Exercises & Lecture Notes:
STK 390: Bootstrapping and Resampling Theory
Nils Lid Hjort, Spring 1990

These form a dynamically growing set of exercises and lecture notes, during my course.

Exercise No. 1

This exercise concerns the empirical distribution F for an observed data set. F is quite
central in the theory and practice of bootstrapping techniques.

Let F' be a probability distribution on R, the real line. It is customary and convenient
to use F' to denote two slightly different quantities: it can be viewed as a distribution

function, that is
F(t)=Pr{X <t}, teR,

or as the accompanying probability measure, that is

F(A) =Pr{X € A}, A a Borel set.

(a) So F' has two different connotations; why is this acceptable?

(b) Assume that independent observations X7, ..., X,, have been drawn from F'. The most
usual and indeed natural nonparametric estimator of F' is the empirical distribution
F'| given as

1 — - 13
n;{ <t}, teR, or F(A) n;{ e A} a se

Find EpF(t) and VarpF(t), and comment. [Here and in the following I{...} denotes
the indicator function for {...}, so that I{X; < t} = 1 or 0 according to whether
X; <tor X; >t. Furthermore, Vary means ‘variance evaluated under the model F",
éc.]

(¢) Find also mean value and variance (under F) for the random variable F(A), for a
fixed set A.

(d) How accurate is the estimator F for F? One out of several possible ‘overall measures’
for how close F is to F, is the distance D(F, F) = {F(t)—F(t)}2F(dt). A reasonable
quality measure for Fis accordingly the ‘risk function’

R(F,F) =EpD(F,F) = Ep / {F(t) — F()Y2F(dt).

Show that this risk function is identical to 1/(6n), for all continuous F’s.
(e) Remember Glivenko & Cantelli, not to mention Kolmogorov, from 19337 What can
you say about D(F, F ), and other distance measures, when the sample size n is large?
(f) (PONDER & PONDER) Does F have any shortcomings or inadequacies? What can
constitute good alternative estimators? Are there competing methods that are ‘bet-
ter’? How much better can F' be estimated under parametric circumstances? See
Exercises 15, 16, 17.



Exercise No. 2

The following data set was artificially generated, for the sake of illustrating several impor-
tant concepts:

1.3455, 0.3667, 0.4845, 0.7166, 0.3155,

1.0561, 1.7350, 1.1957, 1.7310, 3.6730,

0.1582, 1.9139, 0.6522.
The data points were actually drawn as an i.i.d. sample from the unit exponential distribu-
tion (with density g(t) = e~ for positive t). The point of view to be taken in the present
exercise is however the nonparametric one, so the sole assumption being made is that the
data set constitutes an i.i.d. sample of n = 13 from an unknown distribution F'.

Consider the following parameter, which has been proposed as a measure of spread of
the underlying distribution:

0 =0(F) =medp{|X —med(F)|}, X ~F.

(If 6 = 1.377 and p is the median of F', then X’s from F are within 1.377 of p half of the
time and more than 1.377 away from u the other half of the time.)

(a) To get a feeling for the spread parameter 6, show that § = .675 ¢ in a Gaussian (u, 0?)
distribution, and that # = log(% + %\/5) A = .481 )\ for the exponential distribution
with density (1/A)e=*/*. Show also that §(F) = F; ' (23) o when F(z) = Fo(*£) for
a ‘basis distribution’ Fy that is symmetric around zero.

(b) Discuss the merits of 6 as an alternative to the more familiar and tradition-bound
standard deviation parameter, as a measure of spread.

(¢) Make a histogram of the data, and plot the empirical cumulative distribution F(¢),
along with the underlying F(t) = 1 — e~!. Use MINITAB or something else you might
have available. (In particular, a nice exercise is to make up a MINITAB-macro that for
given data column c1 produces a plot of F(t) against t.)

(d) Compute the natural estimate
0= Q(F) = med{’Xl - ﬂ’v ) |Xn - /7’}7

in which j is the sample median. (I got 0 = 0.6749.)

(e) Of essential practical importance is the ability of statistical methodology to com-
plement the estimate 0 above with a measure of uncertainty, say an estimate of its
standard deviation, or its root mean square error. Let 7 = 7(F') be this root mean
square error, i.e.

72 = 7(F)? = Ep{0(F) — 6(F)}?

= Ep{0(Xy,...,X,) — O(F))2

- / {81, 20) = O(F)}? dF(21) -~ dF ().



This is certainly a complicated functional, since 6 is so complicated, and a closed form
expression seems unattainable. We can nevertheless consider

72 = (P2 = BA{0(F) — 0(F))?

— B {0(X],...,X}) — 6(F))

_ /{5(:;;;, at) — (B2 APty dF ().

X7, ..., X} in the next-to-last expression are an i.i.d. sample from ﬁ, i.e. randomly
drawn, with replacement, from the original data points { X7, ..., X,,}. — Explain why
7 is an explicit estimator, and that it can be computed, in principle, as a sum over
n" terms.

From what n on would you say such a computational procedure, evaluating your
estimate as a sum of n™ terms, is prohibitive?

But there is another numerical scheme to compute 7: 72 = T(F\ )2 = E.Z*, say, where

~ ~ ~

7= (6" -0 ={0(X7,...,X;) - 0(F)}
is a random variable which can be simulated easily, e.g. with the help of a simple
MINITAB-macro. Obtain a (large) number boot of independent values Z7, ..., Z;
with

oot?

o~

ZF = (0" —0)2 = {0(X0, ..., X0 — 0(F)} = {0(X:°, ..., Xb) — 0.6749)2,
and use 72 &~ Z)i(it Z; (an approximation guaranteed by Kolmogorov (1903-
1987) and his law of large numbers). Do this in the present situation, with boot equal
to 20, 100, and 1000. — Here { X}, ..., X**} constitutes bootstrap sample no. b, and
is an i.i.d. sample, with replacement, from the original data points. ‘E.{...}  signals
mathematical expectation of {...} within the bootstrap framework, in which the X}’s
are iid. from F. In particular, E,{...} refers to a stochastic framework entirely in
the hands of the statistician and her electronical computer, in which the data values

are given and fixed, as opposed to the ‘outer’ statistical model from which the data
points were generated.

Exercise No. 3

The point to be made now is that the bias and median-bias of a given estimator = Q(ﬁ)
can be estimated (and later on corrected for), for a given set of data values.

