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This is the exam set for STK 4050, autumn 2007. It is made available on the course

website as of Friday 7 December 12:00, and candidates must submit their written reports

by Monday 17 December 14:00, to the reception office at the Department of Mathematics.

Reports may be written in Norwegian, English or German, and should preferably be text-

processed (TeX, LaTeX, word), but may also be hand-processed. Give your name on the

first page. Write concisely – in der Beschränkung zeigt sich erst der Meister. Relevant

figures need to be included in the report. Copies of machine programmes used (in R, or

matlab, or similar) are also to be included, perhaps as an Appendix to the report.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Erklæring (exam, page A)’. The second (page B) is the student’s one-

page summary of the exam project report, which should also contain a brief self-assessment

of its quality.

This exam set contains five exercises and comprises five pages.

Exercise 1

Numerical integration is essentially easy in the one-dimensional case but more

troublesome in higher dimensions. Consider the integral

A =

∫
1

−1

∫
1

−1

∫
1

−1

∫
1

−1

∫
1

−1

exp
{
cos(|xyzuv|) sin(|x + y + z + u + v|)

}
dx dy dz du dv.

Use stochastic simulations to estimate A, and give a 99% confidence interval.

Exercise 2

Almost exactly hundred years ago Student (alias W. Gosset) introduced the famous

t-test, in the landmark paper The probable error of a mean (Biometrika, 1980, pp. 1–25).

In modern language, assume that X1, . . . , Xn are independent and normal (µ, σ2), and

suppose we need to test the hypothesis H0: µ = 0 versus the alternative µ 6= 0. Then the

t statistic is

tn =

√
nX̄

σ̂
, with X̄ =

1

n

n∑

i=1

Xi and σ̂ =
{ 1

n − 1

n∑

i=1

(Xi − X̄)2
}1/2

.

Student’s contribution was partly to find the correct null distribution, i.e. the distribution

of tn under H0. As we know, it is a tn−1, and the associated test with level say 0.05 is to

reject when |tn| > tn−1,0.975, the upper 0.025 point in this distribution.
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The point of the present exercise is to consider a robust competitor to Student’s t.

We shall use

Zn =

√
nMn

σ̃
,

where Mn is the median of the n data points and

σ̃ = c
( 1

n

n∑

i=1

|Xi − Mn|3/2

)2/3

.

Here the constant c is chosen so that σ̃ is consistent for the real σ in case the data really

follow the normal distribution. The null hypothesis µ = 0 is rejected when |Zn| > z0,n,

with zn,0 to be specified.

(a) Based on simulations for respectively n = 100 and n = 1000, find a numerical approx-

imation for the c constant. Attempt also to find a formula for c mathematically. –

The numerical value of c, using this formula, happens to be 1.10574. For the following

points, use this value for c. (Since Zn is used primarily as a test statistic, the value

of c is of no serious consequence, but the 1.10574 figure secures a clear interpretation

of the denominator.)

(b) For n = 25 and for significance level 0.05, establish the rejection limit for the |Zn| test

(via simulations).

(c) Under normality assumptions, show that the power function

πn(µ, σ) = Pr{|Zn| > z0,n |µ, σ}

is a function of µ/σ alone. For n = 25, compute the power function (via simulations),

and display it in a diagram, along with the power function of the t-test. Comment

briefly on your results.

(d) One wishes to collect enough data in order for the |Zn| test to have probability at

least 0.90 of detecting that H0 is wrong, if the true state of affairs is |µ|/σ = 0.50.

How many data points are needed to achieve this?

Exercise 3

“Independence? That’s middle class blasphemy. We are all dependent on one

another, every soul of us on earth.” Indeed too many statistical situations are modelled

via independence, even if the context ought to or might indicate statistical dependence.

This exercise is a little excursion into one particular way of modelling dependence between

given distributions.
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Suppose f(x) and g(y) are probability densities on (0,∞), and define

h(x, y) = f(x)g(y) exp{−θ|x − y|}/A(θ) for x > 0, y > 0,

with A(θ) the appropriate normalising constant. The task is to construct ways of simulating

pairs (Xi, Yi) from this distribution, for given start densities f and g and for given values

of θ. For concreteness of illustration we shall take f and g to be unit exponential below,

i.e. f(x) = exp(−x) for x > 0 and g(y) = exp(−y) for y > 0, but generalisations are not

difficult to work through.

(a) What is the parameter region for the association parameter θ? Comment briefly on

how realisations of h can be expected to behave, for cases θ = 0, θ small, θ big.

