
Exercises & Lecture Notes:

STK 390: Bootstrapping and Resampling Theory

Nils Lid Hjort, Spring 1990

These form a dynamically growing set of exercises and lecture notes, during my course.

Exercise No. 1

This exercise concerns the empirical distribution F̂ for an observed data set. F̂ is quite

central in the theory and practice of bootstrapping techniques.

Let F be a probability distribution on R, the real line. It is customary and convenient

to use F to denote two slightly different quantities: it can be viewed as a distribution

function, that is

F (t) = Pr{X ≤ t}, t ∈ R,

or as the accompanying probability measure, that is

F (A) = Pr{X ∈ A}, A a Borel set.

(a) So F has two different connotations; why is this acceptable?

(b) Assume that independent observationsX1, . . . , Xn have been drawn from F . The most

usual and indeed natural nonparametric estimator of F is the empirical distribution

F̂ , given as

F̂ (t) =
1

n

n∑

i=1

I{Xi ≤ t}, t ∈ R, or F̂ (A) =
1

n

n∑

i=1

I{Xi ∈ A}, A a set.

Find EF F̂ (t) and VarF F̂ (t), and comment. [Here and in the following I{. . .} denotes

the indicator function for {. . .}, so that I{Xi ≤ t} = 1 or 0 according to whether

Xi ≤ t or Xi > t. Furthermore, VarF means ‘variance evaluated under the model F ’,

&c.]

(c) Find also mean value and variance (under F ) for the random variable F̂ (A), for a

fixed set A.

(d) How accurate is the estimator F̂ for F? One out of several possible ‘overall measures’

for how close F̂ is to F , is the distance D(F, F̂ ) =
∫
{F̂ (t)−F (t)}2F (dt). A reasonable

quality measure for F̂ is accordingly the ‘risk function’

R(F̂ , F ) = EFD(F, F̂ ) = EF

∫
{F̂ (t)− F (t)}2F (dt).

Show that this risk function is identical to 1/(6n), for all continuous F ’s.

(e) Remember Glivenko & Cantelli, not to mention Kolmogorov, from 1933? What can

you say about D(F, F̂ ), and other distance measures, when the sample size n is large?

(f) (Ponder & ponder) Does F̂ have any shortcomings or inadequacies? What can

constitute good alternative estimators? Are there competing methods that are ‘bet-

ter’? How much better can F be estimated under parametric circumstances? See

Exercises 15, 16, 17.
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Exercise No. 2

The following data set was artificially generated, for the sake of illustrating several impor-

tant concepts:

1.3455, 0.3667, 0.4845, 0.7166, 0.3155,

1.0561, 1.7350, 1.1957, 1.7310, 3.6730,

0.1582, 1.9139, 0.6522.

The data points were actually drawn as an i.i.d. sample from the unit exponential distribu-

tion (with density g(t) = e−t for positive t). The point of view to be taken in the present

exercise is however the nonparametric one, so the sole assumption being made is that the

data set constitutes an i.i.d. sample of n = 13 from an unknown distribution F .

Consider the following parameter, which has been proposed as a measure of spread of

the underlying distribution:

θ = θ(F ) = medF {|X −med(F )|}, X ∼ F.

(If θ = 1.377 and µ is the median of F , then X’s from F are within 1.377 of µ half of the

time and more than 1.377 away from µ the other half of the time.)

(a) To get a feeling for the spread parameter θ, show that θ = .675σ in a Gaussian (µ, σ2)

distribution, and that θ = log( 12 + 1
2

√
5)λ = .481λ for the exponential distribution

with density (1/λ)e−x/λ. Show also that θ(F ) = F−1
0 ( 34 )σ when F (x) = F0(

x−µ
σ ) for

a ‘basis distribution’ F0 that is symmetric around zero.

(b) Discuss the merits of θ as an alternative to the more familiar and tradition-bound

standard deviation parameter, as a measure of spread.

(c) Make a histogram of the data, and plot the empirical cumulative distribution F̂ (t),

along with the underlying F (t) = 1− e−t. Use Minitab or something else you might

have available. (In particular, a nice exercise is to make up a Minitab-macro that for

given data column c1 produces a plot of F̂ (t) against t.)

(d) Compute the natural estimate

θ̂ = θ(F̂ ) = med{|X1 − µ̂|, . . . , |Xn − µ̂|},

in which µ̂ is the sample median. (I got θ̂ = 0.6749.)

(e) Of essential practical importance is the ability of statistical methodology to com-

plement the estimate θ̂ above with a measure of uncertainty, say an estimate of its

standard deviation, or its root mean square error. Let τ = τ(F ) be this root mean

square error, i.e.

τ2 = τ(F )2 = EF {θ(F̂ )− θ(F )}2

= EF {θ̂(X1, . . . , Xn)− θ(F )}2

=

∫
{θ̂(x1, . . . , xn)− θ(F )}2 dF (x1) · · · dF (xn).

2



This is certainly a complicated functional, since θ̂ is so complicated, and a closed form

expression seems unattainable. We can nevertheless consider

τ̂2 = τ(F̂ )2 = E
F̂
{θ( ̂̂F )− θ(F̂ )}2

= E
F̂
{θ̂(X∗

1 , . . . , X
∗
n)− θ(F̂ )}2

=

∫
{θ̂(x∗

1, . . . , x
∗
n)− θ(F̂ )}2 dF̂ (x∗

1) · · · dF̂ (x∗
n).

X∗
1 , . . . , X

∗
n in the next-to-last expression are an i.i.d. sample from F̂ , i.e. randomly

drawn, with replacement, from the original data points {X1, . . . , Xn}. — Explain why

τ̂ is an explicit estimator, and that it can be computed, in principle, as a sum over

nn terms.

(f) From what n on would you say such a computational procedure, evaluating your

estimate as a sum of nn terms, is prohibitive?

(g) But there is another numerical scheme to compute τ̂ : τ̂2 = τ(F̂ )2 = E∗Z
∗, say, where

Z∗ = (θ̂∗ − θ̂)2 = {θ̂(X∗
1 , . . . , X

∗
n)− θ(F̂ )}2

is a random variable which can be simulated easily, e.g. with the help of a simple

Minitab-macro. Obtain a (large) number boot of independent values Z∗
1 , . . . , Z

∗
boot,

with

Z∗
b = (θ̂∗b − θ̂)2 = {θ̂(X∗b

1 , . . . , X∗b
n )− θ(F̂ )}2 = {θ̂(X∗b

1 , . . . , X∗b
n )− 0.6749}2,

and use τ̂2 ≈ 1
boot

∑boot
b=1 Z∗

b (an approximation guaranteed by Kolmogorov (1903–

1987) and his law of large numbers). Do this in the present situation, with boot equal

to 20, 100, and 1000. — Here {X∗b
1 , . . . , X∗b

n } constitutes bootstrap sample no. b, and

is an i.i.d. sample, with replacement, from the original data points. ‘E∗{. . .}’ signals
mathematical expectation of {. . .} within the bootstrap framework, in which the X∗

i ’s

are i.i.d. from F̂ . In particular, E∗{. . .} refers to a stochastic framework entirely in

the hands of the statistician and her electronical computer, in which the data values

are given and fixed, as opposed to the ‘outer’ statistical model from which the data

points were generated.

Exercise No. 3

The point to be made now is that the bias and median-bias of a given estimator θ̂ = θ(F̂ )

can be estimated (and later on corrected for), for a given set of data values.

Let

β = β(F ) = EF θ̂ − θ(F ) = EF θ̂(X1, . . . , Xn)− θ(F )

be the bias (w.r.t. expectation) of θ̂. For concreteness let the θ = θ(F ) functional be as

in the previous exercise. Then no closed form expression for the bias can be found. It can

still be estimated, however, in a bootstrap way: let

β̂ = β(F̂ ) = E
F̂
θ̂∗ − θ(F̂ ) = E∗W

∗,
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say, where W ∗ = θ̂∗− θ̂ and θ̂∗ = θ̂(X∗
1 , . . . , X

∗
n). Obtain a number boot of bootstrap esti-

mates θ̂∗ from your computer, resulting in independently simulated values W ∗
1 , . . . ,W

∗
boot,

and let their average constitute your numerical approximation to β̂.

(a) Do this for boot = 20, 100, 1000, in the situation of the previous exercise, and compute

along the way the bias-corrected estimate θ̂BC = θ̂ − β̂, which purports to have zero

bias.

(b) Statisticians aiming at a track record with the admirable property that they overesti-

mate parameters about as often as they underestimate them, need median-unbiased

estimators. Let

γ = γ(F ) = medF θ̂ − θ(F )

be the median-bias, subsequently to be estimated and removed. Devise a bootstrap

way of doing this, and do it! in the situation of the previous exercise. Compare your

median-corrected estimate θ̂MC with the expectation-corrected θ̂BC.

What we have to learn to do we learn by doing.

— Aristotle, Ethica Nicomachea II (c. 325 B.C.)

Exercise No. 4

The bootstrap computations can be considered as simple numerical devices to evaluate

estimates of the empirical-functional type τ(F̂ ). For a small number of simple functionals

these numbers can be computed explicitly, without resampling strategies. Consider in

particular the familiar parameters

θ = θ(F ) = EFXi =

∫
x dF (x),

σ2 = σ(F )2 = VarFXi =

∫
{x− θ(F )}2 dF (x).

(a) Find explicit (and familiar!) expressions for θ̂ = θ(F̂ ) and σ̂ = σ(F̂ ).

(b) Let β1 = β1(F ) be the bias for θ̂, and β2 = β2(F ) the bias for σ̂2. Give expressions

for β1 and β2, and for the natural estimates β̂1 = β1(F̂ ) and β̂2 = β2(F̂ ). Show that

the bootstrap scheme, involving bootstrap samples X∗
1 , . . . , X

∗
n, if applied here, leads

to the same results! What are the resulting bias-corrected estimators for θ and σ2?