Let R R
B=pB(F)=Erl—0(F)=Ep0(Xy,...,X,) —0(F)

be the bias (w.r.t. expectation) of §. For concreteness let the § = 0(F') functional be as

in the previous exercise. Then no closed form expression for the bias can be found. It can

still be estimated, however, in a bootstrap way: let

-~

B =B(F)=Ex0" — 0(F) =B.W",
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say, where W* = * —6 and 6* = a(Xi“, ..., X}). Obtain a number boot of bootstrap esti-
mates 6 from your computer, resulting in independently simulated values W7, ... W/ .,
and let their average constitute your numerical approximation to f.

(a) Do this for boot = 20, 100, 1000, in the 81tuat10n of the prev10us exercise, and compute
along the way the bias-corrected estimate 9}30 =0 6, which purports to have zero
bias.

(b) Statisticians aiming at a track record with the admirable property that they overesti-
mate parameters about as often as they underestimate them, need median-unbiased
estimators. Let

v =~(F) = medpl — 0(F)

be the median-bias, subsequently to be estimated and removed. Devise a bootstrap
way of doing this, and do it! in the situation of the previous exercise. Compare your
median-corrected estimate fy;c with the expectation-corrected Opc.

What we have to learn to do we learn by doing.
— ARISTOTLE, Ethica Nicomachea II (c. 325 B.C.)

Exercise No. 4
The bootstrap computations can be considered as simple numerical devices to evaluate
estimates of the empirical-functional type 7(F). For a small number of simple functionals
these numbers can be computed explicitly, without resampling strategies. Consider in
particular the familiar parameters

0? = o(F)? = Varp X; = /{x— F)}?dF(z).

(a) Find explicit (and familiar!) expressions for 0=0 (F )and 0 = O'(F\ ).

(b) Let 81 = B1(F) be the bias for 0, and By = B2(F) the bias for o o2 . Give expressions
for 81 and B2, and for the natural estimates 51 B1(F ) and 52 = 52( ) Show that
the bootstrap scheme, involving bootstrap samples X7,..., X if applied here, leads
to the same results! What are the resulting bias-corrected estimators for # and o2?

(¢) Next consider

nn=n(F)= stdevF(g) =/ Varp 5, Ty = 19(F) = stdevp(6?) = \/ Varg 52.

Find expressions for 7| = 71(F) and 7, = 72(F), and show again that the bootstrap
scheme also leads to these expressions.

Exercise No. 5

Let x1,...,x, be the original data set, supposed to be realisations of random variables
X1,...,X, that were i.i.d. ~ F', and suppose that there are no ties in the data. Let
X7, ..., X} be a bootstrap sample, i.e. they are i.i.d. ~ F, the empirical distribution.
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(a) Find
1 & 1 —
E.X’, Var, X', E.—Y X/, Var,—» X’

in which the subscript ., again refers to the bootstrap framework, conditional on the
data points.

(b) Letting X* = 13" | X7 find

E{E.X*}, E{Var,X*}, Var{E.X*}.

(¢) Finally find
EX’, VarXS, EX* and VarX*.

Exercise No. 6

Let X{,..., X be a bootstrap sample, as in the previous exercise. Let M be the number
of the original data points x; that manage to escape the looming bootstrap, i.e. M =
S, M;, where M; is indicator for {x; is not in the bootstrap sample}.

(a) Show that E,M = np,,, where p, = (1 — )" = e~ = .368. Accordingly, an average

n

bootstrap sample includes only 63.2% of the original data points.
(b) Why is M not binomial (n,p,)? Show that

Var, | (M —np,)/vn| = e 11 —e ') —e?

as n grows. In particular the distribution of M is distinctively different from the
binomial, even asymptotically. Can you supply a limit distribution result?

Exercise No. 7

The previous exercise showed that in an average bootstrap sample, about 36.8% of the
original data points will not be included, so X7, ..., X* will most probably contain repli-
cates of some of those that are included. Let N; be the number of replicates of sample
point x; in the bootstrap sample.

(a) Show that N; ~ Bin(n; 1), and put down E,N; and Var, N;.

(b) More generally, convince yourself that N = (Ny,..., N, )’ is multinomial (n; %, ey
What is cov,(N;, N;)?

(c) Let PO = (1 LY and P* = (Pf,...,P) = (Ni/n,...,N,/n). We might call

n’ ' n

).

S|=

P* a (bootstrap) resampling vector. Note that E,P* = PY. Show that VAR, P* =
LI — Lee], where e = (1,...,1)".

(d) How far is {X7,..., X’} from being equal to the original data set {x1,...,x,}?7 This
question matters for parts of the theoretical support behind the bootstrap method,
and can be rephrased to questions involving the distance |[P*—P?||, the square of
which is Y"1 | (N;/n—1/n)?. Compute the expected squared distance. Show that the
distance [|[P*—P°|| is O}(1/y/n). Show, on the other hand, that the corresponding
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distance [|P;—P°|| is O(1/n), i.e. much smaller, for jackknife resampling vectors P ;)
= (ﬁ, T 1) In a sense the jackknife estimates F( y of F' are too close to
the simple ﬁ, while the random bootstrap estimates F* come sufficiently far away to
display the genuine uncertainty.

(e) Devise a MINITAB-macro that produces outcomes of N = (Ny,..., N,), and have a

look.

Exercise No. 8

Let 0 = 0, (X1,...,X,) estimate § = O(F), where the 0,,-function is defined for every n,
and is symmetric in its n arguments. Write

Erf = 6(F) + b(F),

i.e. b(F') is the bias of the estimator. Statisticians have devised several general schemes
that intend to estimate the bias, based dlrectly on the data, producing b say, so that a
new and hopefully bias-corrected estimate 0 =0—bcan be put forward. One scheme is the
bootstrap one, and another, historically preceding the bootstrap, is the jackknife method.

Define §(;y = 0n—1(X1, ..., Xic1, Xit1,- .., X,) and 8y = L 5" ;). The jackknife
estimator for bias is bjack = (n— 1)(@\(.) —5) The accompanying jackknife (bias-corrected)
estimate for 6 becomes R R R

Oyack =nb — (n — 1)9(.).

It is 1mp0rtant to observe that @ does not need to be of the functional estimator form
0 :AG(F) here (but one needs § = O(F) in order to define the bias b(F) = b,(F) =
Er{0, — 0(F)} properly).

The great practical advantage is of course the generality of the proposed method; it
can be put to use even in situations where no closed form expression can be derived for
5(.). It is instructive to find such expressions in not-so-complex situations, however. Find
explicit formulae for the jackknife estimator, and for the jackknife estimate of bias, in
the following situations, and find out, if possible, whether the resulting procedure really
succeeds in getting smaller bias than the original estimator:

(a) 0 = L3 X; = X, an estimator for § = EpX; = [2dF(z).
(b) 5% = 13" | (X; — X)?, an estimator for 62 = Varp X; = [{z — 0(F)}* dF(=z).

