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This is the exam project set for STK 4160/9160, spring semester 2015. It is made avail-

able on the course website as of Wednesday 3 June 12:00, and candidates must submit

their written reports by Monday 15 June 13:00 (or earlier), to the reception office at the

Department of Mathematics, in duplicate. The supplementary four-hour no-book written

examination take place Thursday June 11 (practical details concerning this are provided

elsewhere). Reports may be written in nynorsk, bokmål, riksmål, English or Latin, and

should preferably be text-processed (TeX, LaTeX, Word), but may also be hand-processed.

Give your name on the first page. Write concisely (in der Beschränkung zeigt sich erst

der Meister; brevity is the soul of wit; kratkostь – sestra talanta). Relevant figures

need to be included in the report. Copies of relevant parts of machine programmes used

(in R, or matlab, or similar) are also to be included, perhaps as an appendix to the report.

Candidates are required to work on their own (i.e. without cooperation with any others).

They are graciously allowed not to despair should they not manage to answer all questions

well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains three plus one exercises and comprises six pages. The first three

exercises are for both the STK 4160 and STK 9160 students, whereas the PhD students

taking the STK 9160 version of the course also should do Exercise four.

Exercise 1

“Every now and then a man’s mind is stretched by a new idea or sensation, and

never shrinks back to its former dimensions” (says Oliver Wendell Holmes), and perhaps

you’ll never again use the plain exponential model in the same way after having worked

through the expo-stretching mechanisms of the present exercise.

(a) Consider a parametric model with probability density f(y, θ) and cumulative distri-

bution function F (y, θ), for some appropriate θ of dimension say p. This model can

then be stretched via a positive stretching parameter γ, in this fashion:

G(y, θ, γ) = Φ(γΦ−1(F (y, θ))) for y > 0.
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Here Φ is the cumulative standard normal distribution function, with inverse Φ−1

(called respectively pnorm and qnorm in R), and γ = 1 corresponds to leaving the

original model intact, without stretching. Show that G indeed is a cumulative distri-

bution function and give a formula for its density function.

(b) We shall now consider the particular case where the start model is the exponential

one, with f(y, θ) = θ exp(−θy) and θ a positive parameter. Show that the density for

this stretched exponential becomes

g(y, θ, γ) = θ exp(−θy)γ exp
[
1

2
(1− γ2){Φ−1(1− exp(−θy))}2

]
for y > 0,

and that the quantiles G−1(p) can be expressed as

µ(p) = µ(p, θ, γ) =
1

θ
{− log(1− Φ(γ−1Φ−1(p)))} for p ∈ (0, 1).

Comment in particular on the form of the median. For the value θ = 4.444, compute

and display in the same diagram the cumulative functions G(y, θ, γ) for a few values

of γ, and comment.

(c) Next consider J , the Fisher information matrix for the two-parameter model, com-

puted at the narrow model where γ = 1. Show that

J =

(
1/θ2 k/θ
k/θ 2

)
,

where k is a constant, with numerical value 0.5956. For a sample of independent

observations, of size n, for what range of γ values can inference based on the exponen-

tial model be expected to be more precise than when using the fuller two-parameter

model?

(d) We wish to estimate the quantile µ = G−1(p), for a fixed p, and maximum likelihood

gives rise to the estimators µ̂narr using the exponential model and µ̂wide with the two-

parameter model. Give an explicit formula for the former and explain briefly how you

can compute the latter from a given dataset. – Assume now that γ = 1+ δ/
√
n, with

associated true quantile µn = G−1(p, θ, 1 + δ/
√
n). In the notation used for some of

the main results of Chs. 6-7 in Claeskens and Hjort (2008), we have
√
n(µ̂narr − µn) →d Λnarr = Λ0 + ωδ,

√
n(µ̂wide − µn) →d Λwide = Λ0 + ω(δ −D),

where Λ0 ∼ N(0, τ20 ) and D ∼ N(δ, κ2) are independent. Identify and find formulae

for the quantities κ, τ0, ω, for this quantile parameter µ = G−1(p).

(e) Consider the limiting risk functions

rnarr(δ) = EΛ2

narr and rwide(δ) = EΛ2

wide.