(c) Next consider

τ1 = τ1(F ) = stdevF (θ̂) =

√
VarF θ̂, τ2 = τ2(F ) = stdevF (σ̂

2) =
√
VarF σ̂2.

Find expressions for τ̂1 = τ1(F̂ ) and τ̂2 = τ2(F̂ ), and show again that the bootstrap

scheme also leads to these expressions.

Exercise No. 5

Let x1, . . . , xn be the original data set, supposed to be realisations of random variables

X1, . . . , Xn that were i.i.d. ∼ F , and suppose that there are no ties in the data. Let

X∗
1 , . . . , X

∗
n be a bootstrap sample, i.e. they are i.i.d. ∼ F̂ , the empirical distribution.
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(a) Find

E∗X
∗
i , Var∗ X

∗
i , E∗

1

n

n∑

i=1

X∗
i , Var∗

1

n

n∑

i=1

X∗
i ,

in which the subscript ∗ again refers to the bootstrap framework, conditional on the

data points.

(b) Letting X̄∗ = 1
n

∑n
i=1 X

∗
i , find

E{E∗X̄∗}, E{Var∗X̄∗}, Var{E∗X̄∗}.

(c) Finally find

EX∗
i , VarX∗

i , EX̄∗, and Var X̄∗.

Exercise No. 6

Let X∗
1 , . . . , X

∗
n be a bootstrap sample, as in the previous exercise. Let M be the number

of the original data points xi that manage to escape the looming bootstrap, i.e. M =∑n
i=1 Mi, where Mi is indicator for {xi is not in the bootstrap sample}.

(a) Show that E∗M = npn, where pn = (1− 1
n )

n .
= e−1 = .368. Accordingly, an average

bootstrap sample includes only 63.2% of the original data points.

(b) Why is M not binomial (n, pn)? Show that

Var∗

[
(M − npn)/

√
n
]
→ e−1(1− e−1)− e−2

as n grows. In particular the distribution of M is distinctively different from the

binomial, even asymptotically. Can you supply a limit distribution result?

Exercise No. 7

The previous exercise showed that in an average bootstrap sample, about 36.8% of the

original data points will not be included, so X∗
1 , . . . , X

∗
n will most probably contain repli-

cates of some of those that are included. Let Ni be the number of replicates of sample

point xi in the bootstrap sample.

(a) Show that Ni ∼ Bin(n; 1
n ), and put down E∗Ni and Var∗ Ni.

(b) More generally, convince yourself that N = (N1, . . . , Nn)
′ is multinomial (n; 1

n , . . . ,
1
n ).

What is cov∗(Ni, Nj)?

(c) Let P0 = ( 1n , . . . ,
1
n )

′ and P∗ = (P ∗
1 , . . . , P

∗
n) = (N1/n, . . . , Nn/n)

′. We might call

P∗ a (bootstrap) resampling vector. Note that E∗P
∗ = P0. Show that VAR∗ P

∗ =
1
n2 [I − 1

nee
′], where e = (1, . . . , 1)′.

(d) How far is {X∗
1 , . . . , X

∗
n} from being equal to the original data set {x1, . . . , xn}? This

question matters for parts of the theoretical support behind the bootstrap method,

and can be rephrased to questions involving the distance ‖P∗−P0‖, the square of

which is
∑n

i=1(Ni/n−1/n)2. Compute the expected squared distance. Show that the

distance ‖P∗−P0‖ is O∗
p(1/

√
n). Show, on the other hand, that the corresponding
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distance ‖P(i)−P0‖ is O(1/n), i.e. much smaller, for jackknife resampling vectors P(i)

= ( 1
n−1 , . . . , 0, . . . ,

1
n−1 ). In a sense the jackknife estimates F̂(i) of F are too close to

the simple F̂ , while the random bootstrap estimates F̂ ∗ come sufficiently far away to

display the genuine uncertainty.

(e) Devise a Minitab-macro that produces outcomes of N = (N1, . . . , Nn), and have a

look.

Exercise No. 8

Let θ̂ = θ̂n(X1, . . . , Xn) estimate θ = θ(F ), where the θ̂n-function is defined for every n,

and is symmetric in its n arguments. Write

EF θ̂ = θ(F ) + b(F ),

i.e. b(F ) is the bias of the estimator. Statisticians have devised several general schemes

that intend to estimate the bias, based directly on the data, producing b̂, say, so that a

new and hopefully bias-corrected estimate θ̃ = θ̂− b̂ can be put forward. One scheme is the

bootstrap one, and another, historically preceding the bootstrap, is the jackknife method.

Define θ̂(i) = θ̂n−1(X1, . . . , Xi−1, Xi+1, . . . , Xn) and θ̂(·) =
1
n

∑n
i=1 θ̂(i). The jackknife

estimator for bias is b̂JACK = (n−1)(θ̂(·)−θ̂). The accompanying jackknife (bias-corrected)

estimate for θ becomes

θ̂JACK = nθ̂ − (n− 1)θ̂(·).

It is important to observe that θ̂ does not need to be of the functional estimator form

θ̂ = θ(F̂ ) here (but one needs θ = θ(F ) in order to define the bias b(F ) = bn(F ) =

EF {θ̂n − θ(F )} properly).

The great practical advantage is of course the generality of the proposed method; it

can be put to use even in situations where no closed form expression can be derived for

θ̂(·). It is instructive to find such expressions in not-so-complex situations, however. Find

explicit formulae for the jackknife estimator, and for the jackknife estimate of bias, in

the following situations, and find out, if possible, whether the resulting procedure really

succeeds in getting smaller bias than the original estimator:

(a) θ̂ = 1
n

∑n
i=1 Xi = X̄, an estimator for θ = EFXi =

∫
x dF (x).

(b) σ̂2 = 1
n

∑n
i=1(Xi − X̄)2, an estimator for σ2 = VarF Xi =

∫
{x− θ(F )}2 dF (x).

(c) γ̂ = 1
n

∑n
i=1(Xi − X̄)3, an estimator for γ = EF {Xi − θ(F )}3.

(d) µ̂ = median{X1, . . . , Xn}, an estimator for µ = median(F ) = F−1( 12 ).

(e) τ̂ = upper quartile − lower quartile, an estimator for the spread parameter τ =

F−1( 34 ) − F−1( 14 ). [To do this particular sub-exercise properly, one needs to decide

on which order statistic to use, or what combination of which two order statistics,

to estimate F−1(p). There is no universal agreement on this issue in the statistical

community. One reasonable argument is the following: One has EFF (X(i)) = i
n+1

(prove it!), so that X(i)
.
= F−1( i

n+1 ). Let i = i(p) be the smallest integer ≥ (n+ 1)p,

so that i
n+1 = p + ε and i−1

n+1 = p − ( 1
n+1 − ε), with 0 ≤ ε < 1

n+1 . Now show that

the linear combination cX(i−1) + (1− c)X(i) becomes approximately unbiased for the
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sought-after F−1(p), with the choice c = i − (n + 1)p, 1 − c = (n + 1)p − (i − 1). —

Using this strategy, what are the estimates for τ based on a 100-sample, a 99-sample,

and a 98-sample?] In particular, find expressions for τ̂ , τ̂(·), b̂JACK, and τ̂JACK, based

on an ordered 99-sample X(1), . . . , X(99).

(f) Your own choice.

Exercise No. 9

Consider the general framework of the previous exercise, involving an estimator θ̂ = θ̂n for

a parameter θ. Assume that

En = EF θ̂n(X1, . . . , Xn) = θ(F ) +
c1(F )

n
+

c2(F )

n2
+

c3(F )

n3
+ · · · ;

in particular, θ̂ has bias of the order O(1/n). There are many examples of this form for

the bias; show, for example, that γ̂ = 1
n

∑n
i=1(Xi − X̄)3 has expectation (1 − 3

n + 2
n2 )γ,

where γ = EF {Xi − EF (Xi)}3.
(a) Show that the bias-corrected jackknife estimator θ̂JACK = nθ̂ − (n− 1)θ̂(·) has

EF θ̂JACK = θ(F )− c2(F )

n(n− 1)
− c3(F )

[ 1

(n− 1)2
− 1

n2

]
− · · · ,

i.e. the bias has been reduced to order O(1/n2).

(b) It is possible to go one step further: Let

θ̂(i,j) = θ̂n−2(X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn),

where both Xi and Xj have been removed from the data set, and let θ̂(·,·) =
∑

i<j θ̂(i,j)
/
(
n
2

)
be their average. Devise a ‘double jackknife’ estimator of the form

θ̂DOUBLEJACK = aθ̂ + bθ̂(·) + cθ̂(·,·)

that has bias of order O(1/n3)! [Answer: a = 1
2n

2, b = −(n − 1)2, c = 1
2 (n − 2)2.]

Write down the first couple of terms in the bias expansion.

(c) Find an expression for the double jakknife estimator whose point of departure is

γ̂ = 1
n

∑n
i=1(Xi − X̄)3. Does it succeed in lowering the bias?

(d) Too laborious de-biasing can quickly lead to overkilling, however; correcting too heav-

ily for bias can lead to too much to pay in variance. Construct an example and carry

out a small simulation study to see for yourself.

Exercise No. 10

In the best spirit & tradition of Icelandic and Hebrew, construct or invent proper and

fitting Norwegian terms for ‘jackknife’ and ‘bootstrap’. Bradley Efron, in the historical

début paper for the bootstrap (Bootstrap methods: another look at the jackknife, Annals

of Statistics 1979), graciously put forward alternative terms for the method, including
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‘Shotgun’, ‘Swan-Dive’, ‘Swiss Army Knife’, ‘Jack-Rabbit’, and ‘Meat Axe’. (And what

about ‘Jack of Diamonds’, ‘Slaughterknife Five’, and ‘Jack the Crusher’?) – Among recent proposals

are ‘kjøttøks’, ‘kjøttkvern’, and ‘Food Processor’ (sic).