)
(c) ¥= 1> (X; — X)3, an estimator for y = Ep{X; — 6(F)}>.
(d) 7 = median{X7,...,X,}, an estimator for 4 = median(F) = F~1(3).
(e) T = upper quartile — lower quartile, an estimator for the spread parameter 7 =

F_l(%) — F_l(i). [To do this particular sub-exercise properly, one needs to decide
on which order statistic to use, or what combination of which two order statistics,
to estimate F'~1(p). There is no universal agreement on this issue in the statistical
community. One reasonable argument is the following: One has EpF(X(;)) =
(prove it') so that X ;) = F_l(

i
n+1
n+1) Let ¢ = i(p) be the smallest integer > (n+1)p,
+1 e (n—+1 —¢), with 0 < e < +1 Now show that

the linear comblnatlon cX(i—1) + (1 — ¢) X(;) becomes approximately unbiased for the
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sought-after F~1(p), with the choice c=i—(n+1)p, 1 —c=(n+p— (i —1). —
Using this strategy, what are the estimates for 7 based on a 100-sample, a 99-sample,
and a 98-sample?] In particular, find expressions for 7, 7., b; ACK, and Tyjack, based
on an ordered 99-sample X (1), ..., X(gg).

(f) Your own choice.

Exercise No. 9

Consider the general framework of the previous exercise, involving an estimator h= @1 for
a parameter . Assume that

E, =Ep,(X1,...,X,) =0(F) + +

in particular, 6 has bias of the order O(1/n). There are many examples of this form for
the bias; show, for example, that 7 = %Z?:1<Xi — X)? has expectation (1 — % + %)%
where v = Ep{X; — Er(X;)}3.

(a) Show that the bias-corrected jackknife estimator Oyack = nf — (n— 1)9\(.) has

co(F) 1 1]_“‘

an-1 ~ *Ole=e e

Epfiack = 0(F) — (n—12 n?

i.e. the bias has been reduced to order O(1/n?).
(b) It is possible to go one step further: Let

é\(l’]) - é\n_Q(Xl, oo 7Xi—17Xi—|—17 e 7Xj—17Xj+17 cee 7Xn)7

where both X; and X; have been removed from the data set, and let é\(.’.) =>

O
/(5) be their average. Devise a ‘double jackknife’ estimator of the form

i<j Y(4.9)

fpousLEsAck = af + bé\(.) + 65(.,.)

that has bias of order O(1/n?)! [ANSWER: a = 3n%, b= —(n —1)2, ¢ = £(n — 2)2]

Write down the first couple of terms in the bias expansion.

(c) Find an expression for the double jakknife estimator whose point of departure is
=13 (X;— X)3 Does it succeed in lowering the bias?

(d) Too laborious de-biasing can quickly lead to overkilling, however; correcting too heav-

ily for bias can lead to too much to pay in variance. Construct an example and carry
out a small simulation study to see for yourself.

Exercise No. 10

In the best spirit € tradition of Icelandic and Hebrew, construct or invent proper and
fitting Norwegian terms for ‘jackknife’ and ‘bootstrap’. Bradley Efron, in the historical
début paper for the bootstrap (Bootstrap methods: another look at the jackknife, Annals
of Statistics 1979), graciously put forward alternative terms for the method, including
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‘Shotgun’, ‘Swan-Dive’, ‘Swiss Army Knife’, ‘Jack-Rabbit’, and ‘Meat Axe’. (And what
about ‘Jack of Diamonds’, ‘Slaughterknife Five’, and ‘Jack the Crusher’?) — Among recent proposals
are ‘kjotteks’, ‘kjottkvern’, and ‘Food Processor’ (sic).

A Euro-cultural case in point is Freiherr Baron Karl Friedrich Hieronymus von Miinch-
hausen (1720-1797), who [as we all remember] managed to save both himself and his horse
from sinking into a quagmire by pulling his pigtail.

Nar ein skal studera det norske ordfanget, ma ein fyrst og fremst ha kjennskap til det

levande bruket av ordi og til det miljoet der ordi vert nytta. Og nemningsbruket ma

granskast i samband med etterrgkjingar um dei ting, skikkar, truer og fyrestellingar

som det hgyrer i hop med. — FEin skynar ikkje eit mal utan at ein kjenner levevilkari

til det folket som nyttar dette malet. Heller ikkje kann ein til fullnads skyna trudom

og seder hja eit folk um ein ikkje kjenner malet til det same folket.

— NiLs Lip, Norske Slakteskikkar (1924)

Exercise No. 11

Hjort (1986, Annals of Statistics) derived, rather in passing, and following Bayesian non-
parametric considerations, the following estimator for the median § = F~1(3) of a contin-

) . n—1 n—1
=1

in which X1y < ... < X(,) are the order statistics. Of course it cannot possibly be

uous distribution:

unbiased; —

(a) Does there exist any unbiased estimator for the median at all?
— so there is some interest in estimating its bias, based on the data points themselves, for
subsequent removal, as in § = § — bias. The present exercise looks into two methods for
estimating the bias

b(F)=b,(F)=Eprf—0(F),
namely the jackknife method and the bootstrap method.
(b) Show that, with the usual jackknife notation,

n

R o (e e R = R

Put up an expression for bjack.

(¢) Describe the bootstrap procedure that leads to gboot.

(d) Assume now that F = Fp is the unit exponential distribution, Fy(t) = 1 — e~ for
positive t, and take n = 17, for concreteness. Under the exponential model it holds
that X(;) has expected value L + —1- 4+ ... + # Compute the bias b = b(Fy),
the parameter to be estimated. Compute the expected values of 6, 0.y, byjack, and

O3acK-



(e) Carry out a simulation experiment, consisting of 100 sets of outcomes Xj,..., Xi7,
look at the distribution of the 100 realisations of /b\J ACK, and in particular, assess its
mean, standard deviation, and coefficient of variation (standard deviation divided by
mean). (One could presumably do the theoretical calculations, with a lot of algebraic
effort, for example to find Var/l;JACK, but doing simulations is simply cheaper, at
NKr. 550 an hour.)

