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This is the exam project set for STK 4160, spring semester 2011. It is made available on

the course website as of Monday 30 May 12:00, and candidates must submit their written

reports by Thursday 9 June 14:00 (or earlier), to the reception office at the Department

of Mathematics, in duplicate. The supplementary oral examinations take place Tuesday

June 14 (practical details concerning this are provided elsewhere). Reports may be written

in nynorsk, bokmål, riksmål, English or Latin, and should preferably be text-processed

(TeX, LaTeX, Word), but may also be hand-processed. Give your name on the first page.

Write concisely (in der Beschränkung zeigt sich erst der Meister; brevity is the soul of wit;

kratkostь – sestra talanta). Relevant figures need to be included in the report. Copies

of machine programmes used (in R, or matlab, or similar) are also to be included, perhaps

as an Appendix to the report. Candidates are required to work on their own (i.e. without

cooperation with any others), but are graciously allowed not to despair if they do not

manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains three exercises and comprises seven pages. The final page gives

some potentially useful hints for R programming.

Exercise 1

Double, double toil and trouble, fire burn and cauldron bubble: the so-called double

exponential distribution, with parameter λ, has density f(y, λ) = 1
2
λ exp(−λ|y|), and has

many uses in statistics and probability theory. It is used to fit data (typically with an

additional parameter for location), but also as a background distribution for parameters,

as for the so-called lasso method of high-dimensional regression. The present exercise

concerns a certain extension of the double exponential distribution to allow for asymmetry.

(a) Suppose an i.i.d. sample y1, . . . , yn is observed from the distribution above. Find a

formula for its maximum likelihood estimator λ̂, and determine the limit distribution

of
√
n(λ̂− λ).

Exam STK 4160, page 1 30.v.–9.vi.2011



(b) As focus parameter µ we shall take the upper probability that Y exceeds a given

positive threshold y0. Show that µ = 1
2
exp(−λy0), under current model assumptions,

and determine as above the limiting distribution of
√
n(µ̂narr − µ), where µ̂narr is the

maximum likelihood estimator for µ inside this narrow start model.

(c) Our model extension is given by the following density function:

f(y, λ, a) = 1
2
λ(1− a2)

{
exp{−λ(1 + a)|y|} for y ≥ 0,
exp{−λ(1− a)|y|} for y ≤ 0.

Verify that it is a density. What is the canonical parameter region for the extra

parameter a? For a fixed value of λ, choose some values for a, and display the

corresponding densities in a diagram. Comment briefly on this two-parameter model.

(d) Show that the Fisher information matrix for this model can be written in the form

J =

(
1/λ2, −c/λ
−c/λ, d

)
,

where

c =
2a

1− a2
and d =

2 + 2a2

(1− a2)2
.

For this point it may be useful to write the density in the form

f(y, λ, a) = 1
2
λ(1− a2) exp{−λ(1 + a)A(y)− λ(1− a)B(y)},

in which

A(y) = max{0, y} =

{
0 if y ≤ 0,
|y| if y ≥ 0,

and B(y) = max{0,−y} =

{
|y| if y ≤ 0,
0 if y ≥ 0.

(e) Show that the upper probability above threshold y0 in this more general model can

be expressed as

µ = Pr{Y ≥ y0} = 1
2
(1− a) exp{−(1 + a)λy0}.

Letting µ̂wide be the maximum likelihood estimator in this wider model, show that the

limit distribution of
√
n(µ̂wide − µ) is normal and find an expression for its variance.

For the special case where the narrow model is actually correct, corresponding to

a = 0, how much is lost in terms of precision, when one uses wide model estimation

rather than narrow model estimation?

(f) Use the theory developed in the course to identify the tolerance radius around the

double exponential model inside which inference using that narrow model is still more

precise than using the wider model.

(g) In the local asymptotic framework where a = δ/
√
n, identify the limiting distribution

of Dn =
√
nâwide, again using theory developed in the course. What is the (approx-

imate) relationship between selecting a model here via the AIC and via the size of

Dn?
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(h) Use the theory developed in the course to provide the joint limit distribution of



√
n(µ̂narr − µn)√
n(µ̂wide − µn)√

nâwide


 =




√
n(µ̂narr − µn)√
n(µ̂wide − µn)

Dn


 ,

again in the local asymptotic framework where a = δ/
√
n, and with µn equal to the

expected absolute value of y.

(i) Finally identify the limit distribution of µ̂final, the estimator used after applying the

AIC, again in the a = δ/
√
n framework. Briefly discuss any relevant aspects of this

limit distribution.

Exercise 2

Men menneskenes hjerter forandres aldeles intet i alle dager, says Sigrid Undset,

though we sometimes try, particularly if our hearts are at risk for entering cardiovascular

difficulties. The data set ldl-data (to be accessed from the course website) contains

observations pertaining to 200 individuals from South Africa and their levels of various

cardiovascular risk factors. I have taken these data from a certain larger study (there were

in particular even more individuals in the protocols, along with more covariates recorded

per person), but have organised this subset of persons and covariates in order to have a

simpler yet meaningful data set to work through for the present exam project. I should

also make clear that the individuals selected for this study were considered to come from

certain higher-than-normal risk groups, so they are in particular not to be seen as a random

sample from the healthy population.