A Euro-cultural case in point is Freiherr Baron Karl Friedrich Hieronymus von Münch-

hausen (1720–1797), who [as we all remember] managed to save both himself and his horse

from sinking into a quagmire by pulling his pigtail.

N̊ar ein skal studera det norske ordfanget, m̊a ein fyrst og fremst ha kjennskap til det

levande bruket av ordi og til det miljøet der ordi vert nytta. Og nemningsbruket m̊a

granskast i samband med etterrøkjingar um dei ting, skikkar, truer og fyrestellingar

som det høyrer i hop med. — Ein skynar ikkje eit m̊al utan at ein kjenner levevilk̊ari

til det folket som nyttar dette m̊alet. Heller ikkje kann ein til fullnads skyna trudom

og seder hj̊a eit folk um ein ikkje kjenner m̊alet til det same folket.

— Nils Lid, Norske Slakteskikkar (1924)

Exercise No. 11

Hjort (1986, Annals of Statistics) derived, rather in passing, and following Bayesian non-

parametric considerations, the following estimator for the median θ = F−1( 12 ) of a contin-

uous distribution:

θ̂ =
n∑

i=1

(
n− 1

i− 1

)
( 12 )

n−1 X(i),

in which X(1) ≤ . . . ≤ X(n) are the order statistics. Of course it cannot possibly be

unbiased; —

(a) Does there exist any unbiased estimator for the median at all?

— so there is some interest in estimating its bias, based on the data points themselves, for

subsequent removal, as in θ̃ = θ̂ − b̂ias. The present exercise looks into two methods for

estimating the bias

b(F ) = bn(F ) = EF θ̂ − θ(F ),

namely the jackknife method and the bootstrap method.

(b) Show that, with the usual jackknife notation,

θ̂(·) =
n∑

j=1

(
n− 1

j − 1

)
( 12 )

n−1 2
n− 1

n

[( j − 1

n− 1

)2

+
(n− j

n− 1

)2]
X(j).

Put up an expression for b̂JACK.

(c) Describe the bootstrap procedure that leads to b̂boot.

(d) Assume now that F = F0 is the unit exponential distribution, F0(t) = 1 − e−t for

positive t, and take n = 17, for concreteness. Under the exponential model it holds

that X(i) has expected value 1
n + 1

n−1 + · · · + 1
n+1−i . Compute the bias b = b(F0),

the parameter to be estimated. Compute the expected values of θ̂, θ̂(·), b̂JACK, and

θ̂JACK.

8



(e) Carry out a simulation experiment, consisting of 100 sets of outcomes X1, . . . , X17,

look at the distribution of the 100 realisations of b̂JACK, and in particular, assess its

mean, standard deviation, and coefficient of variation (standard deviation divided by

mean). (One could presumably do the theoretical calculations, with a lot of algebraic

effort, for example to find Var b̂JACK, but doing simulations is simply cheaper, at

NKr. 550 an hour.)

(f) For each of the 100 simulated sets {X1, . . . , X17}, carry out 250 bootstrap simulations

{X∗
1 , . . . , X

∗
17} in order to arrive at a value of b̂boot. Look at the distribution of these

100 values, and assess its mean, standard deviation, and coefficient of variation. Reach

a conclusion: which one of the two methods for bias estimation performed best, for

F = F0 and n = 17?

(g) And: which one of the three estimators θ̂, θ̂JACK = θ̂ − b̂JACK, θ̂boot = θ̂ − b̂boot for

the median performed best, for F = F0 and n = 17?

Exercise No. 12

The jackknife machinery provides not only an estimate of the bias, for any given parameter

estimator, but also an estimate of its variance:

V̂arJACK =
n− 1

n

n∑

i=1

[
θ̂(i) − θ̂(·)

]2
.

This estimate intends to be close to VarF θ̂ (as opposed, for example, to VarF θ̂(·)).

(a) Find V̂arJACK when θ̂ = X̄. Comment on the result.

(b) Find similarly V̂arJACK for the variance estimator σ̂2 = 1
n

∑n
i=1(Xi − X̄)2, and com-

ment.

Exercise No. 13

Consider once more the jackknife apparatus, the point of departure for which is a given

estimator θ̂. We have seen how the bias and the variance of θ̂ can be estimated using

jackknife values θ̂(1), . . . , θ̂(n). But what about the jackknife estimate of the variance of

the jackknife-bias-corrected estimator for θ? That is, consider θ̂JACK = nθ̂− (n− 1)θ̂(·) as

the basic estimator, and find the jackknife variance estimator for this estimator, by first

finding θ̂JACK,(i) and so on.

Exercise No. 14

This exercise provides an asymptotic justification for the jackknife estimator of variance,

for a certain class of estimators. This is the reasonably large class of estimators that are

smooth functions of averages or that can be approximated by such.

Let X1, . . . , Xn be i.i.d. from F , perhaps in a higher-dimensional space, and assume

that θ̂ = h(Ān, B̄n), where Ān and B̄n are averages of respectively Ai’s and Bi’s, and

where Ai and Bi are functions of Xi. The classical large-sample solution to the problem of

assessing the variability of θ̂ is the delta method, essentially based on a first order Taylor

series approximation. It works as follows:
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Observe first that
√
n(Ān − a, B̄n − b)′ converges in distribution to (M,N)′, say, by

the central limit theorem, a Gaussian two-vector with means zero and a covariance matrix

Σ, the elements of which are σ2
1 = VarAi, σ

2
2 = VarBi, and σ12 = cov(Ai, Bi). Also,

a = EAi and b = EBi. It then follows that

√
n(θ̂ − θ) →d N(0, κ2),

where

κ2 = Dh(a, b)′ ΣDh(a, b) =
[
∂h
∂a (a, b)

]2
σ2
1 +

[
∂h
∂b (a, b)

]2
σ2
2 + 2 ∂h

∂a (a, b)
∂h
∂b (a, b)σ12.

Dh(a, b) here is the 2-row vector containing the partial derivatives of h, evaluated at the

point (a, b).

(a) The delta method approximation to Var θ̂ is κ2/n, which can be estimated by

κ̂2/n = Dh(Ān, B̄n)
′ Σ̂Dh(Ān, B̄n).

Write down an explicit expression.

(b) Show that

θ̂(i)
.
= θ̂ − ∂h

∂a
(Ān, B̄n)

Ai − Ān

n− 1
− ∂h

∂b
(Ān, B̄n)

Bi − B̄n

n− 1
.

(c) Give an expression for V̂arJACK, and show that it coincides with the variance estimate

arrived at by the delta method.

(d) Do things over again, but explicitly, in the following case: Pairs (Xi, Yi) are i.i.d., and

EXi = µ1, EYi = µ2. The parameter θ = µ1 exp(µ2) is of interest, and the natural

estimator is θ̂ = X̄n exp(Ȳn).

(e) And do them over again, but in a more general and compactly-written way, with q

averages instead of two, and perhaps with a p-dimensional θ-parameter.

Exercise No. 15

The ordinary, nonparametric bootstrap is based on drawing bootstrap samples X∗
1 , . . . ,

X∗
n from the empirical distribution F̂ . The success of the subsequent bootstrap analysis

is critically dependent on the quality of the nonparametric estimate F̂ for F . About how

much better can one fare in parametric waters?

If Zn(t) =
√
n{F̂ (t)−F (t)}, then Zn converges in distribution to the process Z, where

Z(t) = W 0{F (t)} and W 0(.) is the Brownian bridge; it is Gaussian, W 0(0) = W 0(1) = 0,

has EW 0(u) = 0, and cov{W 0(u),W 0(v)} = u(1 − v) for u ≤ v. The convergence in

question takes place in the space D[−∞,∞] of all functions on the line that are right

continuous with left hand limits and which possesses limits at +∞ and −∞, equipped

by the Skorohod metric, see e.g. Billingsley (1968). It ensures in particular that g(Zn)

converges in distribution to g(Z) for every continuous functional g.

(a) Show that

√
n‖F̂ − F‖ =

√
n max

t∈R
|F̂ (t)− F (t)| →d ‖W 0‖ = max

0≤u≤1
|W 0(u)|,
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the distribution of which is tabulated in standard collections. This result gives rise

to the celebrated Kolmogorov-Smirnov confidence band for the unknown F , and one

can test hypotheses of the type F = F0. The point to make presently is that it gives

precise information about how well F̂ estimates F , in terms of the maximal error

D(F, F̂ ) = ‖F̂ − F‖ = max
t∈R

|F̂ (t)− F (t)|.

(b) The limit distribution above can be given in the form

lim
n→∞

PrF {
√
nmax

t∈R
‖F̂ − F‖ ≤ y} = 1− 2

∞∑

j=1

(−1)j−1e−2j2y2

, y ≥ 0.

Derivations can be found in Billingsley (1968, Section 11) and in Hájek and Šidák

(1967, pp. 199–200). Owen’s Handbook of Statistical Tables (1962, pp. 439–440) has

a wrong formula but a correct table of probabilities. — Why hasn’t anybody told me

that

E ‖W 0‖ =
√
π/2 log 2, E ‖W 0‖2 =

π2

12
?

Show this, and conclude that the mean and standard deviation are 0.8687 and 0.2605

respectively. The median, by interpolation in Owen’s table, is 0.8267. [Hints: EY =∫∞

0
{1−G(y)}dy and EY 2 =

∫∞

0
{1−G(

√
y)}dy for non-negative variables Y . Also,

1− 1
2 + 1

3 − 1
4 + · · · = log 2, and 1− 1

4 + 1
9 − 1

16 + · · · = π2/12 (prove it!).]

(c) On the other and parametric hand, suppose that F (t) = Fθ(t) for some unknown

parameter θ, a priori. Then

Vn,θ(t) =
√
n{F

θ̂
(t)− Fθ(t)} .