(f) For each of the 100 simulated sets { X1, ..., X17}, carry out 250 bootstrap simulations
{X7,...,X{;} in order to arrive at a value of Dhoot. Look at the distribution of these
100 values, and assess its mean, standard deviation, and coefficient of variation. Reach
a conclusion: which one of the two methods for bias estimation performed best, for
F=Fyand n=177

(g) And: which one of the three estimators 5, §JACK = é\—/gJACK, gboot -0 Bboot for
the median performed best, for F' = Fy and n = 177

Exercise No. 12

The jackknife machinery provides not only an estimate of the bias, for any given parameter
estimator, but also an estimate of its variance:

Varack = i[% — 0 )] -

This estimate intends to be close to Varpg (as opposed, for example, to Var Fg(.)).

(a) Find Varjack when § = X. Comment on the result.

(b) Find similarly \//é;j ack for the variance estimator 52 = % > (X — X)?, and com-

ment.

Exercise No. 13

Consider once more the jackknife apparatus, the point of departure for which is a given
estimator 0. We have seen how the bias and the variance of § can be estimated using
jackknife values 9(1), e ,0(n). But what about the jackknife estimate of the variance of
the jackknife-bias-corrected estimator for 67 That is, consider Oyack = nb — (n— 1)[9\(.) as
the basic estimator, and find the jackknife variance estimator for this estimator, by first
finding §JACK7@ and so on.

Exercise No. 14

This exercise provides an asymptotic justification for the jackknife estimator of variance,
for a certain class of estimators. This is the reasonably large class of estimators that are
smooth functions of averages or that can be approximated by such.

Let X1,...,X,, beii.d. from F, perhaps in a higher-dimensional space, and assume
that 0 = h(fln,Bn), where A,, and B, are averages of respectively A;’s and B;’s, and
where A; and B; are functions of X;. The classical large-sample solution to the problem of
assessing the variability of 0 is the delta method, essentially based on a first order Taylor
series approximation. It works as follows:



Observe first that v/n(A, — a, B, — b)’ converges in distribution to (M, N)', say, by
the central limit theorem, a Gaussian two-vector with means zero and a covariance matrix
¥, the elements of which are 07 = Var A;, 03 = Var B;, and 015 = cov(A;, B;). Also,
a=FEA,;, and b = E B;. It then follows that

V(0 —0) —a N(0,5%),
where
k% = Dh(a,b)' ¥ Dh(a,b) = [2(a,b)]07 + [22(a,b)] 03 + 2 2 (a,b) 2 (a, b) o1a.

Dh(a,b) here is the 2-row vector containing the partial derivatives of h, evaluated at the
point (a, b).

(a) The delta method approximation to Var 0 is K2 /m, which can be estimated by
#%/n = Dh(A,, B,) S Dh(A,, B,).

Write down an explicit expression.

(b) Show that

~ .~ Oh,- - A;—A, Oh, - - Bi—B,

n—1

(c) Give an expression for Var JACK, and show that it coincides with the variance estimate
arrived at by the delta method.

(d) Do things over again, but explicitly, in the following case: Pairs (X;,Y;) are i.i.d., and
EX; = p1, EY; = po. The parameter 0 = pq exp(pz) is of interest, and the natural
estimator is § = X, exp(Yy,).

(e) And do them over again, but in a more general and compactly-written way, with ¢
averages instead of two, and perhaps with a p-dimensional #-parameter.

Exercise No. 15

The ordinary, nonparametric bootstrap is based on drawing bootstrap samples X7,...,
X from the empirical distribution F. The success of the subsequent bootstrap analysis
is critically dependent on the quality of the nonparametric estimate F for F. About how
much better can one fare in parametric waters?

If Z,(t) = \/ﬁ{ﬁ(t) — F(t)}, then Z,, converges in distribution to the process Z, where
Z(t) = WY F(t)} and WO(.) is the Brownian bridge; it is Gaussian, W%(0) = W°(1) = 0,
has EW%(u) = 0, and cov{W°(u), W°(v)} = u(l —v) for u < v. The convergence in
question takes place in the space D[—oo, 0] of all functions on the line that are right
continuous with left hand limits and which possesses limits at +0o0 and —oo, equipped
by the Skorohod metric, see e.g. Billingsley (1968). It ensures in particular that g(Z,)
converges in distribution to g(Z) for every continuous functional g.

(a) Show that

VillF = F| = vn Ig%\ﬁ(t) — F(t)] =a [[W°]| = max [W(u)],

0<u<1
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the distribution of which is tabulated in standard collections. This result gives rise
to the celebrated Kolmogorov-Smirnov confidence band for the unknown F', and one
can test hypotheses of the type F' = Fy. The point to make presently is that it gives
precise information about how well F estimates F , in terms of the maximal error

D(F,F) = ||F = F|| = max|[F(t) — F(t)]-

The limit distribution above can be given in the form

e 9]

. - < _1_ o1 —24%y? >0,
Jim Pre{ynmax||F - F| <y} =1 22( 1) e , y=>0

Derivations can be found in Billingsley (1968, Section 11) and in Hajek and Sidak
(1967, pp. 199-200). Owen’s Handbook of Statistical Tables (1962, pp. 439-440) has
a wrong formula but a correct table of probabilities. — Why hasn’t anybody told me
that )

T

E W = /7/21log2, E|W?= 5 ?

Show this, and conclude that the mean and standard deviation are 0.8687 and 0.2605
respectively The median, by interpolation in Owen’s table, is 0.8267. [HINTS: EY =
I {1 — }dy and EY? = [[°{1 — G(,/%)} dy for non-negative variables Y. Also,
1——+———+ .- = log 2, andl——+——1i6+---=7r2/12 (prove it!).]

On the other and parametric hand, suppose that F(t) = Fy(t) for some unknown
parameter #, a priori. Then

Vo (t) = Vn{F5(t) — Fy(t)} = Go(t) V(0 — 0),

where

Go(t) = / fa(s 310gf9(5) ds.

Utilise this to find explicit expressions for the limiting process Vy(t), say, in the fol-
lowing cases:

(i) X; ~ Exp(f). [ANSWER: Vp(t) = 0texp(—6t) N, where N is a N(0,1) variable.]
(i) X; ~ N(u,0?), 02 known.
(iii) X; ~ N(u,0?), u known.
(iv) X; ~ N(u,0?), both parameters unknown. [ANSWER: V), ,(t) = —¢(=L£)[N +

LM /\/2)], where N and M are independent N (0, 1) variables.]
(v) Your own choice. [ANSWER: Go confidently in the direction of your dreams.]

In these examples, v/n||F; — Fy|| converges to [|Vp|| = maxier [Vp(?)| in distribution.
Find this limit distribution as explicitly as possible, in each of the five cases considered
above.

