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Abstract

These are Exercises and Lecture Notes for the course Confidence, Likelihood, Probability, STK

4180 (Master level) or STK 9180 (PhD level), for the autumn semester 2020. I’ll add on more

exercises as the course progresses.

1. The probability transform

Some of the following facts are related to various operations for confidence distributions and con-

fidence curves.

(a) Suppose X has a continuous and increasing cumulative distribution function F , i.e. F (x) =

Pr{X ≤ x}. Show that U = F (X) is uniform on the unit interval. Any continuously

distributed random variable can hence be transformed to uniformity, via this probability

transform.

(b) Show that also U2 = 1− F (X) and U3 = |1− 2F (X)| have uniform distributions.

(c) Simulate a million copies of xi ∼ N(0, 1), and check the histogram of Γ1(x2i ), where Γν is the

cumulative distribution function of a χ2
ν . Comment on what you find.

(d) Suppose θ̂ is an estimator for the real parameter θ, based on data y, with some continuous

distribution function Kθ(x) = Prθ{θ̂ ≤ x}; we are in particular assuming that the distribution

of θ̂ depends only on θ, not on other aspects of the underlying model employed. Consider

the construction

C(θ, yobs) = Prθ{θ̂ ≥ θ̂obs} = 1−Kθ(θ̂obs),

a curve that can be computed and plotted post-data, where θ̂obs = θ̂(yobs) is the observed

estimate. Show that it has the property that the random C(θ, Y ) is uniformly distributed,

for each fixed θ.

2. CD and cc for the normal standard deviation

Read Cunen and Hjort’s Confidence Curves for Dummies (2020), a FocuStat Blog Post. Then do

the details, regarding mathematics and implementation, for their introductory meant-to-be-simple

example:
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“Here’s a simple example. You observe the data points 4.09, 6.37, 6.87, 7.86, 8.28,

13.13 from a normal distribution and wish to assess the underlying spread parameter,

the famous standard deviation σ. We’ll now introduce you to as many as two (2)

curves: the confidence curve cc(σ) and the confidence distribution C(σ). They’re close

cousins, actually, and it’s not the case that both curves need to be displayed for each

new statistical application.”

(a) Here you might start with the classic fact concerning the empirical variance that σ̂2 ∼
σ2χ2

m/m, where m = n− 1, with n the sample size. Then deduce that

C(σ, yobs) = Prσ{σ̂ ≥ σ̂obs} = 1− Γm(mσ̂2
obs/σ

2).

Here yobs represents the observed data, and σ̂obs the observed point estimate. Show that

C(σ, Y ) ∼ unif, where Y represents a random data set Y1, . . . , Yn, from the σ in question. In

particular, the distribution of C(σ.Y ) does not depend on σ.

(b) Reproduce versions of Cunen and Hjort’s Figures A and B, with the confidence curve cc(σ),

the CD C(σ), the median confidence estimate, etc.

(c) Compute also the confidence density c(σ, yobs) associated with the CD. Compute also its

mode, say σ∗, and briefly assess its properties as an estimator of σ.

(d) A Bayesian approach to the same problem, i.d. finding a posterior distribution for σ, is to

start with a prior π(σ) and then compute π(σ | yobs) ∝ π(σ)g(σ̂, σ), where g(σ̂, σ) is the

likelihood, here the density function for σ̂ as a function of σ. When does such a Bayesian

approach agree with the confidence density?

(e) Suppose there are two independent normal samples, with standard deviations σ1 and σ2.

Construct a CD for ρ = σ1/σ2. Invent a second simple small dataset, to complement the

first dataset given above, and then compute and display the confidence curve cc(ρ, data).

3. An often (but not always) useful CD construction

In Exercise 1 we saw that the simple construction C(θ, y) = Prθ{θ̂ ≥ θ̂obs} gives a CD, in the case

of one-dimensional setups with a well-defined estimator θ̂.

(a) More generally, assume Y1, . . . , Yn come from some distribution, depending on a single pa-

rameter θ, and that Z is a statistic with distribution stochastically increasing in θ. Then

study C(θ, y) = Prθ{Z ≥ zobs}. Show that this is a bona fide CD.

(b) Show also that the construction works, if there are other parameters at play too, as long as

the distribution of the chosen Z only depends on θ. Go through the details for the case of

the Yi being N(µ, σ2), with Z =
∑n
i=1(Yi − Ȳ )2, and also for Z ′ =

∑n
i=1 |Yi −Mn|, where

Mn is the empirical median. Compute, display, compare both CDs, based on Z and on Z ′,

for the simple dataset of Exercise 2 (with n = 6). For the Z case, there is a formula, but for

the Z ′ case you would need simulation, for a grid of σ values.

(c) For a normal sample from N(µ, σ2), we see that several Prµ,σ{Z ≥ zobs} schemes work, in

that the Z in question has a distribution depending on σ, but not µ. Attempt to work with

C∗(µ, y) = Prµ,σ{Ȳ ≥ ȳobs} ... and show that it will not really work (unless σ is known).
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(d) But of course there are natural CD constructions for µ here. What is needed is a pivot, say

A = piv(µ, y), a function binding the focus parameter and data together in a way which

makes its distribution not depend on the parameters. Study indeed

tn = tn(µ, Y ) =
Ȳ − µ
σ̂/
√
n
,

with σ̂2 = (n− 1)−1
∑n
i=1(Yi − Ȳ )2 the classical empirical variance. Pretend that you in all

your cleverness have not seen this tn before, and are unaware of its relation to a t distribution

– but show that the distribution of tn, call it Kn, does not depend on (µ, σ).