= Gθ(t)
′
√
n(θ̂ − θ),

where

Gθ(t) =
∂
∂θFθ(t) =

∫ t

−∞

fθ(s)
∂ log fθ(s)

∂θ ds.

Utilise this to find explicit expressions for the limiting process Vθ(t), say, in the fol-

lowing cases:

(i) Xi ∼ Exp(θ). [Answer: Vθ(t) = θt exp(−θt)N , where N is a N(0, 1) variable.]

(ii) Xi ∼ N(µ, σ2), σ2 known.

(iii) Xi ∼ N(µ, σ2), µ known.

(iv) Xi ∼ N(µ, σ2), both parameters unknown. [Answer: Vµ,σ(t) = −φ( t−µ
σ )

[
N +

t−µ
σ M/

√
2)
]
, where N and M are independent N(0, 1) variables.]

(v) Your own choice. [Answer: Go confidently in the direction of your dreams.]

(d) In these examples,
√
n‖F

θ̂
− Fθ‖ converges to ‖Vθ‖ = maxt∈R |Vθ(t)| in distribution.

Find this limit distribution as explicitly as possible, in each of the five cases considered

above.

(e) Try to assess how much smaller
√
n‖F

θ̂
−F‖ will be in these parametric examples, for

large n, than the nonparametric
√
n‖F̂ − F‖. You might e.g. compare mean values

11



and/or median values in the limit distributions. [Answers, for the limiting ratio

EF ‖Fθ̂
− F‖ /EF ‖F̂ − F‖:

(i) 2/(eπ log 2) = 1/2.9596 = .3379.

(ii)
√
2/(π

√
π log 2) = 1/2.7292 = .3664.

(iii) 1/(π
√
πe log 2) = 1/6.3635 = .1571.

(iv) E J(α)/ log 2, where J(α) = max{|h(s1)|, |h(s2)|}, h(s) = {cosα + (s/
√
2) sinα}

φ(s), where s1 and s2 are the two roots of h′(s) = 0, and where α ∼ uniform

on [0, 2π]; ratio = 1/2.1724 = .4603, evaluated based on numerical integration∫ 2π

0
J(α) dα/(2π). The value of E J(α) is mysteriously close to 1/π, which would

have given ratio = 1/(π log 2).

(v) Live the life you have imagined.]

(f) In the idealised parametric situation, suppose one uses n observations, thereby achiev-

ing EF ‖Fθ̂
− F‖ .

= a/
√
n, where a = E ‖Vθ‖ is the constant appropriate for the para-

metric situation studied. About how much larger must the number m of observations

be if the same accuracy is to be obtained using the nonparametric F̂? [Answers:

(i) m
.
= 8.76n; (ii) m

.
= 7.45n; (iii) m

.
= 40.49n (but then that situation is hardly

realistic); (iv) m
.
= 4.72n.]

Exercise No. 16

We continue the theme of the previous exercise. We know how well the distribution F can

be estimated nonparametrically, and try to understand and assess how much better it can

be estimated in idealised parametric situations. Instead of the quality measure ‖F̃ − F‖
considered there, let us now study

D(F, F̃ ) =

∫
|F̃ (t)− F (t)| dF (t).

It is interesting to study the difference between the nonparametric and parametric situation

w.r.t. this distance measure in the first place, since it is a very natural loss function, and

secondly it is of separate interest for a practicing decision theorist if there is such a thing to

see whether two natural but very different loss functions, that of maximal absolute error

and that of expected absolute error, give approximately the same qualitative answers.

(a) For the nonparametric case, show that

√
n

∫
|F̂ (t)− F (t)| dF (t) →d J =

∫ 1

0

|W 0(u)| du.

Resist trying to find the very intricate probability distribution of J , leave it rather

to Larry Shepp (Annals of Probability, 1982), but show that E J = π
8 E |N(0, 1)| =√

2π/8.

(b) For the general parametric case, where F = Fθ for some underlying θ, show that

√
n

∫
|F

θ̂
(t)− F (t)| dF (t) →d

∫
|Vθ(t)| dFθ(t),
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in the notation of Exercise 15. Find as explicit expressions as possible for this limit

distribution variable in the five parametric cases considered there. [Answers: (i)

|N |/4; (ii) |N |/(2√π); (iii) |N |/(2
√
2π); (iv)

∫
|N + 1

2xM |φ(x) dx/(2√π).]

(c) Find the limiting ratios EFD(F, F
θ̂
) /EFD(F, F̂ ), and compare with 15(e). [An-

swers: (i) 2/π = .6366; (ii) 4/(π
√
π) = 0.7183; (iii) 4/(

√
2π2) = 0.2866; (iv)

4c/(π
√
π) = 0.7968. Here c is E (1 + 1

4N
2)1/2, with a numerical value of 1.1093,

obtained through numerical integration in Minitab. Do this yourself, and compare

with the value you get from 100,000 simulations, and with what you get, still in

Minitab, after first writing c as an infinite sum.]

(d) As in 15(f), the number m of data points needed to achieve the same accuracy with the

nonparametric method as one does with n data points using the parametric method,

still assuming that the parametric model is exactly correct which is unrealistically opti-

mistic, needs to be larger than n, but by how much? [Answers: (i) 2.47n; (ii) 1.93n;

(iii) 12.17n; (iv) 1.58n.]

(e) Stop to think.

Exercise No. 17

Decision theorists have usually employed quadratic loss functions, like the Gaussian (α̃−
α)2, but mostly for reasons of mathematical ease. They have offered hopeful remarks that

other loss functions, which like the Laplacean |α̃ − α| might have even stronger intuitive

appeal, but are much more complicated to work with (in the classicist sense of obtaining

explicit solutions, and so on), ought to give approximately the same qualitative results:

estimators derived from the same principle, for loss functions 1 and 2, should be reasonably

similar; the difference in quality between estimators 1 and 2 should be similar from the

point of view of loss functions 1 and 2; and so on.

Since this is a chance to investigate these matters, however briefly, let’s muster the

stamina to work through the problems of Exercises 15 and 16, but this time entertaining

the quadratic distance measure

D(F, F̃ ) =

∫
{F̃ (t)− F (t)}2 dF (t).

We should admit at the outset that putting up a meaningful distance measure between

distribution functions F̃ and F is much more difficult than measuring distance between real

numbers α̃ and α. Hence one should not expect too much similarity regarding qualitative

conclusions drawn from working with
∫
|F̃ − F | dF on one side and

∫
(F̃ − F )2 dF on the

other.

(a) For the nonparametric case, show that

nD(F, F̂ ) = n

∫
{F̂ (t)− F (t)}2 dF (t) →d

∫ 1

0

W 0(u)2 du = CvM.

The distribution of CvM is complicated, but can be expressed in terms of an infinite

linear combination of independent χ2
1-variables, and is tabulated several places. It is
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commonly used to test hypotheses of the form F = F0. D(F, F̂ ) is called the Cramér–

von Mises test statistic. — Anyway, show that CvM has mean value 1/6 and standard

deviation 1/3.

(b) For the parametric cases, show that

nD(F, F
θ̂
) = n

∫
{F

θ̂
(t)− F (t)}2 dF (t) →d

∫
Vθ(t)

2 dFθ(t).

Find explicit expressions for the limit distribution variable in the five cases you have

studied above. [Answers: (i) N2 2
27 ; (ii) N

2/(2
√
3π); (iii) N2/(12

√
3π); (iv) (N2 +

1
6M

2)/(2
√
3π); (v) tell me.]

(c) Using the distance measure under consideration, give the limiting ratios EFD(F, F
θ̂
) /

EFD(F, F̂ ), in the five parametric situations. [Answers: (i) .4444; (ii) .5513; (iii)

.0919; (iv) .6432.]

(d) And, finally, find the limiting sample-size ratios m/n, in the notation of 15(f) and

16(d). Delight yourself by comparing these numbers to those of 16(d). [Answers: (i)

2.25 (exact!); (ii) 1.81; (iii) 10.88; (iv) 1.55.]

(e) Try to sum up the experience of Exercises 15, 16, and 17. Put up a small ta-

ble of limiting sample-size ratios m/n, sorted according to parametric model and

loss function! Please include other loss functions as well, if you have time, like

D(F, F̃ ) =
[∫

(F̃ − F )2 dF
]1/2

. You might also usefully include sample-size ratios

based on studying medFD(F, F
θ̂
) vs. medFD(F, F̂ ).

(f) Speculate about the value of parametric bootstrapping as an alternative to ordinary,

nonparametric bootstrapping.

Exercise No. 18

Let θ = θ(F ) be a functional, defined for all distributions F on the real line. Define

I(x) = I(F, x) = lim
ε→0

θ(Fε)− θ(F )

ε
,

where Fε = (1 − ε)F + εδ(x), and δ(x) is the point mass probability measure at point x.

Thus Fε is the distribution of a variable Y that with probability 1− ε is an X drawn from

F and with probability ε is equal to x. Such an Fε is also referred to as a contamination

of F . The function I(F, x) of x is called the influence function for the functional θ(.).

I hate definitions.

— Benjamin Disraeli

Find as explicit expressions as possible for the influence function in each of the fol-

lowing cases:

(a) ξ = ξ(F ) = EFX =
∫
x dF (x).

(b) σ2 = σ2(F ) = VarFX =
∫
{x− ξ(F )}2 dF (x).

(c) σ = σ(F ) = stdevFX. Formulate and prove a general chain rule for the influence

function of a functional ν(F ) = g(θ(F )).
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(d) ν = ν(F ) = σ(F )/ξ(F ), the coefficient of variation for F . Formulate and prove a

more general chain rule, applicable to functionals ν(F ) = g(θ1(F ), . . . , θp(F )).

(e) γ = γ(F ) = EF {X − ξ(F )}3.
(f) µ = µ(F ) = F−1( 12 ), the median. Generalise to F−1(p). – Explain, in terms of

influence functions, why the median is more robust than the mean.

