Norwegian version of this page

Guest lectures and seminars - Page 26

Time and place: , NHA B1120

A tropical curve is a graph embedded in R^2 satisfying a number of conditions. Mikhalkin's celebrated correspondence theorem establishes a correspondence between algebraic curves on a toric surface and tropical curves. This translates the difficult question of counting the number of algebraic curves through a given number of points to the question of counting tropical curves, i.e. certain graphs, with a given notion of multiplicity through a given number of points which can be solved combinatorially.  To get an invariant count, real rational algebraic curves are counted with a sign, the Welschinger sign and there is a real version of the correspondence theorem. Furthermore, Marc Levine defined a generalization of the Welschinger sign that allows to get an invariant count of algebraic curves defined over an arbitrary base field. For this one counts algebraic curves with a certain quadratic form.

In the talk I am presenting work in progress joint with Andrés Jaramillo Puentes in which we provide a version Mikhalkin's correspondence theorem for an arbitrary base field, that is a correspondence between algebraic curves counted with the above mentioned quadratic form and tropical curves counted with a quadratic enrichment of the multiplicity. Then I will explain how to use this quadratic correspondence theorem to do the count of algebraic curves over an arbitrary base field.

Time and place: , NHA B1119
We will discuss the recent theory of Nikulin orbifolds and orbifolds of Nikulin type in dimension 4. Nikulin orbifolds are irreducible holomorphic symplectic orbifolds which are partial resolutions of quotients of IHS manifolds of K3^[n] type. Their deformations are called orbifolds of Nikulin type. Our main aim will be the description of the first known locally complete family of projective irreducible holomorphic symplectic orbifolds of dimension 4 which are of Nikulin type. It is a family of IHS orbifolds that appear as double covers of special complete intersections (3,4) in P^6. This is joint work with Ch. Camere and A. Garbagnati.
Time and place: , NHA107

C*-algebra seminar talk by Lucas Hataishi (University of Oslo)

Time and place: , Erling Sverdrups plass, Niels Henrik Abels hus, 8th floor
Time and place: , NHA B1120

Following Givental, enumerative mirror symmetry can be stated as a relation between genus zero Gromov-Witten invariants and period integrals. I will talk about a relative version of mirror symmetry that relates genus zero relative Gromov-Witten invariants of smooth pairs and relative periods. Then I will talk about how to use it to compute the mirror proper Landau-Ginzburg potentials of smooth log Calabi-Yau pairs.