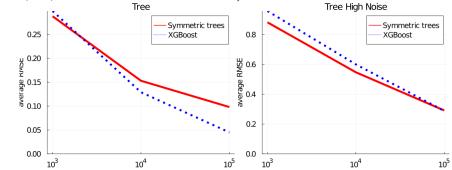
- Imposing symmetry is restrictive for a single tree, but not for a tree ensemble $E(y|x) = \sum_{b=1}^{B} T_b(x; \theta_b)$, where it acts more like a prior/penalization.
- Ensembles of symmetric trees can approximate ensembles of (shallow) standard trees arbitrarily well asymptotically, because:
- A shallow non-symmetric (standard) tree can be represented as a deeper symmetric tree.
- A non-symmetric (standard) tree can be represented as a small collection of symmetric trees.

Symmetry is restrictive for one tree, but not for an ensemble of trees

- Imposing symmetry is restrictive for a single tree, but not for a tree ensemble $E(y|x) = \sum_{b=1}^{B} T_b(x; \theta_b)$, where it acts more like a prior/penalization.
- Ensembles of symmetric trees can approximate ensembles of (shallow) standard trees arbitrarily well asymptotically, because:
- A shallow non-symmetric (standard) tree can be represented as a deeper symmetric tree.
- A non-symmetric (standard) tree can be represented as a small collection of symmetric trees.

Symmetric trees outperform for low n and/or low SNR

DGP is a tree with no symmetry (all splits on different features, split points and coefficients random).



Speeding up smooth trees

- Symmetric trees are 8 (17) times faster at depth = 4 (5).
- Two phases: i) faster feature selection, with a very rough optimization, ii) refine optimization only for the selected feature. 3-5 times faster.
- Sefinement: univariate optimization of μ on a grid of τ . Very robust and can be parallelized.

• Square root sigmoid instead of exponential (10 times faster). 50-100 times faster. Still 10-30 times slower than XGBoost for $10k \le n \le 1m$. Instead of regularization in the form $\eta \beta' \beta$, prior on β formulated in terms of R^2 of the entire tree (automatically calibrated on the first tree)

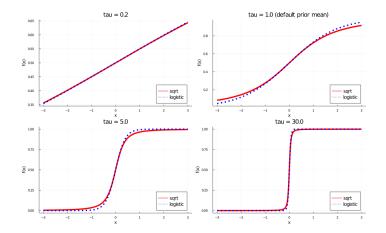
$$eta \sim \mathit{N}(\mathbf{0}, \mathbf{P}_{eta}^{-1})$$
 $\mathbf{P}_{eta} = \left(rac{ ext{trace}(\mathbf{G}'\mathbf{G})/ ext{n}}{ ext{var}(\mathbf{r}) imes ext{R}_{ ext{p}}^{2}}
ight) imes \mathbf{I},$

adapts automatically to SNR, depth, and smoothness. 'Coherent' prior: β drawn from the prior imply $\boldsymbol{G}\beta$ that, given \boldsymbol{r} and \boldsymbol{G} , result in $E(R^2) = R_p^2$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Smooth trees SMARTboost

Default prior centered on very smooth f(x)



(日)

포 🛌 포

SMARTboost prior encourages smoothness without imposing it

Default prior centered on near-linearity, informative but not dogmatic:

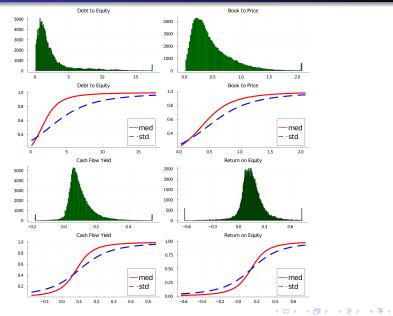
$$\log(\tau) \sim t(0, 1/d, 5),$$
 (2)

where we scale each continuous feature as

$$x \leftarrow \frac{x - median(x)}{1.42 \times median(|x - median(x)|)}.$$
 (3)

to suggest that near linear functions are less likely for highly skewed and leptokurtic features.

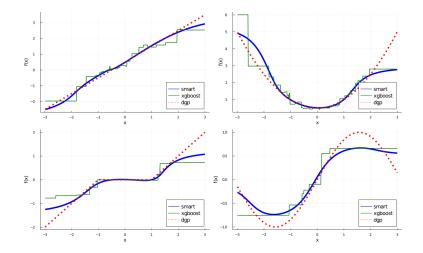
Linearity less likely a-priori if features are highly non-Gaussian



200

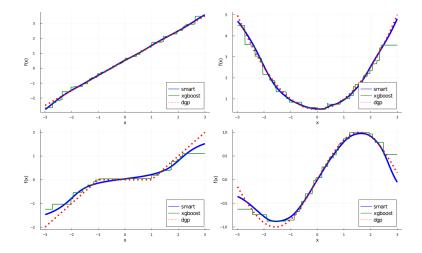
æ

SMARTboost univariate examples



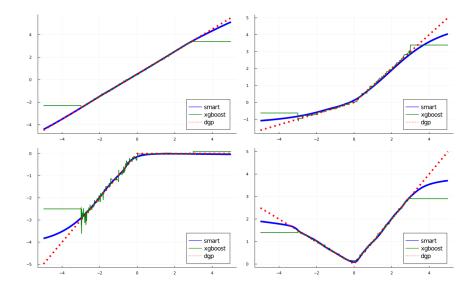
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SMARTboost univariate examples



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

More intuitive extrapolation



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- The most common, default CV settings in ML are not appropriate for time series and panels.
- The default in SMARTboost is Purged CV (Purged CV of De Prado), adapted to panels.
- Cross-correlation and auto-correlation of panel data taken into account in setting default priors.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Simulations Applications Limitations and future work