The data set focuses on y, the LDL or low-density lipoprotein level (also associated

with so-called ‘bad cholesterol’), which is recognised as a strong predictor for coronary heart

problems, and the questions taken up relate to how y may be understood or predicted from

other covariates,

. x1, age (in years) at the onset of the study;

. x2, adiposity (a measure of fatness, but different from e.g. the bmi);

. z1, tobacco use (equivalent to the number of cigarettes per day, I think);

. z2, presence (1) or absence (0) of family history of related illness;

. z3, alcohol use (where I have not been able to find the precise definition of the scale

being used).

The notation indicates that we are to take x1 and x2 protected but that z1, z2, z3 are

candidates for exclusion and/or inclusion when we attempt to construct good models. The

LDL is here measured in mmol/L (other scales are also in use).

(a) Run a full linear regression of the type

yi = β0 + β1xi,1 + β2xi,2 + γ1zi,1 + γ2zi,2 + γ3zi,3 + εi for i = 1, . . . , n,

with where n = 200 is sample size and where the εi are taken i.i.d. N(0, σ2). Give

the maximum likelihood estimates of all seven parameters, along with 90% confidence

intervals. Briefly discuss these results.
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(b) We shall now treat the linear regression model containing only x1 and x2 as ‘the

narrow model’ and the fuller model dealt with in point (a) as ‘the wide model’. Now

fit each of the eight models 0, 1, 2, 3, 12, 13, 23, 123, with notation reflecting which

of the three additional covariates z1, z2, z3 are to be included or not, and give a table

that displays dimension (the number of parameters being estimated); log-likelihood

maximum; the AIC; the BIC; and an approximation to the probability of each model

in the Bayesian setup that takes each of the eight models equally likely a priori. Briefly

discuss your findings.

(c) Next we are to carry out focussed model selection, attempting to find an optimal

model for a typified high-risk individual. More precisely the object is to estimate

µ = E(y |x0, z0), the expected LDL level for a person who is 70 years old, who smokes

20 cigarettes a day and has an alcohol use corresponding to 20 on the given scale, and

who has a family history of heart disease; we finally set his adiposity level at x̄2, the

average x2 value in the data set. Carry out a FIC analysis, complete with a suitable

table and plot, including the eight different estimates of µ.

(d) Then carry out a similar FIC analysis for the case of a typified low-risk individual.

We make him 20 years old, a non-smoker and non-drinker and with no family history

of heart disease, and the same adiposity level as his older fellow of point (c). Discuss

any notable differences regarding the best models.

(e) Going back to the high-risk man of point (c), compute model averaging estimates of

µ using respectively ‘smoothed AIC’ and ‘smoothed FIC’ weights. Briefly comment

on your findings.

(f) We are now imagining a certain adult person’s life, with his age running through

the sequence 20, 21, 22, . . . , 69, 70, and with his other covariates fixed – he smokes

ten cigarettes a day; he has a family history with heart problems; his alcohol use

corresponds to the value 10 on that scale; and his adiposity level is fixed at x̄2. Carry

out model selection via ‘weighted FIC’, where we take each of his years from 20 to

70 equally seriously. For the finally selected model, display his expected LDL level as

a function of his age. Include with this plot also a pointwise 90% confidence band,

i.e. curves µ̂low(x1) and µ̂up(x1) so that the interval from lower to upper point covers

the intended µ(x1) with probability approximately 90%, for each x1. (For this occasion

you are allowed to be content to construct this band without taking into account the

uncertainty involved in selecting the AFIC model in the first place. If you have time

and energy you may attempt to correct the band appropriately.)

(g) Without spending too many forces to explore too many possibilities, attempt to build

one or a couple of more models for these data, and check if this leads to an improve-

ment, e.g. in terms of AIC.
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Exercise 3

Your exact value may not matter as much as the crowd you’re in. This is also true

with the LDL levels. The American Heart Association and other medical organisations

operate with different categories of LDL, depending also on age and other factors. For the

present purposes we shall care about three categories:

. type 1: LDL ≤ 3.3 (essentially normal);

. type 2: 3.3 < LDL ≤ 4.9 (somewhat high, carrying some risk);

. type 3: LDL > 4.9 (very high, person in need of great concern and perhaps corrective

treatment).

Each of the models used in Exercise 2 (including those you may have been tempted to

work with in point (g)) may be used to form models of

p1(x1, x2, z1, z2, z3) = Pr{y of type 1 |x1, x2, z1, z2, z3},
p2(x1, x2, z1, z2, z3) = Pr{y of type 2 |x1, x2, z1, z2, z3},
p3(x1, x2, z1, z2, z3) = Pr{y of type 3 |x1, x2, z1, z2, z3},

simply by reading off category probabilities from the continuous distributions. Sometimes

such models use ‘too much statistical energy’ modelling aspects of y that are eventually

less important, however, so it is a reasonable challenge to model p1, p2, p3 directly, basing

the analysis on

Ni,1 =

{
1 if no. i is of type 1,
0 if else;

Ni,2 =

{
1 if no. i is of type 2,
0 if else;

Ni,3 =
{
1 if no. i is of type 3,
0 if else.

