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Time for exam: 26 June 2009 at 11:55 – 8 June s.y. at 14:00

This is the exam set for STK 4160, spring semester 2009. It is made available on the

course website as of Tuesday 26 May 12:00, and candidates must submit their written

reports by Monday 8 June 14:00 (or earlier), to the reception office at the Department of

Mathematics, in duplicate. The supplementary oral examinations take place June 11 and

12 (practical details for these will be provided later).

Reports may be written in nynorsk, bokmål, riksmål, English or Latin, and should prefer-

ably be text-processed (TeX, LaTeX, Word), but may also be hand-processed. Give your

name on the first page. Write concisely (in der Beschränkung zeigt sich erst der Meister;

brevity is the soul of wit; kratkostь – sestra talanta). Relevant figures need to be

included in the report. Copies of machine programmes used (in R, or matlab, or similar)

are also to be included, perhaps as an Appendix to the report. The full exam set is (ad-

mittedly) labourious, and candidates are graciously allowed not to despair if they do not

manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains three exercises and comprises nine pages (including a two-page

Appendix with useful details for R work).

Exercise 1

Start wide, expand further, and never look back. We shall at least partly be following

Arnold Schwarzenegger’s advice in this exercise, in that we aim at expanding upon the

most widely-used of all models for a probability density, namely the normal one; we do

reserve the right to look back, however. The normal model is

f(y, ξ, σ) =
1√
2π

1

σ
exp

{

−1

2

(y − ξ)2

σ2

}

= φ
(y − ξ

σ

) 1

σ
for y ∈ IR,

in terms of a location parameter ξ and scale parameter σ; here φ(x) = (2π)−1/2 exp(−1

2
x2)

is the standard normal density. The model is often effective even when it does not perfectly

fit the data, but it is potentially fruitful to construct wider families with more modelling

flexibility. This exercise is about one such type of extension, in terms of a log-linear

expansion in certain basis functions.
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Define the functions

ψj(u) =
√

2 cos(jπu) for u ∈ [0, 1],

for j = 1, 2, 3, . . ., supplemented by the unit function ψ0(u) = 1. These are so-called

orthonormal, with respect to the uniform distribution, in the sense that
∫

1

0

ψj(u)2 du = 1 and

∫

1

0

ψj(u)ψk(u) du = 0 for j 6= k.

That these properties hold follow via traditional integration exercises, but you do not need

to prove them here. The construction below utilises only ψ1, ψ2, . . ., i.e. not ψ0 as such,

but the fact that the orthonormality property holds also with respect to ψ0 is useful.

(a) Our extended model, or order m, takes the form

fm(y, ξ, σ, a) = φ
(y − ξ

σ

) 1

σ
exp

{

m
∑

j=1

ajψj

(

Φ
(y − ξ

σ

))}/

km(a),

with a ∈ IRm consisting of additional parameters a1, . . . , am ∈ IR. Here Φ(·) is the

cumulative standard normal distribution function, as usual (the integral of φ). Show

that this actually defines a probability density on (−∞,∞), with integration constant

km(a) = km(a1, . . . , am) =

∫

1

0

exp
{

m
∑

j=1

ajψj(u)
}

du.

Below we shall for concreteness of illustration focus on the second order model m = 2,

though results easily extend to the general case.

(b) To get a feel for the flexibility of this family, draw some of these densities in the same

diagram, for order m = 2, for some values of a1, a2 in the vicinity of zero. Use ξ = 0

and σ = 1, and include the null model among those plotted (i.e. where the aj are

equal to zero). Note that the k2 function may be computed in R via the numerical

integration routine given in the Appendix.

(c) Use the Taylor expansion exp(v)
.
= 1 + v + 1

2
v2 of order two, which provides an

acceptable approximation for v close to zero, to show that

k2(a1, a2)
.
= 1 + 1

2
(a2

1
+ a2

2
)

for aj values close to zero. [The formal mathematical statement is that km(a) =

1 + 1

2
‖a‖2 + o(‖a‖2).]