Try to assess how much smaller \/n||F;— F|| will be in these parametric examples, for

large n, than the nonparametric \/n|F — F||. You might e.g. compare mean values
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and/or median values in the limit distributions. [ANSWERS, for the limiting ratio
Ep|| P~ F|| /Ep|[F - F|:
(i) 2/(emlog?2) =1/2.9596 = .3379.

(ii) V2/(my/Tlog?2) = 1/2.7292 = .3664.

(iii) 1/(my/melog2) =1/6.3635 = .1571.

(iv) EJ(a)/log?2, where J(a) = max{|h(s1)|,|h(s2)|}, h(s) = {cosa + (s/v/2)sina}

®(s), where s; and sy are the two roots of h/(s) = 0, and where a ~ uniform
n [0,27]; ratio = 1/2.1724 = .4603, evaluated based on numerical integration
027r J(a)da/(2m). The value of E J(«) is mysteriously close to 1/7, which would
have given ratio = 1/(mlog2).
(V) Live the life you have imagined.]

(f) In the idealised parametric situation, suppose one uses n observations, thereby achiev-
ing Er| F5— F|| = a/y/n, where a = E || Vp|| is the constant appropriate for the para-
metric situation studied. About how much larger must the number m of observations
be if the same accuracy is to be obtained using the nonparametric F? [ANSWERS:
(i) m = 8.76n; (ii) m = 7.45n; (iii) m = 40.49n (but then that situation is hardly
realistic); (iv) m = 4.72n.]

Exercise No. 16

We continue the theme of the previous exercise. We know how well the distribution F' can
be estimated nonparametrically, and try to understand and assess how much better it can
be estimated in idealised parametric situations. Instead of the quality measure ||[F — F||
considered there, let us now study

D(F, F) /\F () dF (D).

It is interesting to study the difference between the nonparametric and parametric situation
w.r.t. this distance measure in the first place, since it is a very natural loss function, and
secondly it is of separate interest for a practicing decision theorist if there is such a thing to
see whether two natural but very different loss functions, that of maximal absolute error
and that of expected absolute error, give approximately the same qualitative answers.

(a) For the nonparametric case, show that

Vi [1(®) = FOIaF®) 4T = /rwo w)| du.

Resist trying to find the very intricate probability distribution of J, leave it rather
to Larry Shepp (Annals of Probability, 1982), but show that EJ = S E|N(0,1)] =
V2m /8.

(b) For the general parametric case, where F' = Fy for some underlying ¢, show that

f/uw (0 dF(2) %d/m A (1),
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in the notation of Exercise 15. Find as explicit expressions as possible for this limit
distribution variable in the five parametric cases considered there. [ANSWERS: (i)
[N1/4; (ii) [N/ (2y/7); (iii) [NI/(2v2m); (iv) [N + 32M|¢(x) dz/(2/T).]

(c) Find the limiting ratios EpD(F, F5) /Er D(F, F), and compare with 15(c). [AN-
swers: (i) 2/7 = .6366; (ii) 4/(m/m) = 0.7183; (iii) 4/(v/27?) = 0.2866; (iv)
4e/(my/m) = 0.7968. Here c is E(1 + $N?)Y/2, with a numerical value of 1.1093,
obtained through numerical integration in MINITAB. Do this yourself, and compare
with the value you get from 100,000 simulations, and with what you get, still in
MINITAB, after first writing ¢ as an infinite sum.]

(d) Asin 15(f), the number m of data points needed to achieve the same accuracy with the
nonparametric method as one does with n data points using the parametric method,
still assuming that the parametric model is exactly correct which is unrealistically opti-
mistic, needs to be larger than n, but by how much? [ANSWERS: (i) 2.47n; (ii) 1.93n;
(iii) 12.17n; (iv) 1.58 n.]

(e) Stop to think.

Exercise No. 17

Decision theorists have usually employed quadratic loss functions, like the Gaussian (a —
«)?, but mostly for reasons of mathematical ease. They have offered hopeful remarks that
other loss functions, which like the Laplacean |& — «| might have even stronger intuitive
appeal, but are much more complicated to work with (in the classicist sense of obtaining
explicit solutions, and so on), ought to give approximately the same qualitative results:
estimators derived from the same principle, for loss functions 1 and 2, should be reasonably
similar; the difference in quality between estimators 1 and 2 should be similar from the
point of view of loss functions 1 and 2; and so on.

Since this is a chance to investigate these matters, however briefly, let’s muster the
stamina to work through the problems of Exercises 15 and 16, but this time entertaining
the quadratic distance measure

D(F, F) /{F (t)}2dF ().

We should admit at the outset that putting up a meaningful distance measure between
distribution functions F and F is much more difficult than measuring distance between real
numbers a and «. Hence one should not expect too much similarity regarding qualitative
conclusions drawn from working with [|F — F|dF on one side and [(F — F)2dF on the
other.

(a) For the nonparametric case, show that
—n/{F (t)}2 dF(t) %d/wo )2 du = CvM.

The distribution of CvM is complicated, but can be expressed in terms of an infinite
linear combination of independent x2-variables, and is tabulated several places. It is
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commonly used to test hypotheses of the form F' = Fy. D(F, F ) is called the Cramér—
von Mises test statistic. — Anyway, show that CvM has mean value 1/6 and standard
deviation 1/3.

(b) For the parametric cases, show that

nD(F,F5) =n / {Fs(t) — F(t)}* dF(t) =4 / Vo (t)? dFy(t).

Find explicit expressions for the limit distribution variable in the five cases you have
studied above. [ANSWERs: (i) N? Z; (ii) N2 /(2V/3n); (iii) N?/(12v/37); (iv) (N? +
%Mz)/@\/gﬂ); (V) tell me.]

(c) Using the distance measure under consideration, give the limiting ratios Er D(F, F) /
ErD(F, F\), in the five parametric situations. [ANSWERS: (i) .4444; (ii) .5513; (iii)
.0919; (iv) .6432.]

(d) And, finally, find the limiting sample-size ratios m/n, in the notation of 15(f) and
16(d). Delight yourself by comparing these numbers to those of 16(d). [ANSWERS: (i)
2.25 (exact!); (i) 1.81; (iii) 10.88; (iv) 1.55.]

