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This is the exam project set for STK 4021/9021, autumn semester 2017. It is made available

on the course website as of Thursday 30 November 12:00, and candidates must submit their

written reports by Tuesday 12 December 9:59 (or earlier), to the reception office at the

Department of Mathematics (at Ullev̊al Stadion, Sognsveien 77B, 2nd floor), in duplicate.

The supplementary four-hour written examination takes place Wednesday 13 December

(practical details concerning this are provided elsewhere). Reports may be written in

nynorsk, bokmål, riksmål, English, Latin, or verse, and should preferably be text-processed

(TeX, LaTeX, Word), but may also be hand-processed. Give your StudentWeb number on

the first page. Write concisely (kratkostь – sestra talanta; brevity is the soul of wit;

in der Beschränkung zeigt sich erst der Meister). Relevant figures need to be included in

the report. Copies of machine programmes used (in R, or matlab, or similar) are also to

be included, perhaps as an appendix to the report. Candidates are required to work on

their own (i.e. without cooperation with any others). They are graciously allowed not to

despair should they do not manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains three exercises and comprises seven pages (where the last page

is a brief Appendix). Note that the STK 9021 students need to answer also Exercise 3,

whereas the STK 4021 students can confine their attention to Exercises 1 and 2.

Exercise 1

Some kids are cooler than others, perhaps, and in certain dramatic cases cooling

a newborn can save its life. More specifically, without going into the drastic physiological

details, in some rare cases newborns are being critically deprived of oxygen to the brain

as a consequence of a difficult birth. Pioneering research, involving in particular Professor

of Systems Physiology Marianne Thoresen from the University of Oslo, has demonstrated

that a form of ‘cooling’, where the little body has its temperature lowered to 33◦ Celsius

during a certain period just after birth, can save its life, and with no loss of later mental

or motoric capacities (you may check out www.tv2.no/a/8732302/). There is ongoing
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research and controversy, however, regarding the time window where the cooling operation

is helpful, or useless, or too late.

The questions dealt with in this exercise are meant to shed light on one of these

discussions, following a study very recently reported on in Journal of the American Medical

Association (Laptook et al., October 2017). They analysed various aspects of cooled and

non-cooled newborns, where each case involved oxygen deprivation during birth, and where

the cooling action, if taken, was initiated inside the time window 6 hours to 24 hours after

birth (as opposed to starting earlier, which has been the general recommendation, so far).

Luckily acidemic or moderate encephalopathy cases happen very rarely, so over a period

of eight years, across a wide network of US hospitals, there are only a few hundred such

cases. We shall avoid various extra details here and concentrate on a simple 2 × 2 table

for two binomials,

y0 ∼ bin(m0, p0), for a group of non-cooled newborns,

y1 ∼ bin(m1, p1), for a group of cooled newborns.

The event in question is ‘death or disability’, with a precise definition of disability, assessed

when the child is about 18 months old. The actual numbers, to be used below, are 22 of

79 cases for group 0 (non-cooled) and 19 of 78 cases for group 1 (cooled). The emphasis is

on the parameter

ρ =
p1
p0

(called rr, for relative risk, or risk ratio).

(a) For the general binomial model (m, p), show that the Jeffreys prior is proportional to

1/
√
p(1− p), and that this is a Beta( 1

2
, 1

2
).

(b) With the Jeffreys prior for the two binomial experiments above, find the posterior

distributions for p0 and for p1. Simulate 105 realisations of ρ = p1/p0 from the

posterior distribution. Show a histogram for this posterior, and record the 0.025,

0.50, 0.975 quantiles. Comment on your findings.

(c) For a binomial y ∼ bin(m, p), with the usual estimator p̂ = y/m, it is well known that

√
m(p̂− p) →d N(0, p(1− p))

as m increases, with →d denoting convergence in distribution (this famous result goes

back to de Moivre, 1738). Use the delta method (see the Appendix of this exam set)

to show that log p̂ is approximately unbiased for log p, approximately normal, with

Var log p̂ ≈ 1

m

(1
p
− 1

)
.

Show also that a natural estimator for this variance is 1/y − 1/m.
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(d) For the cooling and non-cooling data, compute ρ̂ = p̂1/p̂0, and also

γ̂ = log ρ̂

on the log-scale of γ = log ρ. Give a formula for estimating the variance in the

approximate normal distribution of γ̂, and compute the estimated standard deviation

here. (You should find a number close to 0.269.)