(g) τ = τ(F ) = F−1( 34 ) − F−1( 14 ), the interquartile distance, a useful nonparametric

measure of spread.

(h) θ = θ(F ) = EF |X − µ(F )| =
∫
|x − µ(F )| dF (x), the spread measure studied in

Exercises 2 and 3.

Exercise No. 19

The maximum likelihood estimator θ̂, under a given parametric model fθ(x), maximises

(1/n)
∑n

i=1 log fθ(Xi) =
∫
log fθ(x) dF̂ (x), and accordingly takes aim at the parameter

value θ = θ(F ) that maximises EF log fθ(X) =
∫
log fθ(x) dF (x). In other and insightful

words, the maximum likelihood estimator can be viewed as θ̂ = θ(F̂ ), where θ(F ) is

the parameter value that minimises the Kullback-Leibler information distance ∆(f, fθ) =∫
f log(f/fθ) dx. Find its influence function.

Exercise No. 20

Let θ = θ(F ) be a parameter functional, and let θ̂ = θ(F̂ ) be the natural nonparametric

plug-in estimator. Under suitable regularity conditions,

θ̂ − θ = θ(F̂ )− θ(F ) =
1

n

n∑

i=1

I(F,Xi) +Op(
1

n
),

where I(F, .) is the influence function that befriended you above. Also, EF I(F,X) =∫
I(F, x) dF (x) = 0 under regularity.

(a) Show that
√
n(θ̂ − θ) converges in distribution to N(0, κ2), where

κ2 = κ2(F ) = VarF I(F,X) =

∫
I(F, x)2 dF (x).

For precise regularity conditions, see for example Boos and Serfling (Annals of Statis-

tics, 1980) or Huber’s Robust Statistics (1981), or James Reed’s Ph. D. thesis On the

definition of a von Mises functional (1976), or Liusa Fernholz’ von Mises calculus for

statistical functionals (1983).

(b) Find the limit distribution for
√
n(θ̂ − θ) in each of the examples of the Exercise 18,

by evaluating the κ2 expression.

Exercise No. 21

And find the limit distribution for
√
n(θ̂−θ), where θ̂ is the maximum likelihood estimator,

again by evaluating the κ2 =
∫
I(F, x)2 dF (x) expression, where the influence function

I(F, x) was found in Exercise 19. — This amounts to an important discovery in the theory
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of parametric inference: You have found the limit distribution of the maximum likelihood

estimator when the model is incorrect!, thereby generalising the classical textbook-result,

which invariably assumes that the model is right. See also Exercises 22, , and .

Exercise No. 22

Extend the definition of Exercise 18 to define multi-parameter influence functions in multi-

dimensional sample spaces. For example, what is the influence function of ξ = EFX

and of Σ = VARFX = EF {(X − ξ)(X − ξ)′}, when X = (X1, X2)
′ is two-dimensional,

with a distribution F in R2? And what is the influence function for the one-dimensional

correlation parameter ρ = ρ(F ) = corr(X1, X2)?

Formulate multi-parameter and multi-dimensional versions of Exercises 19, 20, 21 as

well. Show in particular that the influence function for the maximum likelihood functional

becomes

I(F, x) = J(θ0)
−1 ∂ log fθ0(x)

∂θ
,

in which θ0 = θ(F ) is the parameter value for which θ̂ML is consistent, and J(θ) is the

familiar Fisher information matrix, with elements

Ji,j(θ) = −EF
∂2 log fθ(X)

∂θi∂θj
= −

∫
∂2 log fθ(x)

∂θi∂θj
dF (x).

Exercise No. 23

One can define empirical influence functions, for functional parameters or for general es-

timators, in various ways. Consider in this exercise the nonparametric plug-in estimator

θ̂ = θ(F̂ ) for a parameter θ = θ(F ). Let P∗ = (P ∗
1 , . . . , P

∗
n) be a general resampling

vector, a probability distribution on the n data points x1, . . . , xn. Thus F̂ = F̂ (P0), say,

in which P0 = ( 1n , . . . ,
1
n ). The more general F̂ (P∗) gives rise to θ̂∗ = θ

(
F̂ (P∗)

)
= θ̂(P∗).

— Having established this framework, where the data points are fixed but the probability

weights attached to them can vary, introduce

Ui(ε) =
1

ε

{
θ̂(Pi,ε)− θ̂(P0)

}
,

in which Pi,ε = (1− ε)P0 + ε∆i, the probability distribution with weight (1− ε)/n+ ε on

xi and weights (1− ε)/n on each of the n− 1 remaining data points.

The influence function concept is tied to the notion of linearisation, or the art of

finding linear approximations to given functionals or estimators. The idea of a (first order

or second order) Taylor expansion of a given estimator can be made precise in several

ways. The traditional delta method linearises a function of averages by computing partial

derivatives w.r.t. these averages. Presently we have been led to consider θ̂ as a function of

resampling weightsP∗, and we should look for Taylor expansions of θ̂(P∗) aroundP∗ = P0.

(a) The version of U = (U1, . . . , Un) that most naturally matches the idea of a Taylor

expansion around P∗ = P0 uses the partial derivatives

Ui = Ui(0) = lim
ε→0

Ui(ε), i = 1, . . . , n.
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These are the tangential influence factors, making up the tangential influence vector

U . Compute Ui for θ(F ) being the mean, the variance, the standard deviation, and

the variation coefficient.

(b) Show that indeed

Ui = Ui(0) = I(F̂ , xi),

with I(F, x) defined as in Exercise 18. You can therefore find expressions for Ui by

simply inserting F̂ and xi in the expressions you were required to find in Exercise 18.

(c) Observe that Ui can be numerically computed in practice by simply putting e.g. ε =

.000001 in the definition of Ui(ε), if an exact expression is hard to derive. Do this,

and compare with the explicit solution, for the data set of Exercise 2, for a small list

of easy and not-so-easy functionals.

(d) Another choice corresponds to letting ε = −1/(n− 1). Show that the result becomes

UJACK,i = Ui(−
1

n− 1
) = (n− 1){θ̂ − θ̂(i)},

in which θ̂(i) = θ̂n−1(x1, . . . , xi−1, xi+1, . . . , xn) avoids xi, and is the familiar one from

jackknife analysis. Involved in UJACK,i are therefore the n jackknife resampling vectors

P(i) = ( 1
n−1 , . . . , 0, . . . ,

1
n−1 ), in addition to the central P0.

(e) And still another choice arises by putting ε = 1/(n+ 1). Show that this leads to

UPLUSJACK,i = (n+ 1)(θ̂[i] − θ̂),

where θ̂[i] = θ̂n+1(x1, . . . , xi, xi, . . . , xn) doubles xi instead of avoiding it. This proce-

dure is called the positive jackknife method.

(f) Compute explicitly Ui(ε), Ui, UJACK,i, UPLUSJACK,i for the cases ξ = EFX and σ =

stdevFX.

Exercise No. 24

The previous exercise established a framework in which (many) nonparametric estimators

θ̂ can be viewed as functions of the resampling vector P∗ = (P ∗
1 , . . . , P

∗
n). Now consider

the bootstrap resampling scheme, in which P ∗
i = Ni/n and (N1, . . . , Nn) is multinomial

(n; 1
n , . . . ,

1
n ).

(a) Show (again) that E∗P
∗ = P0, VAR∗P

∗ = (I − 1
nee

′)/n2, where e = (1, . . . , 1)′.

(We adopt a slightly confusing convention here and in what follows: we follow Efron

(SIAM, 1982) in taking the resampling vectors to be line vectors, but let all other

non-transposed vectors, like e above and U below, be column vectors.)

(b) Let θ̂ = µ+ (1/n)
∑n

i=1 α(xi) be a linear functional statistic. Show that

θ̂(P∗) = θ̂ + (P∗ −P0)U,

where Ui = αi − α. = α(xi) −
∑n

j=1 α(xj)/n. Note that a constant can be added to

all components of U without affecting the result (why?).
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(c) Show that E∗θ̂(P
∗) = θ̂ and that

Var∗θ̂(P
∗) =

1

n2

n∑

i=1

{α(xi)− α.}2.

This is also the bootstrap estimate of the variance of θ̂, so in this linear case there is

no need to actually carry out bootstrapping by computer simulation.

(d) More generally, let θ̂ be a quadratic functional statistic,

θ̂(x1, . . . , xn) = µ+
1

n

n∑

i=1

α(xi) +
1

n2

∑

i<j

β(xi, xj).

Here µ, α(.), and β(., .) are allowed to depend upon n, see e.g. page 24 of Efron (SIAM,

1982). Give an expression for the underlying θ(F ) functional, in terms of F . Show

that θ̂ also is a quadratic function of P∗,

θ̂(P∗) = a+ (P∗ −P0)U + 1
2 (P

∗ −P0)V (P∗ −P0)′,

where Ui = αi − α. + βi. − β.. and Vij = βij − βi. − β.j + β... Note that P0U = 0,

P0V = 0.

(e) Obtain the following expression for the bootstrap expectation of θ̂∗:

E∗θ̂(P
∗) = θ̂(P0) +

1

2n2

n∑

i=1

Vii.

What is the bootstrap estimate of the bias for θ̂?

(f) Why should one stop? Go on to the third order.

Exercise No. 25

The previous exercise considered bootstrap properties of linear and quadratic functional

statistics. What happens if one approximates a given, complicated θ̂(x1, . . . , xn) with a

linear or a quadratic statistic? — The notation quickly gets involved here; we use

b̂ias
methodA

{estimatorB} and V̂ar
methodC

{estimatorD}

to denote respectively the methodA-based estimate for the bias of estimatorB and the

methodC-based estimate for the variance of estimatorD.