(e) Try to sum up the experience of Exercises 15, 16, and 17. Put up a small ta-
ble of limiting sample-size ratios m/n, sorted according to parametric model and
loss function! Please include other loss functions as well, if you have time, like
D(F,F) = |f (F — F)? dF}l/ ®. You might also usefully include sample-size ratios
based on studying medp D(F, F5) vs. medpD(F, ﬁ)

(f) Speculate about the value of parametric bootstrapping as an alternative to ordinary,
nonparametric bootstrapping.

Exercise No. 18
Let 6§ = O(F') be a functional, defined for all distributions F' on the real line. Define
F.)—-0(F
I(z) =I(F,z) = lim M,

e—0 £

where F, = (1 —¢)F +ed(x), and d(z) is the point mass probability measure at point z.
Thus F; is the distribution of a variable Y that with probability 1 —¢ is an X drawn from
F and with probability ¢ is equal to x. Such an F. is also referred to as a contamination
of F. The function I(F,x) of x is called the influence function for the functional 6(.).

I hate definitions.
— BENJAMIN DISRAELI

Find as explicit expressions as possible for the influence function in each of the fol-
lowing cases:

(a) £ =¢(F) =EpX = [xdF(z).

(b) 02 =0?(F) = VarpX = [{z — &(F)}? dF (z).

(¢c) 0 = o(F) = stdevpX. Formulate and prove a general chain rule for the influence
function of a functional v(F') = g(6(F)).
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(d) v = v(F) = o(F)/&(F), the coefficient of variation for F. Formulate and prove a
more general chain rule, applicable to functionals v(F') = g(01(F),...,0,(F)).

(e) v =7(F) =Ep{X —£(F)}°.
(f) p = p(F) = F7'(3), the median. Generalise to F~'(p). — Explain, in terms of
influence functions, why the median is more robust than the mean.

(g) T = 7(F) = F71(2) — F71(}), the interquartile distance, a useful nonparametric
measure of spread.

(h) 8 = (F) = Ep|X — u(F)| = [|z — p(F)|dF(x), the spread measure studied in
Exercises 2 and 3.

Exercise No. 19

The maximum likelihood estimator 9\ under a given parametric model fyp(x), maximises

(1/n) >0 log fo(X;) = [log fo(x ( ) and accordingly takes aim at the parameter
value 6 = 0(F) that maximises Ep log fo(X) = [log fo(z) dF(x ) In other and insightful
words, the maximum likelihood estlmator can be v1ewed as 0 = O(F), where 6(F) is

the parameter value that minimises the Kullback-Leibler information distance A(f, fp) =
[ flog(f/fe)dz. Find its influence function.

Exercise No. 20

Let 8 = 6(F) be a parameter functional, and let 6 = 9(F) be the natural nonparametric
plug-in estimator. Under suitable regularity conditions,

)

—0=0(F)—0(F) = %il(ﬂ X;)+ Op(%),

where I(F,.) is the influence function that befriended you above. Also, EpI(F,X) =
[ I(F,z)dF(z) = 0 under regularity.

(a) Show that \/ﬁ(é\— 0) converges in distribution to N (0, x?), where
k% = K*(F) = Varpl(F, X) = /I(F, r)?dF (x).

For precise regularity conditions, see for example Boos and Serfling (Annals of Statis-
tics, 1980) or Huber’s Robust Statistics (1981), or James Reed’s Ph. D. thesis On the
definition of a von Mises functional (1976), or Liusa Fernholz’ von Mises calculus for
statistical functionals (1983).

(b) Find the limit distribution for N 0) in each of the examples of the Exercise 18,
by evaluating the x? expression.

Exercise No. 21

And find the limit distribution for \/5(5 —0), where 0 is the maximum likelihood estimator,
again by evaluating the xk? = [I(F,z)>dF(x) expression, where the influence function
I(F, x) was found in Exercise 19. — This amounts to an important discovery in the theory
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of parametric inference: You have found the limit distribution of the maximum likelihood
estimator when the model is incorrect!, thereby generalising the classical textbook-result,
which invariably assumes that the model is right. See also Exercises 22, | and

Exercise No. 22

Extend the definition of Exercise 18 to define multi-parameter influence functions in multi-
dimensional sample spaces. For example, what is the influence function of §& = EpX
and of ¥ = VARpX = Ep{(X — (X — )}, when X = (X1, X2)" is two-dimensional,
with a distribution F in R?? And what is the influence function for the one-dimensional
correlation parameter p = p(F') = corr(Xy, X2)?

Formulate multi-parameter and multi-dimensional versions of Exercises 19, 20, 21 as
well. Show in particular that the influence function for the maximum likelihood functional

becomes
-1 0 lOg f90 (I‘)
00 ’

in which 6y = §(F) is the parameter value for which fyy, is consistent, and J(f) is the
familiar Fisher information matrix, with elements

0log fo(X) [ 0*log fo(x)
26:00, 96,00,

I(F,z) = J(0)

in’j(e) = —EF dF(x)

Exercise No. 23

One can define empirical influence functions, for functional parameters or for general es-
timators, in various ways. Consider in this exercise the nonparametric plug-in estimator
o = 0(1/5) for a parameter 6§ = 0(F). Let P* = (Pf,... 7P"‘) be a general resampling
vector, a probability distribution on the n data points 1, .. . Thus F F(PO) say,
in which PY = (+,...,1). The more general F(P*) gives rise to 0* =9(F F(P ) = H(P*).
— Having established thls framework, where the data points are fixed but the probability
weights attached to them can vary, introduce

:—{9 ic) — (P},

in which P, . = (1 —)P% 4 €A, the probability distribution with weight (1 —¢)/n+ ¢ on
x; and weights (1 —€)/n on each of the n — 1 remaining data points.

The influence function concept is tied to the notion of linearisation, or the art of
finding linear approximations to given functionals or estimators. The idea of a (first order
or second order) Taylor expansion of a given estimator can be made precise in several
ways. The traditional delta method linearises a function of averages by computing partial
derivatives w.r.t. these averages. Presently we have been led to consider 9 as a function of
resampling weights P*, and we should look for Taylor expansions of Al (P*) around P* = PY.

(a) The version of U = (Uy,...,U,) that most naturally matches the idea of a Taylor
expansion around P* = P? uses the partial derivatives

5—>0
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These are the tangential influence factors, making up the tangential influence vector
U. Compute U; for 6(F) being the mean, the variance, the standard deviation, and
the variation coefficient.

(b) Show that indeed
Ui = UZ(O) = I(F,:L‘i),
with I(F,z) defined as in Exercise 18. You can therefore find expressions for U; by
simply inserting F' and x; in the expressions you were required to find in Exercise 18.