Compute and display these, as a function of δ, for the case of the 1

4
-quantile µ =

G−1( 1
4
), for θ = 4.444. Comment on what you find.
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(f) Now attempt to supplement the formulae and curves computed above for the limiting

case with ‘the real thing’, namely

rn,narr(δ) = En {
√
n(µ̂narr − µn)}2 and rn,wide(δ) = En {

√
n(µ̂wide − µn)}2,

for finite n. Here En means expectation under the model where γ = 1 + δ/
√
n. You

would need to compute these two curves via simulation, where you for each δ simulate a

high enough number of µ̂narr and µ̂wide. Simulated datasets are most easily generated

via the inverse cumulative distribution method (using that if H is any continuous

cumulative distribution function, then X = H−1(U) has distribution H, when U is a

uniform on the unit interval). Carry out this scheme for a couple of sample sizes n,

and report briefly on your findings, along with one or at most two figures.

(g) Points (d)-(e)-(f) pertain to the two estimation methods that use either the narrow

model or the wide model. Supplement your results and your risk functions with

calculations (both in the limit experiment and for finite n, if you have the time) for

the post-aic-estimator

µ̂AIC =

{
µ̂narr if AIC chooses the narrow model,
µ̂wide if AIC chooses the wide model.

Comment on your findings.

Exercise 2

Anything’s possible if you’ve got enough nerve (says J.K. Rowling). The dataset nerve-

data is accessible from the course website, providing the time intervals between successive

pulses along a certain nerve fibre, measured in seconds. For the purposes of this exercise

these time intervals, say y1, . . . , yn with n = 799, are taken to be independent and iden-

tically distributed. We also treat this distribution as having a continuous density on the

positive half-line, and ignore discretisation issues (the data are recorded to the level of

centiseconds). Such data are typically assumed to follow an exponential distribution.

(a) Fit the data to the exponential model θ exp(−θy) via maximum likelihood. Using

this model, find the point estimate and an associated 95% confidence interval for

µ = F−1( 1
4
), the 0.25 quantile (with F (y) the cumulative distribution function with

the exponential model).

(b) Then fit the data to the stretched exponential model g(y, θ, γ) of the previous exer-

cise, again using maximum likelihood. Assuming that this two-parameter model is

adequate, give approximate 95% confidence intervals for both parameters, and also

for the 0.25 quantile µ = G−1( 1
4
). Plot the empirical distribution function along with

the fitted parametric cumulative functions F (y, θ̂narr) and G(y, θ̂, γ̂). The empirical

distribution function is Fn(y) = n−1
∑n

i=1
I{yi ≤ y}.

(c) Compute AIC and BIC scores for the narrow and the wide model here, and comment

on what you find.
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(d) We shall now consider an extension of the framework above, allowing further mod-

elling flexibility. By first extending the exponential model to the Weibull, and then

stretching this further using the same type of stretch mechanism, we reach a model

with cumulative distribution function say

H(y, θ, b, γ) = Φ(γΦ−1(1− exp(−(θy)b))) for y > 0,

with θ, b, γ being free positive parameters. Fit both the Weibull model (having

γ = 1) and the full three-parameter model. Provide also confidence intervals for b and

γ, compute AIC and BIC scores, and comment on your findings.

(e) The three-parameter model above contains the exponential model as a special case.

For what range of values of (b, γ) around (1, 1) can the exponential model be ex-

pected to lead to more precise inference, for all estimands, than when using the three-

parameter model?

Exercise 3

The saying that beauty is but skin-deep is but a skin-deep saying. This exercise

concerns modelling and analysis of survival data. You need to access the dataset melanoma-

data at the course website, pertaining to n = 205 Danish patients with melanoma (a form

of skin cancer), each of whom went through an operation. The data matrix consists of

(i, yi, δi, x1,i, x2,i, z1,i, z2,i, z3,i) for i = 1, . . . , n,

with the first column simply being the running index i = 1, . . . , n identifying the patients.

Here

. yi is time to death or to censoring for patient i, after operation, in years;

. δi is 1 if yi is time to death (non-censoring) and 0 in case of censoring;

. x1,i is gender, female 1 and male 2;

. x2,i is age at operation, in years;

. z1,i is thickness of melanoma, in mm;

. z2,i is infection level, with values 1, 2, 3, 4, where 1 is high and 4 is low resistance;

. z3,i is ulceration, with values 1 for yes and 2 for no.

The task is to model, analyse and understand how the covariates x1, x2, z1, z2, z3 influence

the chances of survival over time.

The study in question lasted for several years, and n−∑n

i=1
δi = 148 of the patients,

those having δi = 0, were luckily alive at the end of the study period (or left the study for

other reasons). For a patient with δi = 0, the time to death after operation is ‘censored’,

the information hence being that this time to death after operation is longer than the

recorded yi. For the
∑n

i=1
δi = 57 patients who died within the study period, however, yi

is non-censored.
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Let fi(y) and Fi(y) be the density and cumulative distribution function for the survival

time after operation for individual i. The associated hazard rate function is

hi(y) =
fi(y)

1− Fi(y)
for y > 0,

and has the interpretation that hi(y) dy is the probability of dying in the time interval

[y, y+dy], given that the individual has survived up to time y. One may recover fi and Fi

from knowledge of the hazard rate hi and cumulative hazard rate Hi(y) =
∫ y

0
hi(t) dt, via

fi(y) = hi(y) exp{−Hi(y)} and Fi(y) = 1− exp{−Hi(y)} for y > 0.

