Norwegian version of this page

Guest lectures and seminars - Page 97

Time and place: , Seminar room "End of the Line"

Speaker: Giuseppe Coclite (University of Bari)

Title: Nonlinear Peridynamic Models

Abstract: Some materials may naturally form discontinuities such as cracks as a result of scale effects and long range interactions. Peridynamic models such behavior introducing a new nonlocal framework for the basic equations of continuum mechanics. In this lecture we consider a nonlinear peridynamic model and discuss its well-posedness in suitable fractional Sobolev spaces. Those results were obtained in collaboration with S. Dipierro (Milano), F. Maddalena (Bari) and E. Valdinoci (Milano).

Time and place: , Desolation Row Sognsveien 77 B

Inspired by the Voevodsky machinery of standard triples a machinery of nice triples was invented in [PSV]. We develop further the latter machiny such that it works also in the finite field case [P]. This machinary is a tool to prove many interesting moving lemmas. It leads to a serios of applications. One of them is a proof of the Grothendieck--Serre conjecture in the finite field case. Another is a proof of Gersten type results for arbitrary cohomology theories on algebraic varieties. The Gersen type results allows to conclude the following: a presheaf of S1-spectra E on the category of k-smooth schemes is A1-local iff all its Nisnevich sheaves of stable A1-homotopy groups are strictly homotopy invariant. If the field k is infinite, then the latter result is due to Morel [M]. An example of moving lemma is this. Let X be a k-smooth quasi-projective irreducible k-variety, Z be its closed subset and x be a finite subset of closed points in X. Then there exists a Zariski open U containing x and a naive A1-homotopy between the motivic space morphism U--> X--> X/U and the morphism U--> X/U sending U to the distinguished point of X/U. Application: suppose E is a cohomology theory on k-smooth varieties and alpha is an E-cohomology class on X which vanishes on the complement of Z, then it vanishes on U from the lemma above.   

Time and place: , End of the line, UllevÄl Stadion

Soft and Wet is Different

Time and place: , Desolation Row Sognsveien 77B

In this second talk, I will define Chekanov's version of Legendrian contact homology (LCH) for Legendrian knots in R3. I will begin with an example, showing that LCH is more sensitive than the classical invariants. This will use a linearized version of the homology. In the second part of the talk I will focus on the proof that the differential indeed squares to zero, and also say something about invariance under Legendrian Reidemeister moves. This is intended to be a smooth introduction to the next talk, where we will consider Legendrian contact homology defined for Legendrians in arbitrary 1-jet spaces. This case is more delicate, and we have to understand the concept of Gromov compactness for pseudo-holomorphic curves to prove that we get a differential graded algebra associated to each Legendrian, whose homology will give a Legendrian invariant.

Time and place: , Desolation Row Sognsveien 77B

Let G be a finite (abstract) group and let k be a field of characteristic zero. We prove that for a non-singular projective G-variety X over k, and a non-singular G-invariant subvariety Y of dimension >= 3, which is a scheme-theoretic complete intersection in X, the pullback map PicG(X) -> PicG(Y) is an isomorphism. This is an equivariant analog of the Grothendieck-Lefschetz theorem for Picard groups.