(a) Show that the likelihood for these mapped data may be represented as

Ln =

n∏

i=1

(p
Ni,1

i,1 p
Ni,2

i,2 p
Ni,3

i,3 ), where pi,j = Pr{no. i is of type j} for j = 1, 2, 3.

– One particular model for such data, with three ordered categories, is as follows, where

we first transform the original covariates by subtracting their mean values:

x∗

i,1 = xi,1 − x̄1, x∗

i,2 = xi,2 − x̄2, z∗i,1 = zi,1 − z̄1, z∗i,2 = zi,2 − z̄2, z∗i,3 = zi,3 − z̄3.

This turns out to help both numerical calculations and interpretation (and the ‘average

individual’ now has covariate vector (0, 0, 0, 0, 0)). The model takes

pi,1 = H(a0 + β1x
∗

i,1 + β2x
∗

i,2 + γ1z
∗

i,1 + γ2z
∗

i,2 + γ3z
∗

i,3),

pi,2 = H(b0 + β1x
∗

i,1 + β2x
∗

i,2 + γ1z
∗

i,1 + γ2z
∗

i,2 + γ3z
∗

i,3)

−H(a0 + β1x
∗

i,1 + β2x
∗

i,2 + γ1z
∗

i,1 + γ2z
∗

i,2 + γ3z
∗

i,3),

pi,3 = 1−H(b0 + β1x
∗

i,1 + β2x
∗

i,2 + γ1z
∗

i,1 + γ2z
∗

i,2 + γ3z
∗

i,3),

where a0 < b0 and where H(u) = exp(u)/{1 + exp(u)} is the logistic transform.

Exam STK 4160, page 5 30.v.–9.vi.2011



(Other cumulative distribution functions may be used as well, such as the normal, but

this three-box model now becomes a natural generalisation of the logistic regression

model for two boxes, which is why I tend to prefer this H.)

(b) Fit this model via maximum likelihood; give all parameter estimates, along with

approximate standard deviations; and make an attempt at interpreting your findings.

(c) For the individual we considered in Exercise 2(f), estimate and display the curve

p3(x1), that person’s probability of belonging to type 3, as a function of his age, as it

ranges from 20 to 70. If you have time, include also a pointwise 90% confidence band

for this curve.

(d) As for Exercise 2(b), fit each of the eight models 0, 1, 2, 3, 12, 13, 23, 123 corresponding

to including or excluding z1, z2, z3, and give a table with AIC, BIC and approximate

Bayesian model probabilities. Comment on what you find.

(e) If you have time, consider one or two alternative or more general models, and check

whether you succeed in increasing the AIC score beyond the best of the eight models

considered so far.
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Appendix: some useful R tricks

Here I list just a few potentially useful R programming details.

1. To read the LDL data into your R session, use e.g.

data <- matrix(scan("ldl-data", skip=14), byrow=T, ncol=7)

2. To easily find parameter estimates in standard regression models, without necessarily

programming the log-likelihood function etc., one may use

look <- glm(y ∼ X + Z, family = gaussian)

followed by look$coef. Here X and Z may be matrices with several columns each.

3. combinations generates all subsets of an index set {1, . . . , r}, so that e.g. combina-

tions(4) returns the 24 = 16 subsets of {1, 2, 3, 4}, indicated by 0’s and 1’s:

combinations = function(n)
{
comb = NULL
{for (i in 1:n)
comb = rbind(cbind(0,comb),cbind(1,comb))
return(comb)}
}

4. Applied FICology means having a practical grip also on the projection matrices πS

and the associated

QS = (πSQ
−1πt

S)
−1 and GS = πt

SQSπSQ
−1.

These may be constructed and saved one at a time, so to speak, in a brute force

fashion, but may also perhaps more efficiently and conveniently be constructed on the

go inside a for loop through all relevant subsets. In the following setup I have first

used subsets = combinations(qq) or similar to generate the required subsets, and

constructed Id, the identity matrix of dimension qq.

for (j in 2:nrow(subsets))
{
where <- (1:qq)[subsets[j, ] == 1]
dims <- length(where)
piS <- Id[where, ]
dim(piS) <- c(dims,qq)
QS <- solve(piS %*% Qinv %*% t(piS))
GS <- t(piS) %*% QS %*% piS %*% Qinv
# then further work here:
}
The for loop in this setup starts with j = 2 since I find it easiest to deal with the null

model separately, corresponding to j = 1, for which subsets[j, ] = c(0,0,0,0) in

this example.

5. To sort continuous data yy into appropriate boxes or windows, as e.g. required for

Exercise 3, one may use the following:

N1 = 1*(yy <= 3.3)
N2 = 1*(yy > 3.3)*(yy <= 4.9)
N3 = 1*(yy > 4.9)
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