(a) Let θ̂LIN be any suitable linear approximation to θ̂, of the form θ̂LIN(P
∗) = a +

(P∗−P0)U . Show that the bootstrap method estimate of the variance of θ̂LIN can be

written

V̂ar
boot

{θ̂LIN} =
1

n2

n∑

i=1

(Ui − Ū)2.
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(b) One particular linear approximation is

θ̂TAN = θ̂TAN(P
∗) = θ̂ + (P∗ −P0)U,

in which U = U(0) is the tangential influence vector studied in Exercise 23, also called

the infinitesimal jackknife factors. Demonstrate that this leads to

V̂ar
boot

{θ̂} ≈ V̂ar
boot

{θ̂TAN} =
1

n2

n∑

i=1

I(F̂ , xi)
2.

(c) Another linear approximation is available:

θ̂JACK = θ̂JACK(P
∗) = a+ (P∗ −P0)U,

where a and U are chosen such that the approximation and the given θ̂ agree for

P∗ = P(i), for i = 1, . . . , n. The linear functional is uniquely determined by these

requirements, although the representation above is not, since a constant can be added

to each element of U without changing the result. Show that one specification that

works is a = θ̂(·) and Ui = (n − 1){θ̂(·) − θ̂(i)}; it satisfies Ū = P0U = 0. Note the

connection to Exercise 23(d). Show that

V̂ar
boot

{θ̂} ≈ V̂ar
boot

{θ̂JACK}

=
(n− 1

n

)2 n∑

i=1

[
θ̂(i) − θ̂(·)

]2
=

n− 1

n
V̂ar

JACK
{θ̂}.

(d) Explore the analogous linear approximation θ̂PLUSJACK that is defined by requiring

it to agree with θ̂(P∗) for P[i] = ( 1
n+1 , . . . ,

2
n+1 , . . . ,

1
n+1 ), cf. Exercise 23(e). Write

down a formula for

V̂ar
PLUSJACK

{θ̂} = V̂ar
boot

{θ̂PLUSJACK}.

(e) Define a quadratic approximation to the given θ̂ of the form

θ̂QUAD = θ̂QUAD(P
∗) = a+ (P∗ −P0)U + 1

2 (P
∗ −P0)V (P∗ −P0)′,

where a and U and V are such that the approximating statistic agrees with θ̂(P∗)

for P0 and for P(1), . . . ,P(n). One can always arrange matters so that P0U = 0,

P0V = 0, cf. Exercise 24(d). — Obtain the following useful approximation formula

for a general bootstrap expectation:

E∗

[
θ̂(P∗)− θ̂(P0)

]
≈ E∗

[
θ̂QUAD(P

∗)− θ̂QUAD(P
0)
]

=
n− 1

n
(n− 1){θ̂(·) − θ̂} =

n− 1

n
b̂ias

JACK
{θ̂}.
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(f) Researchers in the field seem to tend to drop the (n−1)/n factor here, and accordingly

promote (n−1){θ̂(·)− θ̂} as the second order jackknife approximation to the bootstrap

expected value of θ̂(P∗) − θ̂(P0). This leads to the classical jackknife estimate of

bias, and adds authority and interpretational substance to this method, but there

are otherwise no good reasons for dropping the (n− 1)/n factor. — How should one

construct a third order approximation to the bootstrap bias?

Exercise No. 26

Prove that the equation xn + yn = zn cannot have integer solutions when the integer

exponent n is greater than or equal to three. Hint: Consult Yoichi Miyaoka, October 1988.

Deduce, as a Corollary, that the margin sometimes is narrower than one thinks.

Exercise No. 27

Consider the framework of Exercise 14: X1, . . . , Xn are i.i.d. from F , and the statistic

under consideration, not necessarily an estimator, is a smooth function of averages, or can

be approximated by such a function. Write θ̂ = h(Ā1, . . . , Āp), where Āj is the average

of Aj1 = gj(X1), . . . , Ajn = gj(Xn), say. — There are now a variety of nonparametric

methods available to the statistician for estimating the standard deviation of θ̂.

♦ The delta method reviewed in Exercise 14 gives

V̂ar
DELTA

{θ̂} =
1

n

∂h

∂a
(Ā)′ Σ̂

∂h

∂a
(Ā),

where Σ̂ =
∑n

i=1(Ai − Ā)(Ai − Ā)′/(n− 1).

♦ The influence function approach utilises the limit distribution result of Exercise 20,

which says that κ2(F )/n =
∫
I(F, x)2 dF (x)/n approximates Var θ̂. The natural non-

parametric estimate of this asymptotic variance is

V̂ar
INFLUENCE

{θ̂} =
1

n
κ2(F̂ ) =

1

n

∫
I(F̂ , x)2 dF̂ (x).

♦ The jackknife method produces

V̂ar
JACK

{θ̂} =
n− 1

n

n∑

i=1

[
θ̂(i) − θ̂(·)

]2
.

♦ The tangential influence viewpoint or the infinitesimal jackknife yields

V̂ar
TAN

{θ̂} = V̂ar
boot

{θ̂TAN} =
1

n2

n∑

i=1

I(F̂ , xi)
2.

♦ The bootstrap method estimate is

V̂ar
boot

{θ̂} = E∗{θ̂∗ − E∗θ̂
∗}2.
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♦ And let us throw in the jackknife approximation to the bootstrap estimate, to boot,

namely

V̂ar
BOOTJACK

{θ̂} = V̂ar
BOOT

{θ̂JACK} =
(n− 1

n

)2 n∑

i=1

[
θ̂(i) − θ̂(·)

]2
.

Explore the degree of equivalence of these approaches, and prove that all formulae

are asymptotically equivalent, and in fact consistent, under mild regularity. In this case,

where it is known that nVar θ̂ converges to some limit κ2, consistency means that n times

the variance estimate also converges, in probability, to κ2.

Exercise No. 28

Sometimes interest focusses on a quantity that depends upon both the data and the un-

known parameters of the model. In the nonparametric framework this means a function

R = R(F,x), where x = (x1, . . . , xn) is the vector of observed data, being i.i.d. ∼ F . The

bootstrap equivalent to R is

R∗ = R(F̂ ,x∗) = R(F̂ , x∗
1, . . . , x

∗
n),

where the x∗
i ’s are i.i.d. ∼ F̂ .

One particular use of R∗ is to approximate EFR(F,X) with E∗R(F̂ ,X∗). Re-employ

the reasoning of Exercise 25(e) to arrive at the following jackknife approximation:

E∗R(F̂ ,X∗) = E∗R(P∗)
.
=

(n− 1)2

n
{R(·) −R(P0)} .

= (n− 1){R(·) −R(P0)},

where R(·) is the average of the n values of R(P(i)).

Exercise No. 29

As a simple example, assume estimates

ξ̂ = ξ̂(x1, . . . , xn) = x̄ and σ̂2 = σ̂2(x1, . . . , xn) =

n∑

i=1

(xi − x̄)2/n

have been extracted from the data sample, and let

π = π(F,x) = PrF {Xnew > ξ̂ + 1.645 σ̂}
= EF I{Xnew > ξ̂(x) + 1.645 σ̂(x)}

=

∫
I{xnew > ξ̂ + 1.645 σ̂}dF (xnew).

Here Xnew denotes a future observation, independent of the given training set x1, . . . , xn

of data, and PrF and EF refer to probability statements w.r.t. Xnew, with the training

data fixed at their observed values. In prediction situations one is interested in precisely
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such probability statements w.r.t. forthcoming data, as opposed to statements about the

average probability over all possible training sets.

(a) Suppose for a minute that F is in fact Gaussian (ξ, σ2). Give an expression for π(F,x),

and contrast it with π(F ) = Eall π(F,X), where X1, . . . , Xn, Xnew are i.i.d. F in the

Eall statement.

(b) A simplistic estimator of π(F,x) is

π̂NAIVE = π(F̂ ,x) =
1

n

n∑

i=1

I{xi > ξ̂(x) + 1.645 σ̂(x)}.

Why is it näıve?

Write

π = π̂NAIVE + näıvité,

where

näıvité = näıvité(F,x) = π(F,x)− π̂NAIVE(x)

again is a random quantity depending upon both F and the training data x1, . . . , xn. Let

ω = ω(F ) = Eall näıvité(F,X)

be the average näıvité, over all possible training sets. The idea is to estimate π(F,x) by

correcting the näıve estimator for its average näıvité:

π̂ = π̂NAIVE + ω̂.

(c) Show that the bootstrap estimate of the average näıvité becomes

ω̂BOOT = ω(F̂ ) = E∗

[
π(F̂ ,X∗)− π̂NAIVE(X∗)

]
= E∗R(P∗),

in which

R(P∗) =
1

n

n∑

i=1

I{xi > ξ̂∗ + 1.645 σ̂∗} − 1

n

n∑

i=1

I{x∗
i > ξ̂∗ + 1.645 σ̂∗}

=
n∑

i=1

( 1

n
− P ∗

i

)
I{xi > ξ̂∗ + 1.645 σ̂∗},

and ξ̂∗ = ξ̂(x∗
1, . . . , x

∗
n), σ̂

∗ = σ̂(x∗
1, . . . , x

∗
n). The net result is

π̂BOOT = π̂NAIVE + ω̂BOOT.

Can you construct a Minitab macro that computes this?

(d) A simpler alternative to π̂BOOT is the cross validation or leave-one-out estimate

π̂CROSS =
1

n

n∑

i=1

I{xi > ξ̂(i) + 1.645 σ̂(i)},
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where ξ̂(i) and σ̂(i) are computed from x(i) = {x1, . . . , xi−1, xi+1, . . . , xn}. Give moti-

vation for this estimator. — Note that the cross validation estimator for π corresponds

to a cross validation estimator ω̂CROSS for ω.

(e) Following the scheme of the previous exercise, evaluate

ω̂BOOTJACK = (n− 1){R(·) −R(P0)}.

