Norwegian version of this page

Guest lectures and seminars - Page 57

Time and place: , Zoom

Abstract: Due to the fluid nature of biological membranes, proteins are able to diffuse along the membrane surface. Additionally, several processes of vesicle formation require protein recruitment.  We discuss, on one hand, the implications of fixed membrane shapes in protein diffusion, and on the other hand, the effects of protein diffusion and recruitment in membrane shape transformation. 

This talk is part of the Mechanics Lunch Seminar series. That means 20min talks plus discussion in an informal setting.

Zoom: To obtain the Zoom meeting details please contact Timo Koch (timokoch at math.uio.no).

Time and place: , Zoom

Abstract: Magnetic Resonance Elastography (MRE) is an emerging technique to measure the bio-mechanical properties of tissue in vivo. We present measurements of the shear modulus in healthy subjects, and in patients with brain cancer.

This talk is part of the Mechanics Lunch Seminar series. That means 20min talks plus discussion in an informal setting.

Zoom: To obtain the Zoom meeting details please contact Timo Koch (timokoch at math.uio.no).

Time and place: , Niels Henrik Abels hus, 8th floor

Steffen Grønneberg (Department of Economics, BI Norwegian Business School) will give a talk on November 10th at 14:15 (held with restricted attendance in the Erling Sverdrups plass, Niels Henrik Abels hus, 8th floor and streamed in Zoom - the link will be sent by mail one day in advance).

Time and place: , Zoom

Abstract: Upon burst, air bubbles release droplets that transfer biological and chemical materials from water bodies to the atmosphere. This mechanism is one of the main sources of cloud condensation nuclei and participates to airborne contamination when the bulk water contains pathogens. Predicting the size and composition of droplets emitted by bubbles requires a fundamental understanding of their dynamic at the surface, yet a consistent physical picture is lacking. Relying on experimental data from bubbles generated in various environments and using scaling analysis, I will show that surface tension gradients control the drainage of bubbles. I will also explain how local perturbations of surface tension can explain their seemingly stochastic burst mechanism. Consequences for application purposes will be mentioned throughout the presentation: I will notably take the examples of bubbles in saltwater and in water contaminated with bacteria.

This talk is part of the Mechanics Lunch Seminar series. That means 20min talks plus discussion in an informal setting.

Zoom: To obtain the Zoom meeting details please contact Timo Koch (timokoch at math.uio.no).