SMARTboost outperforms in a large number of settings familiar to econometrics and ML

Linear:

$$f(x) = 2x_1 + 1.5x_2 + x_3 + 0.5x_4,$$

Friedman:

$$f(x) = 10sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5,$$

Threshold Friedman:

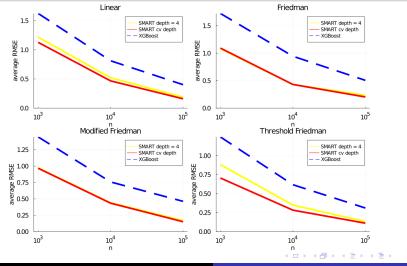
$$f_1(x) = 10sin(\pi x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5$$

$$f_2(x) = 2sin(\pi x_2) + 10(x_3 - 0.5)^2 + 20x_4 + 10x_5$$

$$f(x) = f_1(x)I(x_1 < 0) + f_2(x)I(x_1 \ge 0).$$

Simulations Applications Limitations and future work

SMARTboost outperforms in a large number of settings familiar to econometrics and ML



Paolo Giordani

SMARTboost

SMARTboost outperform in a large number of settings familiar to econometrics and ML

Linear and non-linear factor models:

$$y \sim N\left(\overline{x}_1 + (\overline{x}_2 + 1)I(\overline{x}_2 < -1) + (\overline{x}_2 - 1)I(\overline{x}_2 > 1) + \overline{x}_3I(\overline{x}_3 > 0), 1\right),$$

where $\overline{x}_i = mean(x_i)$, x_i is a ten-dimensional vector of multivariate N(0,1), and all cross-correlations 0.5. Neural network:

$$z_1 = x_1 + x_2 + x_3, f_1 = z_1 I(z_1 > 0)$$

$$z_2 = x_4 + x_5 + x_6, f_2 = (z_2 - 1)I(z_2 > 1)$$

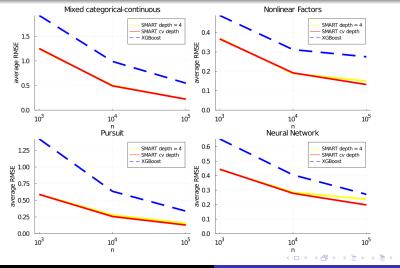
$$z_3 = x_7 + x_8 + x_9, f_3 = -z_3 I(z_3 > 0)$$

$$z_4 = 1.5f_1 + f_2 + 0.5f_3$$

$$y \sim N(z_4 I(z_4 > 0), 1.0).$$

Simulations Applications Limitations and future work

SMARTboost outperform in a large number of settings familiar to econometrics and ML



Paolo Giordani

SMARTboost

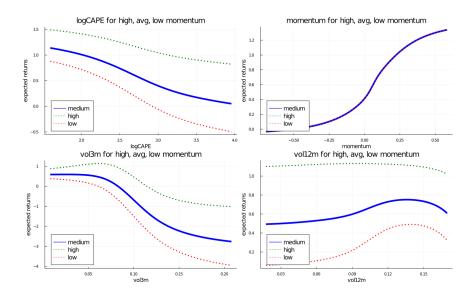
Global Equity Indexes

- \bullet Monthly total returns of global equity indexes. n = 13k.
- Low n, low SNR, few well-behaved variables: XGBoost does poorly, SMARTboost well, OLS can do well but is sensitive to data-transformation (showing OLS best results here).
- It's all in the interaction: SMARTboost performance drops if depth = 1 is forced.

oos R^2 in %	log returns	returns
SMART depth = 4	2.16	1.86
SMART depth CV	2.15	1.57
XGBoost	0.84	0.21
OLS	1.16	0.48

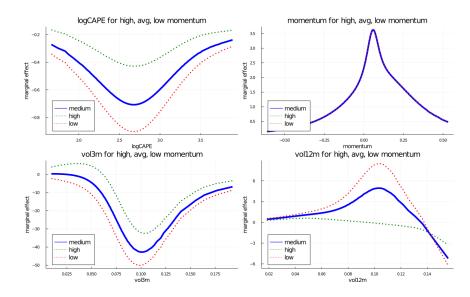
Table: Cross-validated out-of-sample R^2 in % on global equity indexes

Exploring interactions and the fragility of high valuations



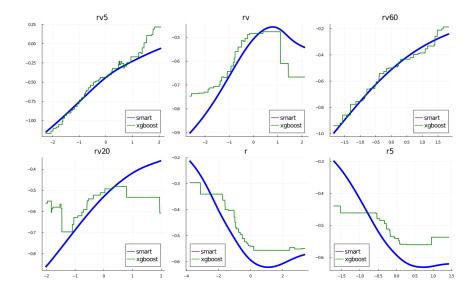
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Marginal effects



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Realized Volatility in Equity Indexes



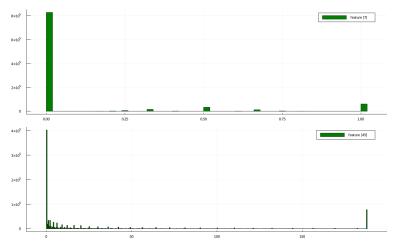
◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

- Computationally inefficient for sparse features.
- Unlike XGBoost, cannot deal with missing values automatically.
- Truly large datasets will be challenging.
- In small samples, reasonably insensitive but not invariant to monotonic transformations of the features.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

When is SMARTboost unlikely to beat other GBM?

Preliminary and vague but intuitive: when most relevant features have non-continuous distributions. Example from the Microsoft dataset:



What next?

- General log-likelihood/loss function.
- ML applications, including large *n* and *p*: when is it more accurate than XGBoost and CatBoost? When more accurate than NN?
- Improve software.