(c) Observe that U; can be numerically computed in practice by simply putting e.g. € =
.000001 in the definition of U;(e), if an exact expression is hard to derive. Do this,
and compare with the explicit solution, for the data set of Exercise 2, for a small list
of easy and not-so-easy functionals.

(d) Another choice corresponds to letting e = —1/(n — 1). Show that the result becomes

1 ~ ~
Ujsack,i = Uz’(—m) = (n—1){0 -0},

in which g(i) = @\n_l(zl, ey L1, Tit1, - -, Ty) avoids x;, and is the familiar one from
jackknife analysis. Involved in Ujack ; are therefore the n jackknife resampling vectors
P = (-,...,0,...,-17), in addition to the central P°.

(e) And still another choice arises by putting € = 1/(n + 1). Show that this leads to
Uprusiack, = (n+ 1)@ — 0),

where é\[i} = §n+1($1, ey Xy Ty .., Xy) doubles x; instead of avoiding it. This proce-
dure is called the positive jackknife method.

(f) Compute explicitly U;(e), U;, Usack.,i, UpLusiack,: for the cases { = EpX and 0 =
stdevpX.

Exercise No. 24

The previous exercise established a framework in which (many) nonparametric estimators

 can be viewed as functions of the resampling vector P* = (Py,..., P¥). Now consider
the bootstrap resampling scheme, in which P* = N;/n and (Ny,...,N,) is multinomial
(n;%,...,%).

(a) Show (again) that E,P* = PY VAR.P* = (I — Le¢’)/n? where e = (1,...,1)".
(We adopt a slightly confusing convention here and in what follows: we follow Efron
(SIAM, 1982) in taking the resampling vectors to be line vectors, but let all other
non-transposed vectors, like e above and U below, be column vectors.)

(b) Let 0=p+ (1/n) >°"_, a(z;) be a linear functional statistic. Show that
O(P*) =0 + (P* — PO,

where U; = a; — . = a(x;) — Y77 a(z;)/n. Note that a constant can be added to
all components of U without affecting the result (why?).
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(¢) Show that E*@\(P*) = 6 and that
Var,0( 3 Z{a z;) — o}

This is also the bootstrap estimate of the variance of (/9\, so in this linear case there is
no need to actually carry out bootstrapping by computer simulation.

(d) More generally, let 0 be a quadratic functional statistic,

é\(l’l,..., %Z -Tz %Zﬁ('xlv‘%ﬁ)

1<jJ

Here p, a(.), and (., .) are allowed to depend upon n, see e.g. page 24 of Efron (SIAM,
1982). Give an expression for the underlying 6(F') functional, in terms of F'. Show
that 6 also is a quadratic function of P*,

0(P*) = a+ (P* —PO)U + L(P* — P*)V(P* — P°),

where Uz = o — o + Bz - B and sz'j = ﬁij - ﬂz - 5.]' + 6 Note that POU = 0,
PV =0.

(e) Obtain the following expression for the bootstrap expectation of 0"
E.0(P*) = 6(P°) )+ 5 s Zvu

What is the bootstrap estimate of the bias for 07
(f) Why should one stop? Go on to the third order.

Exercise No. 25

The previous exercise considered bootstrap properties of linear and quadratic functional
statistics. What happens if one approximates a given, complicated 6(z1,...,x,) with a
linear or a quadratic statistic? — The notation quickly gets involved here; we use

——methodA . ——methodC .
bias {estimatorB} and Var {estimatorD}

to denote respectively the methodA-based estimate for the bias of estimatorB and the
methodC-based estimate for the variance of estimatorD.

(a) Let é\LIN be any suitable linear approximation to @\, of the form §L1N(P*) = qa +
(P*— PO)U . Show that the bootstrap method estimate of the variance of A n can be

written
boot

(L} = — — Z (U; —U)?
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(b)

One particular linear approximation is
Oran = Oran(P*) = 6 + (P* — PO)U,

in which U = U(0) is the tangential influence vector studied in Exercise 23, also called
the infinitesimal jackknife factors. Demonstrate that this leads to

/\boot ——boot

R
{9} Var {QTAN} = ﬁ Zl I(F, xz)

Another linear approximation is available:
O1ack = Ojack(P*) = a + (P* — PO)U,

where a and U are chosen such that the approximation and the given ) agree for
P* = P, for i = 1,...,n. The linear functional is uniquely determined by these
requirements, although the representation above is not, since a constant can be added
to each element of U without changlng the result. Show that one specification that
works is a = 9() and U; = (n — 1){9() — 9(2)} it satisfies U = P°U = 0. Note the
connection to Exercise 23(d). Show that

——boot ~ ——Dboot

{0} ~ Var {é\JACK}

- (&= 1) i[% — 0 >r A ()}

n n
=1

Explore the analogous linear approximation é\pLUS JAck that is defined by requiring

it to agree with 8(P*) for P = (n}rl,..., n_QH, e n}rl), cf. Exercise 23(e). Write
down a formula for

——PLUSJACK ~ ——boot _~

Var {0} = Var  {fprusjack}-

Define a quadratic approximation to the given 0 of the form
fquap = Bquan(P*) = a + (P* — POU + L(P* — PO)V(P* — POY,

where @ and U and V are such that the approximating statistic agrees with 6(P*)
for P° and for P@y,...,Pg). One can always arrange matters so that PU = 0,
PV = 0, cf. Exercise 24(d). — Obtain the following useful approximation formula
for a general bootstrap expectation:

E.[0(P*) - (P°)| ~ E. [fquan(P") - §QUAD(P0)
n—1 ~ —1 —JACK

= (n—1){0¢ — ) = bias {6}.

19



(f) Researchers in the field seem to tend to drop the (n—1)/n factor here, and accordingly
promote (n— 1){9( )~ 6} as the second order jackknife approximation to the bootstrap
expected value of G(P*) Q(PO). This leads to the classical jackknife estimate of
bias, and adds authority and interpretational substance to this method, but there
are otherwise no good reasons for dropping the (n — 1)/n factor. — How should one
construct a third order approximation to the bootstrap bias?

Exercise No. 26

Prove that the equation x" 4+ y™ = 2" cannot have integer solutions when the integer
exponent n is greater than or equal to three. HiNT: Consult Yoichi Miyaoka, October 1988.
Deduce, as a Corollary, that the margin sometimes is narrower than one thinks.

Exercise No. 27

Consider the framework of Exercise 14: Xi,..., X, are i.i.d. from F, and the statistic
under consideration, not necessarily an estlmator is a smooth function of averages, or can
be approximated by such a function. Write 0 = h(A1,...,Ap), where AJ is the average
of Aj1 = gj(X1),...,A4n = g;(Xy), say. — There are now a variety of nonparametric
methods available to the statistician for estimating the standard deviation of 0.

