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Background of pharmacogenomic study

slide by Kjetil Taskén
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Data integration
I Drug dose response

n cell lines

drug sensitivity︷ ︸︸ ︷ y•1 . . . y•m

 = Y

I Integrative omics

n cell lines

[ gene expression︷ ︸︸ ︷
X1

copy number︷ ︸︸ ︷
X2

mutation︷ ︸︸ ︷
X3

]
= X

Yang, et al. 2017; TCGA, 2013
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Modelling Data

I The problem can be formulated as a multivariate linear regression model

Yn×m = Xn×pBp×m + Un×m

vec{U} ∼ N (0, C ⊗ In)

where we assume sparse association using independent spike-and-slab prior on the
coefficient

βkj |γkj ,w ∼ γkjN (0, w) + (1− γkj)δ0(βkj),

where γkj is a latent variable inclusion indicator (j = 1, · · · ,m; k = 1, · · · , p).
Denote matrix Γ = {γkj}kj and vector γ = vec{Γ}
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BayesSUR for high-dimensional multivariate Bayesian variable and
covariance selection in linear regression

I A unified, efficient and user-friendly implementation of a class of models in
the R package BayesSUR using Evolutionary Stochastic Search.

I https://CRAN.R-project.org/package=BayesSUR

γjk ∼ Bernoulli γjk ∼ Hotspot γ ∼ MRF

C ∼ indep HRR-B HRR-H HRR-M
C ∼ IW dSUR-B dSUR-H dSUR-M

C ∼ HIWG SSUR-B SSUR-H SSUR-M

Tab: Nine models across three priors of C by three priors of indicator variable Γ
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Prior setup

I Prior knowledge for drug correlations
- C ∼ indep: assume uncorrelated drugs

- C ∼ IW: assume correlated drugs

- C ∼ HIWG : assume correlated drugs and estimate their correlations based on
a sparse graph

I Prior knowledge for sparse association
- γjk ∼ Bernoulli prior: not assume uncorrelated genes or drugs

- γjk ∼ Hotspot prior: assume relationships between one gene and multiple drugs,
and relationships between multiple genes and one drug

- γ ∼ MRF prior : give known (partial) relationships between genes and drugs
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Illustration of our idea

Figure: Illustration of targeted cancer drug groups and omics path
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Prior setup

I Joint graph structure
Set Markov random field (MRF) prior on the variable inclusion indicators
γ = vec{Γ},

γ|d , e,G ∝ exp{d1>γ + eγ>Gγ}

where G is an mp ×mp (possibly weighted) adjacency matrix representing a
graph to include prior structure knowledge
I d : control the sparsity of the model
I e: encourage the selection of related predictors
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Prior setup
I Example: Constructing G in the MRF prior

Gy︸︷︷︸
7 drugs

⊗ Gx︸︷︷︸
3 features

− I21 = I7 ⊗

(
1 1 1
1 1 1
1 1 1

)
− I21

Gy︸︷︷︸
2 drugs

⊗ Gx︸︷︷︸
5 features

− I10 =

(
1 1
1 1

)
⊗


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

−I10
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Full model

Y = ZB0 + XB + U,

β0,tj |w0∼ N (0, w0), ⇐ random effects

βkj |γkj ,w ∼ γkjN (0, w) + (1− γkj)δ0(βkj),

w0 ∼ IG(aw0 , bw0),

w ∼ IG(aw , bw ),

γ|d , e,G∝ exp{d1>γ + eγ>Gγ}, ⇐ MRF prior

vec{U} ∼ N (0, C ⊗ In),

C ∼ HIWG(ν, τIm),

τ ∼ Gamma(aτ , bτ )
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Sampling steps

I sampling latent indicator variables Γ using Thompson sampling;

I sampling coefficients B (and B0) from the full conditional distributions;

I sampling hyper-parameter τ using a random walk Metropolis sampler;

I sampling hyper-parameter w (and w0) using Gibbs sampling;

I sampling the graph G from the junction tree sampler;

I sampling σ2 and ρ from the full conditional distributions (reparametrized from C ).