(b) Before returning to the specific case at hand, prove the following version of the

rejection-acceptance scheme: Suppose p(z) = p0(z)/a is the target density, and that

p0(z) ≤ Kq(z) for all z, where q is another density that perhaps is easier to sam-

ple from. First generate Z1, Z2, . . . from q. For each Zi, keep it, with probability

p0(Zi)/{Kq(Zi)}, and otherwise throw it away. Then the surviving Zi (those that are

accepted) follow the target density p.

(c) Use rejection-acceptance sampling to generate 10,000 random pairs (Xi, Yi) from the

h(x, y) density above, for θ = 1.3579. Compute estimates of the means and standard

deviations for X and Y , as well as their inter-correlation.

(d) For each of a string of nonnegative association parameter values θ, simulate random

pairs (Xi, Yi) as above, and display the (estimated) curve ξ(θ), where ξ(θ) = Eθ|X−Y |.
What is the exact value of ξ(0)?

(e) I have observed n = 111 pairs (Xi, Yi) from a real data set, for which

1

n

n∑

i=1

|Xi − Yi| = 0.444.

Estimate the association parameter θ. Attempt also to estimate the standard deviation

of your parameter estimate.

Exercise 4

Prior information about parameters ought to be used in combination with data

information to reach correct inference statements. This is precisely the Bayesian viewpoint.

In some situations the Bayes method amounts to ‘pushing back data in the direction of

what is likely under the prior’, as will be illustrated below.

We shall assume that data X1, . . . , X5 are independent measurements of unknown

parameters θ1, . . . , θ5, each corresponding to standard normal error terms, i.e.

X1 ∼ N(θ1, 1), . . . , X5 ∼ N(θ5, 1).

The observed data in this illustration are

(x1, x2, x3, x4, x5) = (1.11, 2.22, 3.33, 4.44, 13.13).
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Without prior information, these are automatically also the canonical point estimates of

the five θi parameters. – We shall however assume here that there is prior information to

the effect that the five θi parameters tend to be somewhat close to each other, and that

this is modelled via the prior density

π(θ1, . . . , θ5) = exp{−λ V (θ1, . . . , θ5)}/a(λ), where V (θ) =
5∑

i=1

|θi − θ̄|,

and with a(λ) the required normalisation constant; also, as usual, θ̄ denotes the average,

(1/5)
∑

5

i=1
θi. Here λ is a prior information parameter that dictates the degree to which

the five θi are close to each other.

(a) Show that the posterior density for the five parameters takes the form

π(θ1, . . . , θ5 |data) ∝ exp
[
−

5∑

j=1

{λ|θi − θ̄| + 1

2
(θi − xi)

2}
]
,

where ‘∝’ means ‘proportional to’.

(b) Implement a Metropolis scheme for simulating vectors (θ1, . . . , θ5) from the posterior

distribution, where you use λ = 5.55 for this illustration. You may use proposals of

the form θnew

i = θold

i + εi, where the εi are independent N(0, δ2), for a suitable choice

of δ. Display random pairs (θ1, θ5) (drawn from the posterior distribution) in a point

cloud diagram. Explain briefly how you have decided on the δ parameter and the

burn-in period.

(c) Compute the posterior mean and the posterior standard deviation for each of the five

parameters, and give 90% credibility intervals (i.e. intervals that contain 90% of the

posterior probability). Comment briefly on your results.

(d) In addition to the posterior means, which you found in point (c), Bayesians some-

times wish to find the ‘MAP solution’ (maximum a posteriori point), i.e. the max-

point (θ∗
1
, . . . , θ∗

5
) in the posterior density. Attempt to find the MAP solution here,

via simulations. A reasonable approximation is sufficient here, full accuracy is not

required.

Exercise 5

How many sick days in three months? The answer to that question depends of course

on the the illness and on the individual in question. We shall assume here that there is an

underlying process Z1, . . . , Z90 that determines a person’s sickness or not; when Zi exceeds

a threshold value c, then the person is ill on day i. In this illustration, suppose that the

Zi follow a zero-mean Gaußian process with covariance function

k(i, j) = cov(Zi, Zj) = exp{−a|j − i|} = ρ|j−i|, where ρ = e−a.

In particular, each single Zi is a standard normal.
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(a) For a = 0.20, simulate and display three paths of Z1, . . . , Z90. You may use the

Z = Σ1/2Nn(0, In) trick, involving the square root of the covariance matrix for the Z

vector, via these lines:

# my "squareroot" function for covariance matrices:

squareroot <- function(K)

{rootL <- 0*K

diag(rootL) <- sqrt(eigen(K, symmetric = T)$values)

P <- eigen(K, symmetric = T)$vectors

P %*% rootL %*% t(P)}

(b) With sickness threshold level c = 1.75, let J be the number of days an individual is ill

inside a ninety-day period, still using time dependence parameter a = 0.20. Find and

display the distribution of J by simulation. What is the probability that the person

is never ill, in the course of ninety days?
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