(e) Use the above to put up an approximate 95% confidence interval (‘classic’, ‘frequen-

tist’) for first γ, and then ρ. Comment on any similarity (or not) with the Jeffreys

prior based Bayesian interval from question (b).

(f) Suppose now in general terms that γ is an unknown parameter of interest, and that

an estimator γ̂ is such that γ̂ | γ ∼ N(γ, σ2), with a precision σ taken to be known or

very well estimated. With a prior distribution γ ∼ N(γ0, σ
2

0
), show that (γ, γ̂) has a

joint binormal distribution,

(
γ
γ̂

)
∼ N2(

(
γ0
γ0

)
,

(
σ2

0
σ2

0

σ2

0
σ2

0
+ σ2

)
).

Using established formulae for conditional distributions for the multinormal family,

as e.g. given in the relevant Nils Exercises, show that this leads to

γ | γ̂ ∼ N(γ̂B , σ
2

B),

where

γ̂B = γ0 +
σ2

0

σ2

0
+ σ2

(γ̂ − γ0) and σ2

B =
σ2

0
σ2

σ2

0
+ σ2

.

(g) Consider the ‘neutral prior’ which takes γ ∼ N(0, σ2

0
), with σ0 = 0.35. Compute the

associated 95% prior credibility interval for γ, on the scale of γ, and for the ρ scale.

(h) Compute the posterior distribution for ρ with the above prior. Attempt to construct

and display a figure with three probability densities for the focus parameter ρ – the

neutral prior; the posterior stemming from this neutral prior; and the posterior asso-

ciated with the Jeffreys priors (i.e. the one worked with in question (b)).

(i) So what’s the chance that the cooling apparatus is beneficial, even when it starts after

6 hours? A natural quantity to consider is the posterior probability that p1 < p0. With

the Jeffreys based prior, compute

Q(19) = Pr{p1 < p0 | data} = Pr{p1 < p0 | y0 = 22, y1 = 19}

(with group sizes m0 = 79 and m1 = 78 considered fixed and given). For what range

of potential other outcomes y1 (which could have occurred), is

Q(y1) = Pr{p1 < p0 | y0 = 22, y1}

0.95 or higher?
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(j) In the Laptook et al. (2017) journal article, they work with what they term a ‘neutral

prior’, specified as above, with γ = log(p1/p0) ∼ N(0, 0.352). Find Beta priors p0 ∼
Beta(a0, b0), p1 ∼ Beta(a1, b1) matchings this, i.e. with the properties that the implied

γ = log(p1/p0) has mean zero and standard deviation 0.35.

(k) Suppose NRK Dagsrevyen takes an interest in the cooling of neonates and in the issues

pointed to above. Since they know you’ve now spent time and efforts analysing the

data, looking into both Bayesian and non-Bayesian angles, they point a camera at you,

wishing to know your conclusions. Please answer them – write a couple of paragraphs

about this, related in particular to the subquestions below. The context is as in the

Laptook et al. article and by implication in this exercise, relating to newborns with

the described troubles during birth (with hypoxic-ischemic encephalopathy), and with

the cooling machinery initiated inside the 6 hour to 24 hour time window.

[i] Is cooling better than not cooling?

[ii] What place and role does Bayesian analysis have in such discussions?

Exercise 2

Sola dosis facit venenum, says Paracelsus, pointing to a tentative principle of toxiology

(more or less that ‘all things are poison, and nothing is without poison, the dosage alone

makes it so a thing is not a poison’), and, in turn, to logistic regression type models.

Assume for the present purposes that a certain compound is administered, at certain dosage

levels, to Ratti norvegici laboratory rats. One then records whether Event A occurs or not,

where Event A could be that the animal is seen as having become ill or worse (in which

case it is sent back to better life and gentle healing). The uses of such experiments include

finding pharmacologic and toxicologic information and practical rules relative to worker

protection, how much coffeine humans can tolerate, discovering and testing physiological

theories, etc.

The data to be analysed are as follows. At each of ten dosage levels x1, . . . , x10, equal

to

0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,

m = 5 rats are exposed to the compound at that level, and the number of these five rats

that experience Event A is

0, 2, 1, 3, 1, 2, 3, 3, 3, 2

respectively. We hence have ten binomial experiments, say

yj ∼ bin(m, pj) for j = 1, . . . , 10,

and these are modelled as

pj = Pr(A |xj) = H(a+ bxj) =
exp(a+ bxj)

1 + exp(a+ bxj)
,

with H(u) = exp(u)/{1 + exp(u)} the logistic transform.
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(a) Show that the log-likelihood function is

ℓ(a, b) =

10∑

j=1

[
yj log pj(a, b) + (m− yj) log{1− pj(a, b)}+ log

(
m

yj

)]
.