NOTE: At each iteration, the ESS algorithm implements a local move to add/delete and swap

the latent indicator variables within each chain, and then a global move to exchange and

crossover the latent indicator variables between any two parallel tempered chains.
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Simulation setup
I Sample

I #{responses} = m = 20

I #{subjects} = n = 250

I #{predictors} = p = 300

I Generate data

Yn×m = Xn×pBΓ + U

I Network
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Model performance evaluation
I Variable selection

I Accuracy, sensitivity and specificity of nonzero coefficients based on posterior
inclusion probability γij > 0.5

I Response prediction
I Median probability model (Barbieri & Berger 2004; Barbieri, Berger, George, Ročková 2021)

E[βkj |γkj = 1, data], if P{γkj = 1|data} > 0.5

β̂kj,MPM =


∑N

t=1 β
(t)
kj∑N

t=1 γ
(t)
kj

, if
∑N

t=1 γ
(t)
kj

N > 0.5,

0, otherwise,

I Prediction errors

RMSE =
1√
mn
‖Y − XB̂MPM‖2,

RMSPE =
1√
mn′
‖Y∗ − X∗B̂MPM‖2,

where B̂MPM = {β̂kj,MPM}, Yn×m and Xn×p were used to estimate B̂MPM , and
Y∗n′×m and X∗n′×p are new data.
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Simulation results: comparison †

I Variable selection

I Variable selection and prediction performance

accuracy sensitivity specificity RMSE RMSPE

SSUR-hotspot 0.988 0.936 0.999 0.800 0.693

SSUR-MRF 0.989 0.998 0.986 0.643 0.412

†Comparison with an alternative method: Bayesian sparse SUR with (multiplicative) hotspot prior
for Γ (Bottolo, Banterle, Richardson et al., 2021, JRSSC)
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Simulation results: sensitivity analysis of MRF prior

I More known prior information, more accurate structure recovery
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GDSC data

I Genomics of Drug Sensitivity in Cancer (Garnett et al. 2012)
I Pharmacological profiling

m = 7 drugs, n = 499 cell lines, T = 13 tumor types
I Group1 drugs: MAPK inhibitors (RDEA119, PD-0325901, CI-1040, AZD6244)
I Group2 drugs: Bcr-Abl tyrosine-kinase inhibitors (Nilotinib, Axitinib)
I Chemotherapy agent: Methotrexate

I Genomic information

Feature set I ⊂ Feature set II ⊂ Feature set III

# {gene expression features} 783 1175 2602
# {copy number features} 426 426 426

# {mutation features} 68 68 68

I Edge potentials for MRF prior
I edges between genes in MAPK pathway corresponding to Group1 drugs
I edges between genes in the Bcr-Abl fusion gene corresponding to Group2 drugs
I edges between the representations of each gene in different data sources
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GDSC data
I Constructing G in the MRF prior

Gy︸︷︷︸
7 drugs

⊗ Gx︸︷︷︸
3 features

− I21 = I7 ⊗

(
1 1 1
1 1 1
1 1 1

)
− I21

Gy︸︷︷︸
2 drugs

⊗ Gx︸︷︷︸
5 features

− I10 =

(
1 1
1 1

)
⊗


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

−I10
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GDSC data
I Variable selection for the 4 MAPK inhibitors

I SSUR-Ber has unstable variable selection when including more (or less) genomic
information

I SSUR-MRF has quite stable variable selection, and always identifies some common key
target genes

Figure: A Venn diagram for the numbers of identified features for the MAPK inhibitors by SSUR-Ber (panel (a)) and SSUR-MRF (panel (b)) models
and overlaps between the models fitted with feature sets I, II, and III.
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GDSC data
I Variable selection for the 4 MAPK inhibitors

I 35 common features
= drug target genes (MAPK pathway) + cancer genes (Cancer Gene Census)

Figure: Estimated network between the MAPK inhibitors and identified target genes based on Ĝ and Γ̂ thresholded at 0.5 by SSUR-MRF
corresponding to feature set I, II and III respectively.
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Summary

I Pros

I Integrate multi-omics data in one model for the variable selection and prediction of
multivariate response variables

I Take into account relationships between multiple response variables and
high-dimensional predictors

I Improve performance of variable selection by using known prior knowledge

I Cons

I Our Bayesian method cannot provide cancer tissue-specific gene effects
estimation/variable selection

I The proposed Bayesian model might need long computing time if the model is not
assumed to be very sparse (i.e. number of true associated features � mp)
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