(e) Then show that C(µ, yobs) = Kn(tn(µ, yobs)) is a CD for µ. Even if you do not see the

connection to the classic t of Student (1908), you may still carry through this, by simulating

B = 105 realisations of tn, and use

C(µ, yobs) = K∗n(tn(µ, yobs)) =
1

B

B∑
j=1

I{tn,j ≤ tn(µ, yobs)}.

But show that by all means Kn is a tm, with m = n − 1, so the canonical CD for µ is and

remains C(µ, yobs) = Gm(
√
n(µ− ȳobs)/σ̂obs), with Gm the cdf for the tm.
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Figure 0.1: Left panel: confidence distribution C(θ), via simulations (black and wiggly curve) and via exact calcu-

lations (red and smooth curve); right panel: the two versions of the associated confidence curve cc(θ).

4. A skewed distribution on the unit interval

Consider the model F (y, θ) = yθ for observations on [0, 1], where θ is an unknown positive param-

eter.

(a) Write down the log-likelihood function and find a formula for the maximum likelihood esti-

mator θ̂.

(b) Use theory of CLP, Chapter 2, to write down a normal approximation to the distribution

of θ̂.

(c) Consider the data set

0.013 0.054 0.234 0.286 0.332 0.507 0.703 0.763 0.772 0.920
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Estimate θ and compute the confidence distribution C(θ) = Prθ{θ̂ ≥ θ̂obs}, along with

the confidence curve cc(θ) = |1 − 2C(θ)|, (i) using simulations, (ii) using exact probability

calculus. Reproduce a version of Figure 0.1.

(d) Supplement these two curves with approximations based (i) on the normal approximation

for θ̂ and (ii) on the chi-squared approximation for the deviance.

5. The children of Odin

As we know, Odin had six male offspring – Thor, Balder, Vitharr, Váli, Heimdallr, Bragi – with

the sources saying nothing about daughters. So how many children is it likely that he had, in

total? With N the number of children, and y the number of boys, we assume y |N ∼ Bin(N, p),

with p = 0.514 (a good point estimate for today’s overall figure for human reproduction). So the

data is that y = 6, and we can attempt confidence inference for N . The questions below expand

on those given in CLP, Example 3.11.
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Figure 0.2: Left panel: confidence point masses c(N, y), for N ≥ 6; right panel: for a fixed N = 14 (in this example),

the empirical cumulative distribution for U = C(N,Y ), with Y ∼ Bin(N, p).

(a) A natural construction for a CD is

C(N, y) = PrN{Y > y}+ 1
2PrN{Y = y},

a version of the general method of Exercise 1(e), but with so-called half-correction for the dis-

creteness. Compute and display this CD, and take differences to compute also the confidence

point masses, c(N, y). Construct a version of Figure 0.2, left panel.

(b) For the sport of it, carry out a Bayesian analysis too. Start with a reasonable prior π(N)

(formed before you read in a book that y = 6), compute the posterior distribution π(N | y =

6), and compare with the CD analysis.

(c) A CD C(θ, y), for a parameter θ based on data y, should ideally have the uniformity property

that U = C(θ0, Y ) has the uniform distribution, for any fixed θ0, with Y a random dataset

drawn from the model at that position in the parameter space. This is not quite possible here,

since the situation is discrete, with not many values to attain for y. Construct a verion of

Figure 0.2, right panel; here I took N0 = 14, simulated say 104 realisations of U = C(N0, Y ),

and computed the empirical distribution function Pr{U ≤ u}. Comment on your findings.
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(d) Find or dream up another situation (not necessarily with full data) where the model above

might be used, i.e. p is known, but the binomial N is unknown.

6. Guess my range

I’ve simulated these points in my computer, from a uniform distribution over [a, b], and I’ve ordered

them, for simplicity. But I won’t tell you the values I used for a or b, or indeed the range δ = b−a.

Your task will be to make inference about the δ – with a CD, a cc, and a median confidence

estimate.

4.712 6.412 7.043 7.141 7.245 7.379 7.602 8.417 8.671 8.702

(a) With Y1, . . . , Yn from the uniform on [a, b], explain that one may write Yi = a + (b − a)Ui,

with the Ui from the standard uniform over the unit interval. Deduce that

Rn = Y(n) − Y(1) = δRn,0, with Rn,0 = U(n) − U(1),

relating the range of data naturally to the range of a uniform sample.

(b) Explain that Rn/δ is a pivot (as defined in Exercise 3). Simulate say 105 realisations in your

computer from this distribution, say Gn.

(c) Show that

C(δ, y) = Pra,b{Rn ≥ Rn,obs} = 1−Gn(Rn,obs/δ) for δ > Rn,obs

is a CD for δ. Compute it, using your simulations from Gn, and display as many as three

curves: the CD C(δ, yobs); the cc(δ, y) = |1−2C(δ, yobs)|; and the confidence density c(δ, yobs).

Also find the median confidence and maximum confidence point estimates Comment on your

findings.

7. High drama: The cooling of newborns

Rather briefly, about the dramatic background for the after all simple exercise to follow, is at

follows; read the FocuStat Blog Post Hjort (2017) for context and various details. – Without going

into the drastic physiological details, in some rare cases newborns are being critically deprived

of oxygen to the brain as a consequence of a difficult birth. Pioneering research, involving in

particular Professor of Systems Physiology and Neonatal Neuroscience Marianne Thoresen from

the Universities of Oslo and Bristol, has demonstrated that a form of cooling, where the little

body has its temperature lowered to 33 degrees Celsius during a certain period just after birth, can

save its life, and with no loss of later mental or motoric capacities. There is ongoing research and

controversy, however, regarding the time window where the cooling operation is helpful, or useless,

or too late.