¢ The delta method reviewed in Exercise 14 gives

where & = 2" (4; — A)(A; — A) /(n —1).

¢ The influence function approach utilises the limit distribution result of Exercise 20,
which says that k?(F)/n = [ I(F,x)*dF(z)/n approximates Var f. The natural non-
parametric estimate of this asymptotic variance is

I

[

N
[\
&
S~—

|

I

—INFLUENCE _~ 1 5 ~ 1 ~
Vor (6} /
¢ The jackknife method produces

/\JACK n—1

{0} =

8 —9()] .
=1

< The tangential influence viewpoint or the infinitesimal jackknife yields

——Dboot

I =, a o
{H} Var {GTAN}:ﬁ;I(Faxi)

¢ The bootstrap method estimate is

—boot

Var {0} = E.{0" — E.6*}>.
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¢ And let us throw in the jackknife approximation to the bootstrap estimate, to boot,
namely

n

) Sl -]

=1

—BOOTJACK ~ oOT ~
Var 0y = Var 7 By ack ) :(

Explore the degree of equivalence of these approaches, and prove that all formulae
are asymptotically equivalent, and in fact consistent, under mild regularity. In this case,
where it is known that nVar 8 converges to some limit x2, consistency means that n times
the variance estimate also converges, in probability, to 2.

Exercise No. 28

Sometimes interest focusses on a quantity that depends upon both the data and the un-
known parameters of the model. In the nonparametric framework this means a function
R = R(F,x), where x = (z1,...,x,) is the vector of observed data, being i.i.d. ~ F. The
bootstrap equivalent to R is

where the z}’s are i.i.d. ~ F'.
One particular use of R* is to approximate Ep R(F,X) with E,R(F,X*). Re-employ
the reasoning of Exercise 25(e) to arrive at the following jackknife approximation:

L (n—1y

E.R(F,X") = E.R(P) {Rey — R(PY)} = (n— 1){R, — R(P)},

where R is the average of the n values of R(P ;).

Exercise No. 29

As a simple example, assume estimates
E=8(x1,...,an) =2 and G =05(z1,...,2n) = » (2;—2)°/n

have been extracted from the data sample, and let
7 =7(F,x) = Pre{Xnew > & + 1.6455)}
= Epl{Xpew > £(x) + 1.6455(x)}

_ / [new > £+ 1.6455} AP (2peu).

Here X, denotes a future observation, independent of the given training set x1,...,x,
of data, and Prrp and Ep refer to probability statements w.r.t. Xew, with the training
data fixed at their observed values. In prediction situations one is interested in precisely
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such probability statements w.r.t. forthcoming data, as opposed to statements about the
average probability over all possible training sets.

(a) Suppose for a minute that F is in fact Gaussian (£, 0?). Give an expression for w(F, x),
and contrast it with 7(F) = Euy 7(F, X), where X1, ..., X,, Xpew are i.i.d. F in the
E.; statement.

(b) A simplistic estimator of 7(F,x) is
~ 1 & ~
~NAIVE A
=7 (F = — IH{x; 1.64 .
T 7(F,x) - ;:1 {z; > &(x) +1.6450(x)}

Why is it naive?

Write
7 = aNAIVE | patvité,
where
naivité = naivité(F, x) = 7(F,x) — 7 MVE(x)
again is a random quantity depending upon both F' and the training data x1,...,x,. Let

W = W(F) = Eall Ila'l'Vité(F, X)

be the average naivité, over all possible training sets. The idea is to estimate 7 (F,x) by
correcting the naive estimator for its average naivité:

%NAIVE + -~

T = .

(¢) Show that the bootstrap estimate of the average naivité becomes
GEOOT — (F) = . (P, X") = #AVE(X")| = BLR(P"),
in which

1 < ~ 1 & -
R(PY)=—% Hui>& +16456° = — > I{ay > & +1.64507}
=1 i=1
n 1 -
- Z<E — P{“) Iz, > €& +1.64567),
i=1

and £ = g(x}‘, cooxr), 0" =0(zy,...,x)). The net result is

%BOOT — %NAIVE + @BOOT.

Can you construct a MINITAB macro that computes this?

(d) A simpler alternative to 72°°T is the cross validation or leave-one-out estimate

1 n R

~CROSS ~

T _—E H{x; > &y +1.645005 ),
n & {x 5() ()}
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where é\(i) and ;) are computed from x(;) = {Z1,..., 21, Tit1,..., 2y }. Give moti-
vation for this estimator. — Note that the cross validation estimator for 7 corresponds
to a cross validation estimator @CROSS for w.

(e) Following the scheme of the previous exercise, evaluate
ABOOTJACK (n o 1){R( ) — R(PO)}.

Show that this leads to

n n
#BOOTJACK _ ~CROSS | ~NAIVE _ = Z ZI{% > &y + 16455},
i=1 j=1

and find out how small the difference between the cross validation estimator and the
bootjack estimator is.

Exercise No. 30

Exercises 24 and 25 looked into jackknife type approximations to bootstrap expectations,
up to second order. The present exercise discusses third order approximations.

(a) Consider a third order functional statistic of the form

Oramp(P*) = a + (P* — PO)U + 3 (P* — PY)V(P* — PO
EDL DD WP = (P = DB =),
=1 j=1k=1
where V;; and W, are symmetric in their arguments. Show that one without loss of
generality can take each of the averages U, V;, V;, V.., Wi, Wi g, Wix, Wi ., W,
Wk, W. . to be zero. [HINT: Consider = Wiik = Wij. = Wi =W + Wi +
Wi +W =W ]

(b) Recall that P; = N;/n, where (Ny,...,N,) is multinomial (n;+,...,1). Show that

Y

e (- 2) (17 - D) (- 1) = () n- i -y

n
(%)3(1 —1)(1-2) ifd,j k are equal;

- _(%)4( — %) if two among i, j, k are equal;
2(%)5 if 4, j, k are distinct.

(c) Show that

Z Wzgk =-3 Z szw Z Wijk =2 Z Wzm
two equal three distinct =1
(d) Arrive safely at
~ A
E.0rumrp(P*) =a+ — 4+ —
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where

1 1
A:ﬁ;vﬁ and B:E;Wm.

(e) Now let 0 be any given, complicated functional statistic, which we want to approximate
with the third order functional statistic aTHIRD above. There are several candidates,
one of which is the 