(d) Show that the score function, with respect to parameters ξ, σ, a1, a2, computed at the

normal null model, takes the form






(1/σ)ε
(1/σ)(ε2 − 1)
ψ1(Φ(ε))
ψ2(Φ(ε))






,

where ε = (y − ξ)/σ.
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(e) Use this result to show that the model’s information matrix, computed at the null

model, is equal to

J =







1/σ2 0 c1/σ c2/σ
0 2/σ2 d1/σ d2/σ

c1/σ d1/σ 1 0
c2/σ d2/σ 0 1






,

where

cj = cov{ε, ψj(Φ(ε))} and dj = cov{ε2 − 1, ψj(Φ(ε))}

for j = 1, 2, . . .. Find also numerical values for those constants that are needed to

analyse the second order model:

(c1, c2) = (−0.9484, 0) and (d1, d2) = (0, 1.0496).

(f) Use these results to exhibit ‘the Q matrix’, the lower right-hand block of the J−1

matrix (computed at the null model):

Q =

(

9.9521 0
0 2.2261

)

.

(g) For a smooth focus parameter µ = µ(ξ, σ, a1, a2), derive a suitable expression for the

usual vector

ω = J10J
−1

00

∂µ
∂θ − ∂µ

∂a

(where θ in this case is (ξ, σ), and where formulae again are to be derived under null

model conditions). Suppose in particular that one wishes to estimate the log-density

at some given position y0, i.e.

µ = µ(y0) = log f(y0, ξ, σ, a1, a2).

Show that ω then takes the form

ω = ω(y0) =

(

c1x0 + 1

2
d1(x2

0
− 1) + ψ1(Φ(x0))

c2x0 + 1

2
d2(x2

0
− 1) + ψ2(Φ(x0))

)

,

where x0 = (y0 − ξ)/σ. Compute ω for y0 = ξ and for y0 = ξ + 2σ.

(h) Assume independent observations y1, . . . , yn stem from the density

ftrue(y) = f(y, ξ, σ, δ1/
√
n, δ2/

√
n)

and that n is at least moderately large. Give mathematical descriptions of (i) the

region A of (δ1, δ2) where estimation based on the two-parameter normal model is

better than using the four-parameter expanded model f2, for all smooth estimands µ;

(ii) the region B(y0) of (δ1, δ2) where estimation of the log-density at position y0 is

better using the normal model than using the four-parameter expanded model. Try

to display regions A, along with B(y0) for y0 = ξ and for y0 = ξ + 2σ, in the same

diagram. Comment briefly of what you find.
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(i) Let y∗ be the mode of the distribution, i.e. the position at which f2(y) is maximal.

When data y1, . . . , yn have been observed, explain briefly how the Focussed Informa-

tion Criterion may be used to choose among the three models corresponding to order

zero (i.e. the normal), one, two, when the purpose is to estimate y∗ well. Exhibit the

necessary quantities for your formulae, and make clear what your assumptions are for

your FIC scheme to be valid.

Exercise 2

The 2009 Oscar Award goes to ... Shani Davis! This was announced from Oslo a

week or so ago (19/v/9), and no, this is not the Academy Award, even though the history

of its informal name arguably and fittingly can be traced to Bette Davis; but rather the

Oscar Mathisen Award, the most prestigious award of speedskating. As we recall, Davis

won the Oscar also in 2005, for his World Allround Championship triumph in Moskva,

and this season he managed to also become the World Sprint Champion (also in Moskva).

The official citation points specifically to his two world records set at the Olympic Oval in

Salt Lake City in March: 1:06.42 on the 1000-m and 1:41.80 on the 1500-m.