Show that this leads to

π̂BOOTJACK = π̂CROSS + π̂NAIVE − 1

n2

n∑

i=1

n∑

j=1

I{xj > ξ̂(i) + 1.645 σ̂(i)},

and find out how small the difference between the cross validation estimator and the

bootjack estimator is.

Exercise No. 30

Exercises 24 and 25 looked into jackknife type approximations to bootstrap expectations,

up to second order. The present exercise discusses third order approximations.

(a) Consider a third order functional statistic of the form

θ̂THIRD(P
∗) = a+ (P∗ −P0)U + 1

2 (P
∗ −P0)V (P∗ −P0)′

+ 1
6

n∑

i=1

n∑

j=1

n∑

k=1

Wijk(P
∗
i − 1

n )(P
∗
j − 1

n )(P
∗
k − 1

n ),

where Vij and Wijk are symmetric in their arguments. Show that one without loss of

generality can take each of the averages U., Vi., V.j , V. ., Wij., Wi.k, W.jk, Wi. ., W.j.,

W. .k, W. . . to be zero. [Hint: Consider Wnew
ijk = Wijk −Wij. −Wi.k −W.jk +Wi. . +

W.j. +W. .k −W. . ..]

(b) Recall that P ∗
i = Ni/n, where (N1, . . . , Nn) is multinomial (n; 1

n , . . . ,
1
n ). Show that

E∗

(
P ∗
i − 1

n

)(
P ∗
j − 1

n

)(
P ∗
k − 1

n

)
=

( 1

n

)3

E∗(Ni − 1)(Nj − 1)(Nk − 1)

=





(
1
n

)3(
1− 1

n

)(
1− 2

n

)
if i, j, k are equal;

−
(
1
n

)4(
1− 2

n

)
if two among i, j, k are equal;

2
(
1
n

)5
if i, j, k are distinct.

(c) Show that

∑

two equal

Wijk = −3

n∑

i=1

Wiii,
∑

three distinct

Wijk = 2

n∑

i=1

Wiii.

(d) Arrive safely at

E∗θ̂THIRD(P
∗) = a+

A

2n
+

B

6n2
,
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where

A =
1

n

n∑

i=1

Vii and B =
1

n

n∑

i=1

Wiii.

(e) Now let θ̂ be any given, complicated functional statistic, which we want to approximate

with the third order functional statistic θ̂THIRD above. There are several candidates,

one of which is the following: Specify a, U , Vij , Wijk above such that θ̂THIRD(P
∗)

agrees with θ̂(P∗) for P∗ equal to P0, P(i), P[i] for i = 1, . . . , n, cf. Exercises 23(e)

and 25(d). Show that this leads to

J(·) =def
(n− 1)2

n
{θ̂(·) − θ̂} =

A

2n
− n

n− 1

B

6n2
,

J[·] =def
(n+ 1)2

n
{θ̂[·] − θ̂} =

A

2n
+

n

n+ 1

B

6n2
.

The quantities J(·) and J[·] entering here are the natural second-order estimates of

the bias E∗{θ̂∗ − θ̂}, based on respectively the ordinary jackknife and the positive

jackknife; in particular J(·) is the usual bootjack estimator of bias recommended by

Efron.

(f) Show that this strategy leads to

E∗{θ̂(P∗)− θ̂(P0)} .
= E∗{θ̂THIRD(P

∗)− θ̂THIRD(P
0)}

= J(·) +
(n+ 1)(2n− 1)

2n2

[
J[·] − J(·)

]
.

(g) An alternative specification of a third order approximation to θ̂ arises by requiring the

θ̂(P∗) and its approximation to agree for P0, P(i), P(i,j) for all i, j = 1, . . . , n, where

P(i,j) comes from the double jackknife that deletes both xi and xj , cf. Exercise 9.

Show that the natural second-order bias approximation estimate based on the double

jackknife is

J(· ·) =def
(n− 1)(n− 2)

2n
{θ̂(· ·) − θ̂} =

A

2n
− n(n− 4)

(n− 2)2
B

6n2
.

(h) And obtain finally a third-order jack & double-jack approximation to a general boot-

strap expectation:

E∗{θ̂(P∗)− θ̂(P0)} .
= E∗{θ̂THIRD(P

∗)− θ̂THIRD(P
0)}

= J(·) +
(n− 2)2(2n− 1)

n2

[
J(· ·) − J(·)

]
.

Exercise No. 31

Here comes another example of the methods of Exercises 28 and 29, this time in a context

related to nonparametric density estimation, a topic that will be discussed more fully in
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exercises to come. For given data x1, . . . , xn, realisations of variables X1, . . . , Xn from F ,

define

f̂(x) = f̂(x;x1, . . . , xn) =
1

n

n∑

i=1

φ
(x− xi

h

) 1

h
.

Here φ(x) is the standard normal density, and h is a smoothing parameter. The following

quantity will be of interest later, as a function of h:

ρ = ρ(h) = ρ(F, x1, . . . , xn) =

∫
ff̂ dx = EF , f̂(Xnew;x).

For the moment we keep h fixed.

(a) Why is

ρ̂NAIVE = ρ(F̂ ,x) =
1

n

n∑

i=1

f̂(xi;x) =
1

n2

n∑

i=1

n∑

j=1

φ
(xi − xj

h

) 1

h

näıve?

(b) And why is

ρ̂CROSS =
1

n

n∑

i=1

f̂(xi;x(i)) =
1

n

n∑

i=1

f̂(i)(xi)

a better estimator?

(c) In this case there is a simple connection between ρ̂NAIVE and ρ̂CROSS. Work out an

expression for f̂(i)(x), and show that

ρ̂CROSS =
n

n− 1
ρ̂NAIVE − 1

n− 1

φ(0)

h
.

(d) Write ρ = ρ̂NAIVE + näıvité, where näıvité = näıvité(F,x) = ρ(F,x) − ρ̂NAIVE(x),

with average näıvité

ω = ω(F ) = Eall näıvité(F,X1, . . . , Xn),

in analogy with Exercise 29, suggesting estimators of the type ρ̂ = ρ̂NAIVE+ ω̂. Study

in particular

ρ̂BOOT = ρ̂NAIVE + ω̂ BOOT,

and demonstrate that ω̂BOOT =def ω(F̂ ) = E∗R(P∗), in which

R(P∗) =
1

n

n∑

i=1

f̂(xi;x
∗)− 1

n

n∑

i=1

f̂(x∗
i ;x

∗)

=

n∑

i=1

( 1

n
− P ∗

i

)
f̂(xi;x

∗).
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(e) Use the jackknife approximation (n − 1){R(·) − R(P0)} of Exercise 28 to obtain a

jackknife approximation ω̂BOOTJACK to ω̂BOOT. Show that this in fact leads to

ρ̂BOOTJACK ≡ ρ̂CROSS.

The more accurate (n − 1)2/n factor, see Exercise 28 again, indicates that an even

better approximation might be {(n− 1)/n}ρ̂CROSS.

(f) To illustrate, draw a sample of size 30 from the standard normal f = φ, and compute

and plot three curves: the true ρ(h) and the two estimates ρ̂NAIVE(h), ρ̂CROSS(h).

Plot the fourth curve ρ̂BOOT(h) as well, if you have time. [Show first that

ρ(h) =
1

n

n∑

i=1

φ
( xi√

1 + h2

) 1√
1 + h2

.]

I got the following figure from my own simulated 30-sample, where the true curve is

the dotted one, the top solid line is the näıve estimate, and the bottom solid line is

the cross validation estimate:

Exercise No. 32

The previous and several of the forthcoming exercises concern resampling techniques ap-

plied to problems in nonparametric density estimation, so let’s learn about density esti-

mates first.

Assume that X1, . . . , Xn are i.i.d. with unknown probability density f on (some por-

tion of) the real line. The kernel method is among the simpler ones of the multitude of

nonparametric methods for estimating f that have been proposed since 1956, and works as

follows. Let K(.) be a kernel function, taken here to be a probability density itself which

is symmetric about zero, and with
∫
yK(y) dy = 0,

∫
y2K(y) dy = 1. Let

f̂(x) =
1

n

n∑

i=1

K
(x−Xi

h

) 1

h

for x in the region of interest. To choose kernel function K(.) and smoothing parameter

(or window width) h is part of the estimation problem.

(a) Show that f̂ indeed is a density. Show that f̂ corresponds to the probability distri-

bution F̂ ∗Kh, the convolution of the empirical distribution F̂ with the distribution

with density Kh(x) = K(x/h)/h. In still other words: if X is sampled from f̂ , then

X ∼ Y + Z, where Y ∼ F̂ (a randomly sampled data point Xi), Z ∼ Kh, and these

two are independent.

(b) If X is sampled from f̂ and how would you do that?, what is its mean value and variance?

(c) Show that

E f̂(x)
.
= f(x) + 1

2h
2f ′′(x) + 1

24h
4

∫
y4K(y) dy f (iv)(x).

How must h behave for the bias of f̂(x) to go to zero when n grows?
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(d) And show that

Var f̂(x)
.
=

B

nh

[
f(x) + 1

2h
2

∫
y2K(y)2 dy f ′′(x)

]
− 1

n

[
f(x)2 +O(h4)

]
,

where B =
∫
K(y)2 dy is a constant determined by the kernel function. How must h

behave for the variance of f̂(x) to go to zero as n grows?

(e) Combine your efforts to obtain an expression for the mean squared error, under reg-

ularity conditions on the true density:

E {f̂(x)− f(x)}2 = 1
4h

4f ′′(x)2 +
B

nh
f(x)− 1

n
f(x)2 +O(h/n+ h6).

How should h behave with n?

(f) Try to reach similar conclusions with L1-based criteria: each of the three terms ap-

pearing in

E
∣∣f̂(x)− f(x)

∣∣ ≤ E
∣∣f̂(x)− E, f̂(x)

∣∣+
∣∣E f̂(x)− f(x)

∣∣

should ideally be small, and at least converge to zero as n grows.

