Norwegian version of this page

Guest lectures and seminars - Page 99

Time and place: , Ole Johan Dahls hus
Time and place: , Seminar room "End of the Line" (2nd floor), Matematisk Institutt, Sognsveien 77B, Ullevål Stadion
Time and place: , PRIO, Hausmannsgate 3, Oslo

This seminar is a part of the UiO-PRIO collaborative effort Oslo Lectures on Peace and Conflict

Time and place: , Ullevål End of the Line

Emerging instabilities and bifurcations from deformable fluid interfaces in the inertialess regime 

In this talk, I will present two studies regarding the dynamics of droplets in the creeping flow, focusing on the arising instability and bifurcation phenomena. The first work investigates a buoyancy-driven droplet translating in a quiescent environment and the second a particle-encapsulating droplet in shear flow. There-dimensional simulations based on versatile boundary integral methods were employed to explore the intriguing instability and bifurcation phenomena in the inertialess flow. In the first work, a non-modal stability analysis was performed to predict the critical condition of instability; and in the second, a dynamic system approach was adopted to model and characterize the interacting bifurcations.

Time and place: , Gates of Eden

Elizabeth Gillaspy from the University of Montana at Missoula, USA, will give a talk with title " Finite decomposition rank and strong quasidiagonality for virtually nilpotent groups "

Abstract: In joint work with Caleb Eckhardt and Paul McKenney, we show that the C*-algebras of discrete, finitely generated, virtually nilpotent groups G are strongly quasidiagonal and have finite decomposition rank. Thus, the only remaining step required to show that primitive quotients of such virtually nilpotent groups G are classified by their Elliott invariant is to check that these C*-algebras satisfy the UCT. Our proof of finite decomposition rank relies on a careful analysis of the relationship between primitive ideals of C*(G) and those of C*(N), where N is a finite-index normal subgroup of G. In the case when N is also nilpotent, we obtain a decomposition of C*(G) as a continuous field of twisted crossed products, which enables us to prove finite decomposition rank of C*(G) by analyzing the decomposition rank of the fibers.