The present exercise relates to estimating and assessing the distribution of personal

best times for the 1500-m, via model selection mechanisms (admittedly using data from

the Adelskalenderen as of April 2006, for exam project convenience reasons, rather than

from April 2009). As the figure indicates, Davis’s 1:41.80 is spectacularly impressive.
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Figure A: Histogram over the personal bests of the best 250 skaters in the world

(as per the Adelskalenderen as of post-season 2006), along with three density esti-

mates. Shani Davis’s new world record is 1:41.80, and H̊avard Bøkko’s Norwegian

record is 1:42.67.
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(a) Access the data from the Claeskens & Hjort book’s website. Fit the three log-linear

expansion models corresponding to order zero, one, two (cf. Exercise 1), where order

zero corresponds to the ordinary Gaußian curve. For each model, give parameter esti-

mates and standard errors (estimates of standard deviation). If you manage, attempt

to duplicate Figure A. [You may use programming tools as indicated in the Appendix,

involving (i) a way of programming the km(a) function and (ii) advice regarding the

start value for the numerical optimisation algorithms.]

(b) Compute AIC and BIC scores for the three models. Which model is best, as judged

by respectively the AIC and the BIC? Give also numerical approximations to the

Bayesian posterior probabilities for the three models. Comment also on which model

you would prefer yourself.

(c) Are there other models that you think could be useful for describing and assessing

the distribution of 1500-m personal best times? How would you compare such an

alternative model to the three dealt with above?

Exercise 3

If a man who cannot count finds a four-leaf clover, does he have the right to be

lucky?, asks Stanis law Jerzy Lec (“Czy cz lowiek, który znalaz l czterolistna̧ koniczynȩ, a

nie umie liczyć, ma też prawo do szczȩścia?”). This exercise at any rate attempts to

combine counting with luck, mathematics and artistic skills; specifically, we shall count

the number y of days of absence from a certain American junior high school and see how it

is related to x (1 if boy, 0 if girl), z1 (average grade for mathematics tests), and z2 (average

grade for artistic and language tests). Both scores z1 and z2 are normalised to the range

[0, 100].

The datafile attendance1-data (available at the course website) gives a table of

seven columns pertaining to such attendance-and-absence data for the school in question,

for a total of n = 159 pupils. The columns are respectively id-number; school = 1; boy-

girl indicator x; mathematics score z1; arts and languages score z2; days attended in a

semester; and days y absent in the same semester. We ignore some of the information

here and concentrate on y, as influenced by x, z1, z2. We take x as protected but question

whether z1 and z2 need to be included for explaining or predicting y. As far as points

(a)–(e) below are concerned, our machinery is going to be that of regression models with

independent Poisson driven counts, but we go further in points (f)–(g).

(a) Consider the four natural candidate models 0 (none of z1 and z2 included), 1 (z1 but

not z2 included), 2 (z2 but not z1 included), 12 (both of z1 and z2 included), each a

special case of the widest Poisson regression models

yi ∼ Pois(ξi) with ξi = exp(β0 + β1xi + γ1z1,i + γ2z2,i) for i = 1, . . . , n.

Fit each model using maximum likelihood. Provide a table giving the AIC and BIC

scores. Comment on your findings, and briefly discuss the underlying assumptions.
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(b) For the parameter µ = E(y |x0, z1,0, z2,0), with covariate values set to (1, 75, 75) (a

boy, with relatively good marks), compute for each of the four candidate models the

point estimate and an approximate 95% confidence interval (the latter computed in

standard fashion, using standard errors and normal approximation, and trusting that

the model in question is adequate).

(c) For this focus parameter µ, carry out FIC analysis with the four candidate models.

Comment on your findings and assumptions.

(d) In this situation, compute also the ‘weighted AIC’ and ‘weighted FIC’ estimate of µ.

What are the distributions of these estimators like?

(e) At this school one is concerned with the apparent fact that the girls tend to be

more frequently absent than the boys. One wishes to learn more about how school

competence and performance in the two fields may relate to absence rates, and in

particular to the probability that the absence level exceeds the threshold y0 = 10

days. Define therefore

µ = µ(z0) = Pr{y > y0 |x0 = 0, z1,0 = z0, z2,0 = z0} = 1 −G(y0, ξ(0, z0, z0)),

where G(y, ξ) is the cumulative Poisson distribution function with parameter ξ, and

ξ(x, z1, z2) is of the exponential form above. Carry out an appropriate AFIC analysis

(averaged or weighted FIC), again comparing the four models 0, 1, 2, 12, across

nineteen equally spaced and equally important positions (5, 5), . . . , (95, 95) in the space

of (z1, z2) marks, for girls. Comment on the results.