You do not need to demonstrate these formulae here, but this way of working with sur-

vival distributions via hazard rates is both conceptually important and mathematically

convenient, and will be used below.

(a) Suppose a parametric model is put up for the hazard rates, say hi(y) = hi(y, θ), with

cumulatives Hi(y, θ) =
∫ y

0
hi(t, θ) dt. Show that the log-likelihood information for

individual i is {
log hi(yi, θ)−Hi(yi, θ) if δi = 1,
−Hi(yi, θ) if δi = 0.

Show from this again that the full log-likelihood function can be expressed as

ℓn(θ) =
n∑

i=1

{δi log hi(yi, θ)−Hi(yi, θ)}.

(b) Write at the moment and for simplicity wi for the covariate vector associated with

individual i, say of length r (we shall soon return to the the specific covariates for the

Danish patients). A simple but sometimes effective model for the hazard rates is that

these are constant over time, with

hi(y) = exp(wt

iθ) = exp(w1,iθ1 + · · ·+ wr,iθr).

Show that the log-likelihood function may be written

ℓn(θ) =
n∑

i=1

{δiwt

iθ − exp(wt

iθ)yi}.

Also give an expression for the r × r matrix of second order derivatives with respect

to θ.

(c) For the utterly simple model which takes hi(y) = exp(β0), constant over time and

across all individuals, find the maximum likelihood estimator and its numerical value

for the Danish dataset. This indicates in particular that a sensible numerical start

value for the parameter corresponding to β0 in various models below, when using nlm

or other numerical algorithms, might be −3 or similar.

Exam STK 4160/9160, page 5 3.–15.vi.2015



(d) For the Danish dataset, with five covariates x1, x2, z1, z2, z3, consider the six-parameter

model where the hazard rates are constant over time, but differing from patient to

patient, as

hi(y) = exp(β0 + x1,iβ1 + x2,iβ2 + z1,iγ1 + z2,iγ2 + z3,iγ3) for i = 1, . . . , n.

Fit this model to the data. Give estimates along with standard errors (estimates of

standard deviations) for the six parameters, and comment on these.

(e) We now take covariates x1 (gender) and x2 (age at operation) as ‘protected’ but

z1, z2, z3 as ‘open’. Consider the submodels corresponding to pushing these three

open covariates in and out. Fit these candidate models, compute AIC and BIC

scores, and comment on what you find. Also compute approximate model proba-

bilities Pr(model | data), explaining the underlying assumptions for such calculations.

(f) Now focus on a given patient, with covariates equal to say (x1,0, x2,0, z1,0, z2,0, z3,0),

where we wish to estimate his or her hazard rate with the best precision. Specifically,

for patients

A: woman, age 50, average melanoma thickness, infection level 3, with ulceration,

B: man, age 60, average melanoma thickness, infection level 4, no ulceration,

provide estimates of their hazard rates for each candidate model, along with FIC

scores and a FIC plot. Comment briefly on your findings.

(g) The exponential models for constant hazard rates used above are not necessarily good

enough for all purposes. An extension of the full six-parameter model above takes

hi(y) = exp(β0 + x1,iβ1 + x2,iβ2 + z1,iγ1 + z2,iγ2 + z3,iγ3)κy
κ−1 for y > 0,

with κ a positive parameter. Fit this seven-parameter model to the data and comment

on what you find. Briefly discuss how your FIC analysis would need to be modified

to accommodate this extra parameter (and if you have the time, carry out such an

analysis, for the two patients met above).

(h) Choose one of the two patients encountered above, and consider that person’s full

survival curve Pr(T ≥ y |x1,0, x2,0, z1,0, z2,0, z3,0), with T denoting the time to death

after operation. Estimate and display this curve, along with an approximate 90%

pointwise confidence band, first for the six-parameter and then for the seven-parameter

model.

Exercise 4: for the PhD students taking the STK 9160 exam

A recent article by Martin Jullum and Nils Lid Hjort, Parametric or nonparametric: the

FIC approach (June 2015) has been uploaded to the course website. Give a short summary

of some of the methods developed in that paper, and apply them to the analysis of a dataset

of your own choice, along with a brief discussion of your findings.
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