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With: Nils Lid Hjort

Time for exam: 2 June 2008 at 11:55 – 16 June 2008 at 14:00

This is the exam set for STK 4150, spring semester 2008. It is made available on the course

website as of Monday 2 June 12:00, and candidates must submit their written reports by

Monday 16 June 14:00 (or earlier, for those travelling to Vilnius), to the reception office

at the Department of Mathematics. The supplementary oral examinations take place June

24 and 25 (practical details for these will be provided later).

Reports may be written in Norwegian, English or German, and should preferably be text-

processed (TeX, LaTeX, word), but may also be hand-processed. Give your name on the

first page. Write concisely (in der Beschränkung zeigt sich erst der Meister; brevity is

the soul of wit; kratkostь: sestra talanta). Relevant figures need to be included in

the report. Copies of machine programmes used (in R, or matlab, or similar) are also to

be included, perhaps as an Appendix to the report. The full exam set is (admittedly)

laborious, and candidates are allowed not to despair if they do not manage to answer all

questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains five exercises and comprises nine pages.

Exercise 1

Everybody talks about the weather, but nobody does anything with it. The dataset

examdata101 is organised as (year, xt, zt), with minimum temperatures in two different

geographical regions of Nevada, for each winter, from 1890 to 2000. (The temperatures

given in the file are not absolute minima, per winter, but rather certain averages across

cold days and across several neighbouring measurement positions. I have also converted

Fahrenheit measurements to Celcius.)

(a) Read the dataset suitably into your computer, using

nevada = matrix(scan("examdata101", skip=6), byrow=T, ncol=3)
year = nevada[ ,1]
xt = nevada[ ,2]
zt = nevada[ ,3]

or something equivalent. Display a plot of both time series in the same diagram.
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(b) Focus first on the first of these time series, say xt for t = 1, . . . , n = 111. The

autoregressive model of order m, with a linear trend term for time, corresponds to

xt = β0 + β1(t− t0) + ηt for t = 1, . . . , n,

where t0 is the average t value, and where

ηt = φ1ηt−1 + · · · + φmηy−m + εt, (1.1)

with ε1, . . . , εn being i.i.d. N(0, σ2) and φ1, . . . , φm autoregressive parameters. We

make (1.1) valid also for small t by setting ηt = 0 for t = 0,−1, . . . ,−(m − 1). –

Fit these AR(m) models to the xt data, using maximum likelihood methodology, for

m = 0, 1, 2, 3, where m = 0 corresponds to independence. Which model would you

select among these, and why?

(c) Use the model you have selected in (b) to make a prediction of the (average) minimum

winter temperature in this Nevada area, for the year 2010. Supplement your point

prediction with a suitable prediction interval, and explain your arguments and your

assumptions.

(d) Extend the model you have selected in (b) to include also the zt series as an extra

covariate. Would you say that the zt process influences the xt process?

Exercise 2

One man’s interpolator is another man’s extrapolator. A rather simple data set is

given as follows, associated with a certain random field Z = {Z(x): 0 ≤ x ≤ 10}, observed

in just n = 14 point locations x (with x on the top line and Z(x) on the second):

0.00 0.50 1.00 1.5 2.00 2.50 3.00 7.00 7.50 8.00 8.50 9.00 9.50 10.00
19.74 20.07 19.93 21.8 22.11 21.04 21.00 17.50 18.96 20.67 20.16 19.46 21.42 21.26

(a) Assume that Z(·) is a normal (Gaußian) process with constant mean m and covariance

function

cov{Z(x), Z(x′)} = σ2 exp(−λ|x− x′|).

Give formulae for

Ẑ(x) = E{Z(x) |data} and pe(x) =
[
Var{Z(x) |data}

]1/2
.

(b) Using λ = 1.33 and σ = 0.98, estimate the mean parameter m. How would you

interpret the parameter λ and its value here? Also produce plots of the spatial inter-

polator Ẑ(x) (with the observed Z(xi) appearing in the plot) and of the prediction

error pe(x).

(c) Explain briefly how the interpolator changes if one uses a linear trend function rather

than a constant mean; if you have time, implement and display the modified interpo-

lation curve.
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(d) Going back to the basic normal model with constant m and σ, give a formulae for

cov{Z(x), Z(x′) |data}.