In a thorough and important study, A. Laptook and a long list of coauthors published a paper

in Journal of the American Medical Association (2017), involving

y0 ∼ Bin(m0, p0), for a group of noncooled newborns,

y1 ∼ Bin(m1, p1), for a group of cooled newborns.
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The event in question is death or disability (with a precise definition of disability, assessed when

the child is about 18 months old). Each case involved oxygen deprivation during birth, and where

the cooling action, if taken, was initiated inside the time window 6 hours to 24 hours after birth

(as opposed to starting earlier, which has been the general recommendation, so far).

So the article, with its partly controversial conclusions, is essentially about something as simple

as comparing two binomial probabilities. Laptook et al. use Bayesian methods to tentatively argue

that p1 < p0. In two articles in Acta Paediatrica, Walløe, Thoresen, Hjort (2019a, 2019b) have

contested these findings; we argue rather that there is no significant difference between the two

probabilities whatsoever (and that some of the conclusions phrased in Laptook et al. could lead to

dangerous practices, having to do with advice for doctors regarding the time window for treating

the neonates).

(a) The data are as follows: y0 = 22 with m0 = 79 for the noncooled group; y1 = 19 with

m1 = 78 for the cooled group. Compute and display confidence curves cc(p0) and cc(p1) in

a diagram. Find also 90 percent confidence intervals for the two. You may use the simple

normal approximation, but it is slightly more precise to use

cc(p0) = Γ1(D0(p0)) and cc(p1) = Γ1(D1(p1)),

with the deviance functions, D0(p0) = 2{`0,max − `0(p0)}, etc. Comment on your findings.

(b) There are several ways in which to compare p0 and p1, and the medical world a typical choice

would be

odds ratio =
p1/(1− p1)

p0/(1− p0)
or log-odds = log

p1
1− p1

− log
p0

1− p0
.

The Laptook et al. paper focuses rather on the relative risk parameter ρ = p1/p0. Compute

the log-likelihood profile function

`prof(ρ) = max{`0(p0) + `1(p1) : p1/p0 = ρ},

and then the deviance function D(ρ) = 2{`prof,max − `prof(ρ)}. Conclude by displaying the

confidence curve cc(ρ) = Γ1(D(ρ)), and comment on your findings.

8. A CD for the ratio of two exponential parameters

Consider independent samples from two exponential distributions, say X1, . . . , Xm i.i.d. from

a exp(−ax) and Y1, . . . , Yn i.i.d. from b exp(−by). Construct exact CDs and confidence curves

for a and for b, separately, and then for the ratio ρ = a/b.

For a horrifying application of this machinery, check Hjort (2018), a FocuStat Blog Post on

statistical sightings of better angels. We might come back to the underlying dataset later in this

course, pertaining to the number of battle deaths in the last 95 great inter-state wars, from 1823

onwards.

9. Behaviour of maximum likelihood estimators

Here we work with the simple i.i.d. framework, where things are most easily examined. The main

methods, tools, and results generalise to e.g. regression setups, with more work and attention to

details, and with e.g. the Lindeberg theorem used instead of the simpler Central Limit Theorem.
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So consider Y1, Y2, . . . being i.i.d. from a parametric model f(y, θ), with θ0 the true parameter,

of dimension say p. The model is assumed to have smooth derivatives of first and second order.

The score function u(y, θ) = ∂ log f(y, θ)/∂θ has mean zero at the model, Eθ u(Y, θ) = 0. Its

variance matrix is the Fisher information matrix

J(θ) = Varu(Y, θ) = −Eθ
∂2 log f(Y, θ)

∂θ∂θt
,

assumed finite and continuous in a neighbourhood around θ0. The log-likelihood function, after

having observed n datapoints, is `n(θ) =
∑n
i=1 log f(Yi, θ). Our main object of study is the

maximum likelihood estimator θ̂n, the maximiser of `n(θ).

(a) Consider the random function An(s) = `n(θ0 +s/
√
n)− `n(θ0), with s of the same dimension

p as θ. Show via Taylor expansion that

An(s) = U t
ns− 1

2s
tJns+ εn(s),

where

Un = n−1/2`′n(θ0) = n−1/2
n∑
i=1

u(Yi, θ0),

Jn = −n−1`′′n(θ0) = −n−1
n∑
i=1

∂2 log f(Yi, θ0)

∂θ∂θt
,

and εn(s)→pr 0.

(b) Show that Un →d U ∼ Np(0, J), and that Jn →pr J , where J = J(θ0) is the Fisher informa-

tion matrix at the true parameter value.

(c) Show that An(s)→d A(s) = U ts− 1
2s

tJs, for each s. Actually, there is uniform convergence

inside each ball ‖s‖ ≤ c.

(d) Argue that argmax(An)→d argmax(A), modulo weak regularity conditions, and show from

this the fundamental result about ML estimators under model conditions, that

√
n(θ̂n − θ0)→d J

−1U ∼ Np(0, J
−1).