(f) The above analyses rest on the assumption of Poisson distributed absence counts.

Some tests reveal however that this assumption is rather far from being satisfied; in

particular, the fitted Poisson distributions do not quite produce zeros often enough,

compared with the N0 = 19 cases of n = 159 pupils with no absence at all. There

are various strategies aiming at repairing for such underprediction of zeros, and the

present point aims at pushing you towards fitting and evaluating one such model.

The idea is simply to operate with a single p0 probability for yi = 0, across pupils,

and then use Poisson regression for the other data, but appropriately conditional on

having counts yi ≥ 1. Show that this leads to the model likelihood function

Ln(p0, β, γ) = pN0

0
(1 − p0)n−N0

∏

i:yi≥1

f(yi, ξi)

1 − exp(−ξi)
,

where f(y, ξ) is the Poisson density at y with parameter ξ, and ξi is as in point

(a) above (i.e. including each of x, z1, z2 as covariates). Fit the model by maximum

likelihood; exhibit parameter estimates and estimated standard deviations; evaluate

the AIC score; compute the model based estimate of the parameter µ worked with in

points (b) and (c); and comment on your findings.
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(g) The final model I wish you to try out is the following. Instead of taking yi to be

Poission with fixed parameter ξi, assume rather that yi | ξi ∼ Pois(ξi) but that ξi ∼
Gamma(c exp(xt

iβ), c). Estimate once more the focus parameter µ of points (b)–(c),

along with a model-based confidence interval. Compute again the AIC score, and

finally also the Takeuchi model-robust TIC scores for each of the six models worked

with in this exercise. How do you conclude – which of the six models appears to be

best?
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Appendix: Useful details for R programming

1. The following is one way to programme the integration constant k2(a), met in Exercises

1 and 2, using R. One first defines functions ψ1, ψ2 (and yet further ψj functions, if required)

via

psi1 <- function(u)

{sqrt(2)*cos(pi*u)}
etc., and then uses

k2 <- function(a)

{
inte2 <- function(u)

{exp(a[1]*psi1(u) + a[2]*psi2(u))}
integrate(inte2,0,1)$value

}
Functions km(a) for other values of m may be programmed similarly. This is also useful

for maximum likelihood estimation inside these extended normal models. When using

iteration based algorithms like nlm, it is often useful to use (ȳ, sd(y), 0, . . . , 0) as start

value, where ȳ and sd(y) are mean and standard deviation for the data (i.e. more or less

the maximum likelihood estimates for the narrow normal model, before expansion).

2. To work properly with the absence from school data, you may start out as follows,

creating a matrix data of dimension 159 × 7:

data <- matrix(scan("attendance1-data", skip=6), byrow=T, ncol=7)

yy <- data[ ,7]

xx <- data[ ,3] # boy = 1, girl = 0

z1 <- data[ ,4] # mathematics score

z2 <- data[ ,5] # languages and arts score

nn <- length(yy)

3. Estimation in the Poisson regression model may be performed using

glm(yy ∼ xx + z1 + z2, family=poisson)

&cetera.

4. To carry out inference in the zero-inflated model of Exercise 3(e), it is useful to work

with the subset of data corresponding precisely to the 140 cases where yi ≥ 1. This may

be organised in various ways, e.g. as follows:

check <- 1*(yy >= 1)

indexplus <- (1:nn)[check == 1]

nplus <- length(indexplus)

dataplus <- 0*(1:nplus) %*% t(1:7)

for (j in 1:nplus)

{ dataplus[j, ] <- data[indexplus[j], ] }
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Figure B: Shani Davis, the inspiration for Exercise 2. His personal bests are

34.78, 1:06.42, 1:41.80, 6:10.49, 13:05.94, he holds three world records, and won

an Olympic gold and a silver in the 2006 Torino games. He is also the current

Adelskalenderen Leader (since March 6, 2009). – Photo: Kirsti Biseth.
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