Use this to simulate and display say ten realisations of Z(·), given the fourteen data

points (i.e. the values of Z(xi) for i = 1, . . . , 14). – For these simulations, use values

m = 20.25, σ = 0.98, λ = 1.33.

(e) Still using the values of m, σ, λ of (d), simulate a large number of Z(·) realisations,

given the data, and compute for each of these

Zmin = min{Z(x): 0 ≤ x ≤ 10}.

Give a histogram of these simulated Zmin values, and estimate the probability that

Zmin ≤ 17.00.

(f) Finally, find estimates for the three model parameters, using the (admittedly small)

dataset.

Exercise 3

“Independence? That’s middle class blasphemy.” This exercise is therefore con-

cerned with chains exhibiting Markovian dependence.

(a) Let X1, . . . , Xn form a (first order, i.e. one-step memory) Markov chain on some finite

state space {1, . . . , k}, with one-step transition probabilities

p(xi+1 |xi) = Pr{Xi+1 = xi+1 |Xi = xi}.

Show that

Pr{Xi = xi |X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn}

indeed depends only upon the neighbours xi±1 of i. The resulting

p(b | a, c) = Pr{Xi = b |Xi−1 = a,Xi+1 = c}

are called the local characteristics of the Markov model.

(b) Consider a stationary Markov chain on {1, 2, 3} with transition probability matrix

P =




1 − 3θ 2θ θ
θ 1 − 2θ θ
θ 2θ 1 − 3θ



 , (3.1)

where θ is some parameter in (0, 1

3
). Your first task is to simulate a long chain

X1, . . . , Xn from this model, with

n = 2000 and θ = 0.09,

Exam STK 4150/9150, page 3 2.–16.vi.2008



using the Gibbs Sampler technique – i.e. by simulating a chain of chains, utilising

the local characteristics, but not the ‘direct foward way’. Check that the relative

frequencies of visits to 1, 2, 3 match those predicted by Markov chain theory (the

equilibrium distribution), and compute also the matrix of

p̂(b | a) =
Na,b

Na,·
=

Na,b∑
cNa,c

for a, b = 1, 2, 3,

where

Na,b =

n∑

i=2

I{(Xi−1, Xi) = (a, b)} for a, b = 1, 2, 3

is the number of observed ‘from a to b’ transitions. Comment on what you find. – To

simplify the Gibbs sampling machinery you may fix X1 = 2 and Xn = 2, only tending

to the randomness of X2, . . . , Xn−1.

– We now assume that there is a real chain x1, . . . , xn, with n = 250, that we may only

observe in a blurred fashion, via

yi = xi + εi for i = 1, . . . , n,

where the εi are assumed i.i.d. N(0, σ2). In other words, the yi are independent given

the x sequence, and

yi |xi ∼ f(yi |xi) = N(xi, σ
2)(yi) =

1

(2π)1/2

1

σ
exp

{
−1

2

(yi − xi)
2

σ2

}
, (3.2)

with observed yi but unknown xi. The dataset examdata103 contains these data

(i, yi) for i = 1, . . . , 250. The restoration (or reconstruction) task is to estimate the x

process from the observed y process.

(c) Using these data, find

x̂i =

{
1 if yi is closest to 1,
2 if yi is closest to 2,
3 if yi is closest to 3.

This is the non-contextual classifier, set to work without any knowledge of or use of

any spatial continuity of the x process. Display (x̂, y) in a diagram.

(d) Assume now that the x chain was generated via a first-order Markov chain of the type

(3.1). Show that x | y (the unknown, given the known) follows a first-order Markov

chain over {1, 2, 3}, and provide formulae for

p(xi = b |xrest, y) = Pr{Xi = b |Xi−1 = a,Xi+1 = c, y} for i = 2, . . . , n− 1.

(This data-conditional Markov chain is not stationary, since these local characteristics

depend on yi.)
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(e) Implement and run a Gibbs Sampler to simulate many x chains, from this conditional

distribution given the data. For this, use θ = 0.09 in (3.1) and σ = 0.80 in (3.2), and

again we avoid boundary problems by fixing x1 = 2 and xn = 2, focussing attention

on x2, . . . , xn−1. Compute

x∗i = the most probable xi given data,

i.e. the state, among 1, 2, 3, that has highest p(xi = a | y). Display (x∗, y) in a figure.