(e) A very useful representation for the ML estimator, from these arguments, is that

θ̂n = θ0 + n−1
n∑
i=1

J−1u(Yi, θ0) + δn, (0.1)

with δn →pr 0. One also says that the ML estimator has influence function IF(y) =

J−1u(y, θ0). Actually, we also have the alternative representation

θ̂n = θ0 + J−1n n−1
n∑
i=1

u(Yi, θ0) + δ′n,

with δ′n →pr 0. This holds both with Jn = −n−1`′′n(θ0) and Ĵn = −n−1`′′n(θ̂n). Both

representations are useful, though it’s (0.1) which is cleanest and often easiest to use.
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(f) Similarly argue that max(An) →d max(A), under weak regularity assumptions, and hence

show that

∆n = 2{`n,max − `n(θ0)} →d U
tJ−1U ∼ χ2

p.

This may be used to test the null hypothesis that θ is equal to some specified value. This

result is one of several theorems carrying the ‘Wilks Theorem’ name. See Hjort and Pollard

(1993) for sets of precise regularity conditions, also for regression setups.

10. A general Wilks Theorem for testing submodels

Material on Wilks Theorems is not ‘naturally completed’ before we also come to and include the

lifting from dimension 1 to dimension k, so to speak. The basic story is simple to summarise,

though not necessarily easy to prove with all the required steps, also since there are different

versions and setups. The main story, at any rate, is as follows. Suppose we have n observations

from a model f(y, θ), perhaps with regression parameters etc. Here θ is ‘the full parameter vector’,

belonging to a parameter region Ω, in say p-dimensional space. Then there’s a well defined log-

likelihood function, say `n(θ) =
∑n
i=1 log fi(yi, θ). Suppose one is interested in testing whether

θ ∈ Ω0 a subset of lower dimension k < p; perhaps this corresponds to having θj = 0 for p − k of

the components. Then we may define and compute

`max,wide = max{`n(θ) : θ ∈ Ω}, `max,narr = max{`n(θ) : θ ∈ Ω0},

the maximised log-likelihood values under the full model and under the hypothesis H0 that θ lies

in this smaller space. Maxing over a bigger space yields a bigger number than maxing the same

function over a smaller space. The splendidly useful Wilks Theorem, going back to Wilks (1938),

says that under H0 conditions,

∆n = 2(`max,wide − `max,narr)→d χ
2
q.

This is often presented, and made easier to remember and to use, by ‘counting the degrees of

freedom’ as the dimension a priori minus the dimension under the hypothesis.

(a) Assume the H0 in question is the simple one of θ = θ0, so Ω0 is a single point, of dimension

zero. Verify that the Wilks theorem then is the same as what we’ve seen earlier, e.g. from

Exercise [xx nemlig xx].

(b) Assume next that H0 corresponds to φ = h(θ) = φ0, with h(θ) a smooth one-dimensional

function. Note that saying h(θ) = φ0 amounts to characterising a (p−1)-dimensional subspace

of Ω. Verify that the general Wilks theorem above then corresponds to what we’ve worked

with in the previous few exercises, with the deviance function, its limiting χ2
1 distribution

at the hypothesised value, etc. So in a certain usefulness-sense, this particular version of

the general Wilks Theorem is the most useful one for the CLP course, with the wide model

having dimension p, the narrow model dimension p−1, and hence with the deviance function

having a χ2
1 limit. That’s how and why the recipe cc(φ) = Γ1(D(φ)) works.

(c) [xx some examples, where we find ∆n explicitly, perhaps also its distribution for finite n. (i)

Y ∼ Bin(n, p), testing p = p0. Write out the ∆n and check that it tends to the χ2
1 under

p = p0. (ii) Y1, Y2 are independent binomials (n, p1) and (n, p2). Write out the ∆n for the
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hypothesis p1 = p2. (iii) for µ = µ0 in the normal. (iv) for σ = σ0 in the normal. (v) for

(µ, σ) = (µ0, σ0) in the normal. (vi) for µ1 = µ2 for two normal samples. prove that the

logLR is a function of the t-test. xx (vii) for testing p = p0 in a multinomial situation. prove

that the logLR test becomes asymptotically equivalent to the Pearson test of [xx nemlig xx].

xx]

(d) [xx separate point, some details to work through; to be polished. xx] the t test, seeing

that the likelihood ratio test is a clear function of the t. sample 1, N(ξ1, σ
2), with ȳ1 and

Q1 =
∑n1

i=1(yi,1 − ȳ1)2; sample 2, N(ξ2, σ
2), with ȳ2 and Q2 =

∑n2

i=1(yi,2 − ȳ2)2. write

N = n1 + n2 and also p1 = n1/N and p2 = n2/N . with δ̂ = ȳ2 − ȳ1, the t statistic is

t =
δ̂

σ̂(1/n1 + 1/n2)1/2
= N1/2(p1p2)1/2

δ̂

σ̂
.

log-likelihood of combined sample is

` = −N log σ − 1
2 (1/σ2){Q1 +Q2 + n1(ȳ1 − ξ1)2 + n2(ȳ2 − ξ2)2}.

show that ML for σ2 under wide and narrow model are

σ̂2 = N−1(Q1 +Q2) and σ̂2
0 = N−1(Q1 +Q2 +Np1p2δ̂

2).

show that the exact log-likelihood-ratio test becomes

∆ = 2(`max − `max,H0
) = N log

σ̂2
0

σ̂2
= N log(1 +N−1t2).

As we can see, for growing N = n1 + n2, this is close to t2, which by the general theory is

close to χ2
1 under the µ1 = µ2 null hypothesis. The main point is however that the ∆ is a

sound easy function of the famous t, and we should continue to use t (as we’ve done, since

1908).

