Norwegian version of this page

Guest lectures and seminars - Page 117

Time and place: , B638, NH Abels hus
Time and place: , B735

Michael Whittaker from University of Glasgow will give a talk with title:  New directions in self-similar group theory

Abstract: A self-similar group (G,X) consists of a group G acting faithfully on a homogeneous rooted tree such that the action satisfies a self-similar condition. In this talk I will generalise the above definition to faithful groupoid actions on the path space of more general graphs. This new definition allows us to work out the structure of the KMS state space of associated Toeplitz and Cuntz-Pimsner algebras. This is joint work with Marcelo Laca, Iain Raeburn, and Jacqui Ramagge.  

Time and place: , B81

Rasmus Bryder (University of Copenhagen) will give a talk with title: Twisted crossed products over C*-simple groups

Abstract: A twisted C*-dynamical system consists of a C*-algebra, a discrete group and a "twisted" action of the group on the C*-algebra, i.e., the group acts by automorphisms on the C*-algebra in a manner determined by a 2-cocycle of the group into the unitary group of the C*-algebra. Whenever the 2-cocycle (or twist) is trivial, the action is given by a group homomorphism of the group into the automorphism group of the C*-algebra. We consider twisted C*-dynamical systems over C*-simple groups (i.e.,groups whose reduced group C*-algebra is simple) and how C*-simplicity affects the ideal structure of reduced crossed products over such dynamical systems.  

Time and place: , NHA 935

Microfluidics of sugar transport in plants

Plants can rightly be called masters of microengineering. Their survival and successful reproduction depends on their ability to overcome a series of physical challenges during growth and when transporting matter over great distances. In this talk, we focus on the microfluidic network responsible for energy distribution (the phloem). We combine experiments on living plants and biomimetic microfluidic devices to elucidate the basic physical principles that govern sugar transport in plants. We derive a scaling relation between the characteristic sizes of the plant organs, which optimizes the rate of sugar transport. Comparison with experimental data suggests that the pipe network is operating at or near the theoretical optimum. We further consider the coupling between photosynthesis and long-distance transport. While sap with high sugar concentration has the greatest transport potential, viscosity impedes flow, a phenomena analogous to congestion in traffic flows. The optimal sugar concentration for transport in plants is 25%, sweeter than Coke (10%) but much less viscous than maple syrup (65%). Although plants have generally evolved towards the theoretical optimum, a number of unusually sweet plants exist. This group consists primarily of crop plants such as corn (40%) and potato (50%), sugar junkies of the natural world.

Time:

Prof Per Mykland (University of Chicago) will give a seminar in the lunch area, 8th floor Niels Henrik Abels hus at 14:15.