(f) Consider also

A3 =

n∑

i=1

I{xi = 3},

the number of times the real (but unknown) x chain has visited state 3. Please

compute three different estimates of A3: by plugging in the non-contextual x̂i of

(c); by plugging in the contextual x∗i of (e); and by computing E(A3 |data). Which

estimate would you consider to be the best?

(g) Above we took given values of θ and σ. Assume now that θ is unknown (but that the

(3.1) model is in force), that σ = 0.80 is known, and attempt to find a good value of

θ from the observed data.

Exercise 4

Yet love and hate me too: So these extremes shall ne’er their office do, says John

Donne (in words set to music by Ketil Bjørnstad, 2008, and performed for this year’s Abel

Prize winners).

(a) Assume first that U1, . . . , Un are an i.i.d. sample from the uniform distribution on [0, 1].

Find the explicit distribution for Mu
n = maxi≤n Ui. Show that EMu

n = 1− 1/(n+ 1),

and find the limit distribution of n(1 −Mu
n ).

(b) Let then X1, . . . , Xn be an i.i.d. sample from some continuous distribution function

F . Show that Xi and F−1(Ui) have the same distribution, and that this implies that

Mn = max
i≤n

Xi and F−1(Mu
n ) have the same distribution.

Explain why this indicates that b0n = F−1(1− 1/n) is a reasonable approximation for

the mean value of Mn. Find also a good approximation to the median value of Mn,

in terms of an appropriate high quantile of F .

(c) Suppose X1, . . . , Xn are i.i.d. observations from the probability density

f(x) =
α

xα+1
for x ≥ 1, (4.1)

where α is some positive parameter. Show that its cumulative distribution function

is F (x) = 1 − 1/xα for x ≥ 1, and that

Pr{Mn/bn ≤ x} → H(x) = exp(−1/xα) for all x > 0,
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where bn = n1/α. Identify the parameters ξ, µ, ψ from the general GEV distribution

formula

H(x) = exp
{
−

(
1 + ξ

x− µ

ψ

)−1/ξ}
.

(d) Consider exceedances Y = X − u for those X that exceed a certain threshold u > 1.

Show that such exceedances have distribution function

Gu(y) = 1 − (1 + y/u)−α for y ≥ 0.

The dataset examdata104 (available at the course website) consists of a total of 117

observations, namely those from a rather larger data set that stems from the distri-

bution (4.1) and that succeeded in exceeding the threshold 4.00. Estimate α from

these data, and give a confidence interval for that parameter with confidence level

approximately 95%.

(e) Based on these data, that all exceeded 4.00, one is interested in estimating the proba-

bility p = Pr{X ≥ 3.00}. Provide such an estimate, along with a confidence interval,

and make clear which assumptions are being used.

(f) An estimate of α was found above utilising only data points exceeding a certain

threshold. Explain why restricting tail estimation to such high-valued data is often

sensible, even if the full dataset (i.e. all X ≥ 1) is available.

Exercise 5

Citius, Altius, Fortius indeed, and yesterday [as Nils writes this] Usain Bolt of Jamaica

set a new World Record on the 100 metres sprint, completing the dash in 9.72 seconds.

The point of this exercise is to discuss ‘how unlikely’ this event is, based on top sprint data

from the eight previous seasons 2000–2007; cf. the figure below.

The dataset examdata105 contains all the n = 195 top results achieved by humankind

over the last eight seasons, defined here as 10.00 or better. I include all such races, for

each season, not only one race for each top sprinter of that year (thus Asafa Powell, the

previous World Record holder, accounts for 8 of the 17 sub-ten races during 2007, for

example, and each of these eight races are inside my dataset). Results achieved by athletes

taken in doping have been forcefully removed from my dataset (Ben Johnsen’s 9.79 from

1988, Tim Montgomery’s 9.78 of 2002, etc.). Similarly results achieved with too strong tail

wind (more than 2.0 m/s) are not taken on board here (cf. the 9.69 of Obadele Thompson

of Barbados in 1996, with tail wind in excess of 5 m/s).