11. Proving the Wilks Theorem

Suppose Y1, . . . , Yn are i.i.d., where two models are considered: a narrow one, namely f0(y, θ),

with θ of dimension p; and a wide one, namely f(y, θ, γ), needing a further parameter vector γ of

dimension q. We need the narrow model to be inside the wide one, so we assume that there is a γ0

for which f0(y, θ) = f(y, θ, γ0). We assume that γ0 is an inner point in its parameter domain. We

wish to construct a test for the hypothesis H0 that the narrow model holds, and this is equivalent

to testing γ = γ0.

Let `n(θ, γ) be the log-likelihood function for the wide model, which also means `n(θ, γ0) is

the log-likelihood function in the narrow model. Let (θ̂, γ̂) be ML estimates in the wide model and

(θ̃, γ0) ML estimates in the narrow model. Assuming that H0 is in force, with density f(y, θ0, γ0)

for the appropriate θ0, we already know the principal answers regarding limit distributions for
√
n(θ̂ − θ0, γ̂ − γ0) and

√
n(θ̃ − θ0) separately, but now we need to study them jointly, which calls

for accurate representations and for linear matrix algebra to sort things out. Let the (p+q)×(p+q)

information matrix J = J(θ0, γ0) and its inverse be partitioned into blocks:

J =

(
J00 J01

J10 J11

)
and J−1 =

(
J00 J01

J10 J11

)
.
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(a) Here and in later settings the matrix Q = J11 serves a special role. Show via matrix ma-

nipulations of JJ−1 = I = J−1J that Q = J11 = (J11 − J10J
−1
00 J01)−1, similarly that

J00 = (J00 − J01J−111 J10)−1, and that J01 = −J−100 J01J
11.

(b) Show that there is simultaneous convergence in distribution(√
n(θ̂ − θ0)
√
n(γ̂ − γ0)

)
→d

(
A

B

)
= J−1

(
U

V

)
and

√
n(θ̃ − θ0)→d C = J−100 U,

where (
U

V

)
∼ Np+q(0, J) and hence

(
A

B

)
= J−1

(
U

V

)
∼ Np+q(0, J

−1).

Show in particular that Bn =
√
n(γ̂ − γ0)→d B ∼ Nq(0, Q) under the narrow model.

(c) Do Taylor expansion around (θ̂, γ̂) to show that

max
wide

`−max
narr

`n =

n∑
i=1

{log f(Yi, θ̂, γ̂)− log f(Yi, θ̃, γ0)}

= 1
2n

(
θ̂ − θ̃
γ̂ − γ0

)t

J∗n

(
θ̂ − θ̃
γ̂ − γ0

)
+ εn,

where the J∗n matrix tends to J in probability and εn →pr 0. Hence conclude that

∆n = 2(`max,wide − `max,narr)→d ∆ =

(
A− C
B

)t(
J00 J01

J10 J11

)(
A− C
B

)
,

provided the narrow model holds, i.e. under H0.

(d) It remains to establish that the limiting variable ∆ has the advertised nice chi squared

distribution. This is not obvious from its expression above – but do it by first discovering

A − C = −J−100 J01B and then plugging in to simplify the expression for ∆. The result is

∆ = BtQ−1B, which is a χ2
q. – A rephrasing of this important result is as follows: IfM0 is a

model contained in a biggerM1 model, then twice the difference of maximised log-likelihoods,

which is also by definition the deviance distance from the narrow model to the wider model,

goes under the narrow model conditions to χ2
df , with df = dim(M1)− dim(M0).

(e) xx should do local power too, under fn(y) = f(y, θ0, γ0 + δ/
√
n). i think that Bn =

√
n(γ̂ −

γ0)→d B ∼ Nq(δ,Q), and that

∆n →d ∆ = BtQ−1B ∼ χ2
q(δ

tQ−1δ).

also, of separate interest: the log-LR ∆n test is asymptotically equivalent to ∆′n = Bt
nQ̂
−1Bn =

n(γ̂ − γ0)tQ̂−1(γ̂ − γ0)→d B
tQ−1B. write this out. xx

(f) [xx extension to regression models. xx]

12. CDs and posterior distributions with boundary constraints

Here we learn about construction of CDs when there is a boundary condition on the focus pa-

rameter. This is sometimes an easy task, involving a natural positive post-data probability on the

boundary point. We also compare with Bayesian procedures. Matters may of course be extended

and generalised in several directions here, but for simplicity and conciseness we study a very simple

prototype situation: y is N(θ, 1), and θ ≥ 0 a priori.
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Figure 0.3: With yobs = 0.66 for the N(θ, 1) model, the black curve is the natural CD, with positive point mass

0.255 at zero. The red and the blue curves are Bayesian posterior distributions, for the flat prior on the

halfline, and for the mixture prior with 1
2

at zero and 1
2

flat on the halfline, respectively.

(a) Before we come to the parameter constraint, we deal with the more normal situation where

there is no a priori constraint. The classical CD is then C(θ, y) = Φ(θ − y). Show that the

Bayesian starting with a flat prior for θ finds the posterior distribution θ | y ∼ N(y, 1), with

cumulative B(θ | y) = Φ(θ − y), i.e. identical to the canonical CD. – The point below will

partly be that this is not the same for the constrained problem.

(b) For the remaining points here, assume indeed that θ ≥ 0 a priori. Argue that the canonical

CD should be C(θ, y) = Φ(θ− y) for θ ≥ 0. Its point mass at zero is Φ(−y). Graph the CD,

for the three cases yobs equal to −0.22, 0.66, 1.99.

(c) One Bayesian approach in this situation, where θ ≥ 0 a priori, is to let θ be flat on [0,∞).