Programme this log-likelihood function and find its maximisers. I find â = −1.479 and

b̂ = 0.949; the black full curve in the figure below represents the estimated probability

p̂(x) = H(â+ b̂x),

plotted alongside the raw data estimates yj/m.
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(b) With a flat prior for (a, b) on [−10, 10] × [−10, 10], set up a Markov Chain Monte

Carlo scheme to assess the posterior distribution of (a, b). Record the posterior means

and posterior standard deviations, for the two model parameters, and compare to

values obtained by the ‘Lazy Bayesian’ strategy, that of normal approximations from

maximum likelihood theory.

(c) Use your simulations to produce a 90% pointwise credibility band around the esti-

mated curve p̂(x), with low(x) the 0.05 quantile and up(x) the 0.95 quantile of the

posterior distribution for H(a + bx); these are the red dotted curves I’ve plotted in

the figure above.

(d) We also take an interest in p(x) = Pr(A |x) for higher dosage levels than for the range

0.2 to 2.0. Give the posterior distribution of p(xnew) for the high dosage level xnew =

2.50, in terms of a histogram or estimated density. Discuss briefly the assumptions

underlying your analysis.
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(e) In addition to finding the posterior distribution for p(xnew) above, find the predictive

distribution for ynew, the number of m = 5 Ratti norvegici experiencing Event A when

the dosage is xnew = 2.50.

(f) Above your Bayesian computations have been carried out with a flat prior for (a, b) on

[−10, 10]× [−10, 10]. In this particular context it is natural to assume that b cannot

be negative, however, as more poison should increase the probability for Event A. Set

up a second MCMC to compute the posterior distribution for (a, b) when the prior is

flat on [−10, 10]× [0, 10]. With this prior, compute by simulation the 0.05, 0.50, 0.95

quantile points of the posterior distribution for the point so-called LD50 parameter,

or ‘lethal dose 50-percent’, the dosage level x0 where 50% of the objects are expected

to experience Event A.

Exercise 3 – for the PhD students taking STK 9021 only

The number of PhD candidates in the kingdom of Norway has increased with a factor

of about 2.5 over the past fifteen years (from 4123 in 2002 via 7883 in 2008 to 9586 in 2014

and even to 10208 in 2016, actually). This is spellbindingly momentous.

By the general rules of the Faculty of Mathematics and Natural Sciences those taking

the PhD STK 9021 version of this course are required to be examined and evaluated in a

somewhat more extensive manner than those taking the STK 4021 version. We solve this

here by demanding that the STK 9021 candidates work also with the present Exercise 3

(those among the STK 4021 students eager to work with this exercise too are however

welcomed to do so). This exercise is as follows.

I have uploaded Petra M. Kuhnert’s article Four case studies in using expert opinion

to inform priors, published in Environmetrics in 2011, to the course website. Your task is:

(a) read through the paper (without having to go into all details);

(b) give your own brief summary, perhaps two or three paragraphs, highlighting what you

find of importance here;

(c) give some more details regarding what goes on, and what is important, for one of the

four case studies of the paper;

(d) briefly describe something that interests you, with some characteristics perhaps similar

to cases treated in the paper, and where you say something about how to get hold

of expert opinions, along with your opinion regarding how relevant or how important

such expert opinions could be for your models and analyses.

In total you could write perhaps three or four pages regarding this Exercise 3.
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Appendix: the delta method

The delta method is a classical way of approximating or estimating variances for parameter

estimators, through derivation and linearisation. One version of this is as follows, with →d

denoting convergence in distribution. If

√
n(Xn − a) →d N(0, τ2),

and g(x) is a smooth function with derivative g′, then

√
n{g(Xn)− g(a)} →d N(0, (τ ′)2), with τ ′ = |g′(a)|τ.

A translation of this precise limit result is as follows: Suppose Xn is unbiased or approx-

imately unbiased for a, approximately normally distributed, and with variance approxi-

mately τ2/n. Then g(Xn) is approximately unbiased for g(a), also approximately normal,

and with variance approximately g′(a)2τ2/n.

There are various useful generalisations of the statements above, e.g. to the case of

g being a function of several different components, but we do not need these extensions

here.
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