We adopt the view here that the world is ‘essentially stable’, from 2000 to 2008,

regarding top results on the 100-m dash. This is at least not unreasonable: Armin Hary

did 10.0 already in 1960 (and his autobiography is proudly and appropriately titled ‘10,0’);

Carl Lewis raced 9.86 as early as in 1991; and new World Records have been set only eleven

times since electronic timing was made mandatory in 1968 (followed later by accurate tail-

wind measurement devices). Geir Moen managed 10.08 in 1996, and Jaysuma Saidy Ndure

(Gambian born, but Norwegian since December 2006) did 10.01 three weeks ago.
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To approach problems associated with extreme value probabilities it is here convenient

to translate race results to ‘amount of time better than 10.00’. Viewing ‘better than 10.00’

as equivalent to running time less than or equal to 10.005 (since times are given down to

hundredths of second), we are led to

Y = 10.00 − race result + 0.005 = 10.005 − race result (5.1)

(so a very fast race is equivalent to a high Y ; no Scandinavian has ever managed a positive

Y , but Ndure is only 1 centimetre away). These are found in the third column of the

datafile examdata105.
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Usain Bolt set a new World Record yesterday [as Nils writes this] with 9.72.
His achievement may be compared to the 195 previous occasions, during seasons
2000 to 2007, where sprinters have raced 10.00 or faster (found here, there &
everywhere and stitched together from some hours of book reading and internet
trawling). How ‘unlikely’ is 9.72, is he a Lightning Bolt from Heaven?

(a) General extreme value statistics theory may be used to claim that such Y data must

follow a distribution that may be approximated by

G(y) = 1 − (1 + ξy/σ)−1/ξ for y > 0. (5.2)

Discuss the underlying assumptions for this statement, in view of the character of the

present data.
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(b) Regardless of any critical points you might have enlisted for point (a), we now view

the n = 195 data points Y1, . . . , Yn (each of the form ‘10.005 minus race result’) as

a sample of independent data from the distribution (5.2). Estimate the parameters

(ξ, σ), using maximum likelihood. Display the estimated probability density curve, say

g(y, ξ̂, σ̂), along with the histogram of the Y data. Also provide approximate standard

errors (square roots of estimated variances) for these two parameter estimates.

(c) Probability calculations in this point will be carried out pretending that today is

1 January 2008, i.e. conditional on data of 2007 and earlier only. From this perspective,

consider

W = best result during 2008 = max{Y ′
1 , . . . , Y

′
N}

(on the Y scale of (5.1)), where N is the (unknown) number of 10.00-or-better races

during 2008 (if any at all) and Y ′
1 , . . . , Y

′
N given N are viewed as i.i.d. with distribution

(5.2). In addition, take N to be Poisson with parameter λ (such an approximation is

implied by general extreme value statistics theory). Show that

Pr{W ≥ w} = 1 − exp{−λ(1 + ξw/σ)−1/ξ}.

(d) Argue that λ = 195/8 = 24.375 is a reasonable value of the Poisson intensity λ in the

present context. Compute the probability, again pretending that today is 1 January

2008 (i.e. we do not yet know any race results for 2008, and we still believe that Usain

Bolt’s personal best is 10.03, from July 2007), that someone on the planet will do a

100-m race in 9.72 seconds or less, in the course of 2008. – Discuss my claim that this

is the natural ‘surprise level probability’ that may be associated with the Bolt 9.72

news of 31 May 2008 (cf. again the figure). How surprised are you?

(e) Letting q denote the probability defined in (d), supplement your point estimate q̂

with an approximate 95% confidence interval (you may take the sub-ten Poisson rate

λ = 195/8 as a given number here).

(f) Finally, and once more computing probabilities from the perspective of 1 January

2008, estimate and display the probability distribution of

R = best race result during 2008–2011 = min{X ′
1, . . . , X

′
M},

where X ′
1, . . . , X

′
M are all race results at 10.00 or better set during 2008–2011 (i.e. in

the present Olympic period, from pre-Beijing up to pre-London).
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Saturday May 31, 2008, at Icahn Stadium in New York: 9.72
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