Show that then

θ | y ∼ φ(θ − y)∫∞
0
φ(θ − y) dθ

=
φ(θ − y)

Φ(y)
for θ ≥ 0,

and that the cumulative posterior distribution becomes

B(θ | y) =
Φ(θ − y)− Φ(−y)

1− Φ(−y)
=

Φ(θ − y)− Φ(−y)

Φ(y)
for θ ≥ 0.

For the three cases of yobs given above, graph the CD along with the Bayesian B(θ | yobs),
and comment on what you find.
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(d) There’s a notable discrepancy between the frequentist Schweder-Hjort CD and the Bayesian

posterior distribution associated with a flat prior on the [0,∞) interval, in cases where the

yobs is close to, or perhaps even to the left of, the boundary point. Read Schweder’s FocuStat

Blog Post (2017), where he dares to very much disagree with Nobel Prize Winner no wait

a second I mean the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred

Nobel Winner Professor Christopher Sims. It would have been better for Sims, in his chosen

example featuring Bayesian methodology, to not use flat priors on positive halflines, but to

allow pointmasses at zero too.

(e) In general terms, for the case of y | θ ∼ N(θ, 1), let θ have the mixture prior distribution

p0π0 + p1π1, with the sub-priors π0 and π1 having their individual posteriors π0(θ | y) and

π1(θ | y). Show that the posterior has a natural mixture form,

θ | y ∼ p∗0(y)π0(θ | y) + p∗1(y)π1(θ | y),

where

p0(y) =
p0f0(y)

p0f0(y) + p1f1(y)
and p1(y) =

p1f1(y)

p0f0(y) + p1f1(y)
,

and with f0(y) =
∫
φ(y − θ)π0(θ) dθ and f1(y) =

∫
φ(y − θ)π1(θ) dθ the marginal densities

following from the two priors. (This structure generalises to general mixture priors in general

models, though that does not concern us just now.)

(f) For the prior p0π0 +p1π1, with π0 a unit pointmass at zero and π1 a flat prior on the halfline,

show that f0(y) = φ(y) and f1(y) = Φ(y). With a 50-50 mixture, show hence that

p0(y) =
φ(y)

φ(y) + Φ(y)
and p1(y) =

Φ(y)

φ(y) + Φ(y)
.

Draw curves of these two posterior probabilities, one for the zero-point and the other for

the halfline-based part, as y goes from say −5 to 5. Show that the posterior cumulative

distribution becomes

B∗(θ | y) = p0(y) + p1(y)B(θ | y) for θ ≥ 0.

In particular, there’s a pointmass p0(y) at zero. Construct a version of Figure 0.3.

(g) Show that there is no choice of (p0, p1) which makes the Bayesian cumulative posterior

B∗(θ | y) agree with the CD C(θ, y). Devise a method for selection (p0, p1) such that the

distance between B∗(θ | y) and C(θ, y) is small, for a relevant range of θ and possible observed

yobs.

(h) Generalise the formulae above to the case of y1, . . . , yn i.i.d. N(θ, σ2), with known σ.

13. How many farmed salmon are escaping into Norwegian rivers?

Check Morgenbladet for key words like ‘oppdrettslaks forskere industri’ to get an idea of the High

Temperature in various debates, or is it quarrels, in this zillion-dollar industry, with much at stake.

We’re not really going into this here, but I show a few neutral ingredients which do have some

relation to certain complicated questions the salmon researchers are interested in.

12



Substantial amounts of farmed salmon escape and are found in ‘the wild’, e.g. the classic

Norwegian wild-salmon rivers. One wishes to estimate

p = Pr(A),

the proportion of farmed escapees in a river. Cathcing m salmon and finding y of these are from

the farmed population gives information on a different probability p′, not p itself, however.
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Figure 0.4: The information on p′ is that y = 22 from Bin(100, p′), giving the cc(p′) in red slanted curve. The

supplementary information on the ratio parameter φ is approximated with a Gamma (18, 9). This

leads via the log-likelihood profile recipe to the cc(p) on the left, with 90 percent confidence interval

[0.079, 0.209].

(a) Show that the p′ in question is

p′ = Pr(farmed | caught)

=
p Pr(caught | farmed)

p Pr(caught | farmed) + (1− p) Pr(caught |wild)

=
p φ

pφ+ 1− p
= h(p, φ),

with

φ =
Pr(caught | farmed)

Pr(caught |wild)
.

Only if both wild and farmed salmon have the same eagerness to being caught, by the methods

employed by the salmon researchers, is p′ the same as p.
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(b) As an illustration, suppose that y = 22 farmed salmon are caught from a binomial (100, p′),

and that and independent experiment on catchability leads to a log-likelihood component

`0(φ), well described by a Gamma density with parameters (18, 9), with mean 2.00 and

standard deviation 0.47. Compute and display the profiled log-likelihood function

`prof(p) = max{`bin(h(p, φ)) + `0(φ) : all φ},

with `bin(p′) the usual binomial log-likelihood.

(c) Reconstruct a version of Figure 0.4.

(d) Hvorfor skapte Gud torsken? Han kunne ikke gjøre alle til laks. The salmonists I was briefly

in contact with in 2017 had such data yj ∼ Bin(mj , pj) for several Norwegian lakseelver. For

illustration, suppose such data for three rivers amount to 22, 33, 11, with salmon sample

sizes 100, 150, 60. Assume that the same catchability ratio φ is at work, for all rivers. Carry

out the relevant profiling from the combined data information

3∑
j=1

`bin,j(h(pj , φ)) + `0(φ)

to find confidence curves ccj(pj) for the three rivers. Exhibit point estimates and 90 percent

confidence intervals.

