Best space of a fixed dimension

A. Bressan and E. Sande

Consider the space $\mathbb{S}_{p, k, n}$ of piecewise polynomials $[0,1] \rightarrow \mathbb{R}$ of degree p on the uniform partitions in n segments and having k continuous derivatives. Let $C_{p, k, n}$ be the best constant such that: $\forall f \in H^{p+1}(0,1)$

$$
\left\|f-\Pi^{\perp} f\right\|_{L^{2}} \leq C_{p, k, n}\left\|\partial^{p+1} f\right\|_{L^{2}}
$$

Which pair of parameters (k, n) minimizes $C_{p, k, n}$ for a fixed degree and space dimension? We can not answer the question completely. However, we can compare the interesting cases $k=-1$ used in DG, $k=0$ used in FEM and $k=p-1$ used in IGA. The answer extends to broken Sobolev spaces and to tensor product spaces.