(e) Use your imagination to set up a scenario where there is easy binomial information on some

p′ = Pr(A′), but where interest lies in a different p = Pr(A), and where there is a link function

p′ = h(p, φ). One example, incidentally, is from CLP Exercise 4.2, with ψ the proportion of

students having cheated on an exam in their student lives, and where p′ = 2/3− 1/3p.

14. Parametric Cox regression

Here’s a dataset, indirectly famous: Sir David Cox, now 96 years old, som heier p̊a Aston Villa,

he once told be, at CAS, is super-famous; his most super-famous paper is the 1972 one, where he

invents the Cox regression model and method for survival data, changing the world, etc.; and there

he used a simplified version of this particular dataset. The version I give below is a fuller version

of what Cox described; I’ve found it on the the net and organised a bit further. I do not go into

all the details, but the crucial variable is t, the number of weeeks in remission, for 42 leukemia

patients, belonging to group 0 (placebo) or group 1 (treatment). The δ is 1 for failure (relapse)

and 0 for censored; for patient with id number 41, for example, we have t = 6 and δ = 0, which

means he or she is still in remission, no relapse has taken place yet.

id t delta group

1 1 1 1 0

2 20 1 1 0

3 7 2 1 0

4 11 2 1 0

5 3 3 1 0

6 13 4 1 0

7 19 4 1 0

8 12 5 1 0

9 17 5 1 0

10 27 6 1 1
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11 35 6 1 1

12 38 6 1 1

13 41 6 0 1

14 23 7 1 1

15 5 8 1 0

16 9 8 1 0

17 15 8 1 0

18 21 8 1 0

19 40 9 0 1

20 22 10 1 1

21 42 10 0 1

22 8 11 1 0

23 18 11 1 0

24 32 11 0 1

25 4 12 1 0

26 10 12 1 0

27 39 13 1 1

28 14 15 1 0

29 28 16 1 1

30 6 17 1 0

31 36 17 0 1

32 34 19 0 1

33 33 20 0 1

34 2 22 1 0

35 26 22 1 1

36 16 23 1 0

37 25 23 1 1

38 31 25 0 1

39 24 32 0 1

40 30 32 0 1

41 29 34 0 1

42 37 35 0 1

(a) Your first job is to fit the simple model where the hazard rates are hi(t) = θ for group

0 and hi(t) = θγ for group 1 – constant hazard rates is equivalent to the variables being

exponentially distributed. This needs the log-likelihood function to be written down carefully.

Find confidence curves for θ and γ. Is γ likely to be close to 1?

(b) Then generalise to a more complicated model, with hazard rates

hi(t) = θtb for group 0, hi(t) = θtbγ for group 1.

Find confidence intervals for θ, b, and γ. Is b sufficiently different from zero? Is the difference

between the two groups significant?

15. Estimating x when you’ve only got a proxy y

There are many versions of the following situation, and also many methods for dealing with the

implied problems. Statistical key words include ‘measurement error’ and ‘proxy’ and ‘partial

information’. I’m not sure if what I outline here is a so-called new take on it all.

Suppose one is very interested in estimating a variable x, perhaps for each of 1000 people,

but this is either too complicated or too expensive, so one measures a simpler y instead, seen as a
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proxy for x. Assume for simplicity that(
x

y

)
∼ N2(

(
0

0

)
,

(
1 ρ

ρ 1

)
),

a binormal with correlation ρ between them.

(a) Show that x | y ∼ N(ρx, 1−ρ2). So matters are fine and simple if ρ is known. For illustration,

suppose yobs = 1.99, for one of our 1000 humans, and that ρ = 0.66. Then give the natural

estimate of x, along with a confidence curve.

(b) Suppose however that the correlation ρ is not known, but that a perhaps costly separate

experiment has been carried out, leading to ρ̂ ∼ N(ρ, κ2), with ρ̂ = 0.66 and κ = 0.12. So

conceptually we’re two steps away from the real x: we’ve observed a proxy y, with another

proxy, the estimated correlation, for the real correlation. Translated to somewhat more

common terms, we have data, namely (y, ρ̂), and unknown parameters (x, ρ). Show that the

log-likelihood for x, conditionally on having observed y, becomes

`(x, ρ | y) = − 1
2 log(1− ρ2)− 1

2

(x− ρy)2

1− ρ2
− 1

2

(ρ− ρ̂)2

κ2
.

(c) For the illustration with yobs = 1.99, ρ̂ = 0.66 and κ = 0.12, compute and display the

log-profile-likelihood

`prof(x | yobs) = max{`(x, ρ | yobs) : all ρ}.

Construct a confidence curve cc(x | yobs) from this. How much wider is a 90 percent con-

fidence interval for x now, compared with the simpler situation where ρ = 0.66 is known

(corresponding to κ = 0)?

(d) Attempt to make a little machine that for observed y1, . . . , y1000 creates estimated values

x1, . . . , x1000, along with lower and upper endpoints of 90 percent confidence intervals.

(e) [xx more here, a bit later, using the direct cdf Hρ, not the chi-squared approximation. xx]

(f) Try to formalise a setup which is perhaps more realistic than the simpler one above.

16. Aboriginals and invaders in Watership Down

Suppose a population of rabbits has been living for a long time on an island, in Hardy–Weibnerg

equilibrium (p0, q0) = (0.25, 0.75), which means that pairs of alleles aa, Aa, AA occur with fre-

quencies (p20, 2p0q0, q
2
0). Suppose next that there’s an invading populations of new rabbits, with

their separate Hardy–Weinberg equilibrium (p, 2pq, q2), with q = 1 − p. We assume that the two

populations do not mix, but live on, on the same island, and that rabbitologists don’t see the

difference. One is interested in learning the fraction λ of newcobers (so the fraction of aboriginals

is 1− λ).

(a) Explain that when one samples n rabbits independently, and find their allele pairs aa, Aa,

AA, then these numbers (X,Y, Z) have a trinomial distribution with parameters

pr1 = (1− λ)p20 + λp2, pr2 = (1− λ)2p=q0 + λ2pq, pr3 = (1− λ)q20 + λq2.

Note that pr1 + pr2 + pr3 = 1.

16



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

invader fraction lambda

co
nf

id
en

ce

Figure 0.5: Confidence curves for the unknown fraction λ of newcomers, after having counted (X,Y, Z) =

(118, 438, 444) of allele pairs aa, Aa, AA. The start population has HW parameters (p0, q0) = (0.25, 0.75).

(i) The black smooth cc1(λ) is computed using the knowledge that the new population has HW param-

eters (p, q) = (0.40, 0.60). (ii) The red slanted cc2(λ) is computed using only knowledge about (p0, q0),

i.e. both p, q = 1− p, and λ are unknown.

(b) For the case of (X,Y, Z) = (118, 438, 444), and assuming not only (p0, q0 = (0.25, 0.75)

known, but also (p, q) = (0.40, 0.60) known, find an estimate and construct a confience curve

cc1(λ), as with the black smooth Figure 0.5.

(c) Assume next, with the same counts (X,Y, Z), that the home population parameters (p0, q0) =

(0.25, 0.75) are known, but that the HW parameters (p, q) = (p, 1−q) for the new population

are unknown. Again, estimate λ and find a confidence curves cc2(λ), as for the red slanted

curve of Figure 0.5.

(d) Comment on your findings. For your R programme, play a bit with different sample sizes,

and with different degrees of difference between (p0, q0) and (p, q).

(e) Explain why it is not possible to estimate all (p0, p, λ) from (X,Y, Z).

17. Risk functions for three CDs in a variance component model

Consider the simple variance component model with independent observations yi ∼ N(0, σ2+τ2) for

i = 1, . . . , p, with σ known and τ the unknown parameter of interest, cf. Example 4.1 and Exercise
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5.8 of CLP. The aim here is first to construct CDs based on (i) Z =
∑p
i=1 y

2
i , (ii) A =

∑p
i=1 |yi|,

and (iii) the range R = max yi − min yi; and then to compute and compare their risk functions.

These are defined as

risk(C, τ) = Eτ |τcd − τ | = Eτ

∫
|τcd − τ |dC(τcd, Y ),

with τcd a random draw from the C(τ, Y ) distribution, and with Y itself denoting a dataset drawn

from the distribution indexed by τ .
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Figure 0.6: For the variance component model, with p = 4 and σ = 1, risk functions r(C, τ) for three CDs for τ .

The one based on Z =
∑p

i=1 Y
2
i is best, closely followed by the one using A =

∑p
i=1 |Yi|, whereas the

one using the range R = maxYi −minYi does worse.

(a) Show that the natural CDs, based on Z, A, R respectively, are

CZ(τ,data) = 1− Γp(Zobs/(σ
2 + τ2)),

CA(τ,data) = 1−Gp(Aobs/(σ
2 + τ2)1/2),

CR(τ,data) = 1−Hp(Robs/(σ
2 + τ2)1/2).

Here Γp is the cumulative distribution function of Z0 =
∑p
i=1N

2
i , with the Ni being i.i.d. and

standard normal, which means Z0 ∼ χ2
p. Similarly, Gp and Hp are the cumulative distribution

functions of A0 =
∑p
i=1 |Ni| and of R0 = maxNi −minNi, respectively.
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(b) Show that a random draw τcd from the first of these, i.e. CZ , for a given dataset, can be

represented as τcd = (Zobs/K−σ2)
1/2
+ , where x+ is notation for the truncated-to-zero quantity

max(x, 0), and where K ∼ χ2
p. In the situation where data are random, from the model at

position τ , deduce that

τcd − τ = {(σ2 + τ2)K0/K − σ2}1/2+ − τ = σ
[
{(1 + ρ2)K0/K − 1}1/2+ − ρ

]
,

where ρ = τ/σ, and K0,K are two independent draws from the χ2
p. In other words, F =

K0/K ∼ Fp,p, a F distribution with degrees of freedom (p, p). Use this to compute the risk

function risk(CZ , τ), for p = 4 and σ = 1; this is the lowest of the three risk functions of

Figure 0.6.

(c) Then consider the CA option. Show that a random draw from an observed CA(τ,data) can

be written τcd = {(Aobs/A)2−σ2}1/2+ . Deduce that for random data behind the CD, we have

the representation

τcd − τ = {(σ2 + τ2)(A0/A)2 − σ2}1/2+ − τ = σ
[
{(1 + ρ2)(A0/A)2 − 1}1/2+ − ρ

]
,

with A and A0 two independent draws from the Gp distribution. Use this to compute

risk(CA, τ). There is no simple expression for the density of A0/A, so use simulation.

(d) Carry out similar analysis for the third CD, based on the range R. Construct a version of

Figure 0.6.

(e) Use your programme to explore the three risk functions for other values of p.
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