Exercise No. 33

The task of estimating and predicting permeability in prospective reservoirs is central for

oil companies. One strategy is to construct a prediction or estimation rule as a function

of well log measurements. This is a difficult problem, and will not be dwelt on here.

Our aim is only to consider a particular sub-problem, by means of density estimation

and various connected cross validation and bootstrap techniques, namely the following:

Are there (more or less homogeneous) sub-groups in the distribution of permeability, in

the region of interest, and can they be identified? Geologists disagree over this question.

An affirmative answer would suggest that prediction rules in some way should take these

sub-groups into account.

The following 70 data points are transformed permeability measurements, taken from

a certain well in a certain area along the Norwegian coast, by a certain oil company. They

have been made unrecognisable and uninterpretable for reasons of security: the particular

transformation used has no interpretation whatsoever, is only known to the present writer,

and cannot be guessed at; and the data points have been ordered, so that the spatial

information inherent in the original ordering has been lost. — In this way the secrets

of the original and very expensive data set are guarded, while the less-sensitive problem

about clusters still can be discussed in a meaningful way.

Transformed perm-data

6.033 6.125 6.196 6.436 6.516 6.568 6.751 6.796

6.854 7.009 7.044 7.068 7.097 7.108 7.150 7.205

7.253 7.415 7.444 7.570 7.576 7.597 7.724 7.784

7.808 8.094 8.108 8.125 8.126 8.303 8.371 8.450

8.483 8.495 8.562 8.570 8.691 8.816 8.900 9.024

9.079 9.195 9.308 9.573 9.617 9.696 10.064 11.278
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11.620 11.653 11.831 11.838 11.954 12.235 12.460 12.838

12.854 12.870 12.895 14.101 14.222 14.222 14.298 14.308

14.391 14.743 14.875 15.023 15.046 15.195

Histogram of transformed perm-data N = 70

Midpoint Count

6 4 ****

7 15 ***************

8 15 ***************

9 9 *********

10 4 ****

11 1 *

12 7 *******

13 4 ****

14 6 ******

15 5 *****

(a) Construct a Minitab-macro (or something equivalent in your own environment)

that allows you to compute and display the nonparametric estimate f̂(x), for a

given smoothing parameter h, using the ordinary Gaussian kernel K(x) = φ(x) =

exp(− 1
2x

2)/
√
2π. Every statistician should have such an algorithm in her collection

of ever-useful tricks & gadgets.

(b) Use such an algorithm to evaluate f̂(x) for the transformed permeability data. Try

out different h values. Pinpoint what is wrong with too small values and with too

large values. What range of h values seems to give satisfactory pictures?

(c) What is the accompanying cumulative distribution F̂h(x)? And what happens to F̂h(.)

when h tends to zero? — Have a look at these, for some values of h, in the present

example. What are the benefits of studying pictures of f̂ instead of their cumulative

sisters?

(d) Discuss the information content of a smooth density estimate compared to that of a

histogram. Discuss also the use of a picture of f̂ as a data summary.

(e) Display in a figure three density estimates, corresponding to h = .20 (too ragged), h =

.636 (which turns out to be the optimal value based on least squares cross validation,

see Exercise 35), and h = 1.50 (too smooth). What do you think: Are there identifiable

sub-groups in the distribution of (transformed) permeability?

Exercise No. 34

It can be demonstrated in various ways that the choice of a good smoothing parameter h

in the kernel-type density estimator is much more crucial than the choice of kernel function

K(.). In the examples considered here the standard normal kernel φ(.) will be used.

In many cases where a nonparametric density estimate is needed it will suffice to choose

h subjectively, by considering graphs of f̂(x) for a small selection of h values, and then select

one that matches prior beliefs (conscious or subconscious) about the phenomenon under

study. This is obviously not quite satisfactory in general, however, and the present and
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the following two exercises look into the tricky problem of obtaining a sensible, automatic,

objective, data-based smoothing parameter h. They should be worked through only by

persons who are willing to increase their sorrow:

For where there is much wisdom is much grief,

and he that increaseth his knowledge increaseth his sorrow.

— Ecclesiastes (The Preacher) 1:18 (c. 200 B.C.)

(a) Consider the integrated mean squared error

IMSE = Ef

∫
{f̂(x)− f(x)}2 dx,

as a function of h. Show that the leading terms are 1
4h

4A + B/(nh) −
∫
f2 dx/n, in

which B = B(K) =
∫
K(y)2 dy and A = A(f) =

∫
{f ′′(x)}2 dx, cf. Exercise 32. Note

that A is a measure of the ‘ruggedness’ or ‘roughness’ of the underlying density.

(b) Minimise this approximation to IMSE w.r.t. h. Show that the optimal h becomes

h0 = h0(f) =
(B/A)1/5

n1/5
.

(c) And show that the corresponding minimum IMSE has leading terms

minimum IMSE =
5
4B

4/5A1/5

n4/5
− 1

n

∫
f2 dx.

(d) Compute B for K = φ and A for f = N(µ, σ2), and conclude that the best value to

use if the underlying density is normal, is

h0 =
(4/3)1/5σ(f)

n1/5
=

1.059σ(f)

n1/5
.

(e) Find the best possible kernelK(.): minimise the minimum IMSE w.r.t. the choice ofK.

This amounts to minimising B =
∫
K(y)2 dy under the constraints

∫
yK(y) dy = 0,∫

y2K(y) dy = 1. Compare the resulting minimum value of B4/5 with what one gets

from other natural kernels.

(f) It has been suggested that the 1.059σ(f)/n1/5 rule is relatively robust against de-

partures from normality. Hence h = 1.059 σ̂/n1/5, with a robust standard deviation

estimate, comes forward as a reasonable rule of thumb. Investigate this proposal, to

some extent, by considering f = a mixture of two normals. For such an f , what is

(B/A)1/5, compared to 1.059σ(f)?

(e) Another data-based procedure arises naturally: Estimate A(f) from the data, and use

ĥ = (B/Â)1/5/n1/5. Comment on this proposal.

Exercise No. 35

Here is another approach to choosing h: Consider the integrated squared error

ISE =

∫
{f̂(x)− f(x)}2 dx =

∫
f̂2 dx− 2

∫
ff̂ dx+

∫
f2 dx.
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The first term here is an explicit function of h, the second term can be estimated, as

in Exercise 31, and the third term is not affected by data at all. A natural program is

therefore to minimise an estimate of the first two terms w.r.t. h.

(a) With kernel function K = φ, show that

∫
f̂(x)2 dx =

1

n2

n∑

i=1

n∑

j=1

φ
(xi − xj√

2h

) 1√
2h

.

(b) Motivate the following estimator for λ(h) =
∫
f̂2 dx− 2

∫
ff̂ dx:

λ̂(h)CROSS =
1

n2

n∑

i=1

n∑

j=1

φ
(xi − xj√

2h

) 1√
2h

− 2ρ̂(h)CROSS,

where ρ̂CROSS is given in Exercise 31. Find the expected value of λ̂(h)CROSS and

compare it to Ef ISE = IMSE.

(c) Think through other approaches to estimating λ(h), including λ̂(h)NAIVE, λ̂(h)BOOT,

and λ̂(h)BOOTJACK.

(d) Compute and display the curve λ̂(h)CROSS for the transformed permeability data

of the previous example. Find the minimising value of h, and draw the resulting

density estimate curve f̂(x). [Answer: The least squares cross validation curve is

displayed on the following page, and is minimised by h = .636. The resulting least-

squares optimal kernel-type density estimate is drawn, with a solid line, in the figure

of Exercise 33.]

(e) Generalise the approach developed here to one appropriate for the loss function∫
{f̂(x)− f(x)}2w(x) dx, where w(.) is a given weight function.

(f) Obtain a simulated 30-sample from N(0, 1), and draw curves λ(h)TRUE, λ̂(h)NAIVE,

and λ̂(h)CROSS.

Exercise No. 36

Kullback-Leibler instead. gamma(h). naive, cross, boot, jackboot. Figures. Quasi-data

30.

Exercise No. 37

Ten bootstraps of perm-data. Comments and speculations.

Exercise No. 38

Ten bootstraps of h-values, perm-data: h(LS) and h(KL).

Exercise No. 39

Other density estimation schemes. k-NN for example. Find now simply a discrete curve

and an estimate.
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Exercise No. 40

Silverman and Young. The ridge regression syndrom again?

Exercise No. 41

The purpose of the present exercise is to understand what happens with maximum like-

lihood estimators when the parametric model on which they are based is incorrect. The

textbook treatment almost invariably stops with a discussion of what goes on when the

idealised model is absolutely correct. Generalising this to the agnostic case is obviously of

general importance, and will also help us understand, in later exercises, how parametric

bootstrapping and nonparametric bootstrapping work for parametric models, including

regression models.

The i.i.d. framework is as follows: The data points Xi come in reality from a distribu-

tion F , with density f , but are fitted to a p-dimensional parametric model {fθ : θ ∈ Θ}.
Below you are asked for heuristic proofs which will work under sufficient regularity. The

estimator considered is θ̂ = θ̂ML, the maximum likelihood one. The same ideas can however

be used to characterise the behaviour of also other estimators.

(a) Show that θ̂ converges in probability to the parameter value θ0 = θ0(F ) that makes fθ
come closest to the true f as measured by the Kullback–Leibler distance, ∆(f, fθ) =

EF log{f(X)/fθ(X)} =
∫
f log(f/fθ) dx. See also Exercise No. 19. — A sufficient

condition that is often easy to verify is concavity of the log likelihood: If An(θ)

converges to A(θ) in probability (almost surely), for each θ, and An(.) is concave,

then the maximiser of An(.) converges in probability (almost surely) to the maximiser

of A(.). See Andersen and Gill (Annals of Statistics 1982, Appendix II).

(b) Let

Un(θ) =
n∑

i=1

∂

∂θ
log fθ(Xi) and In(θ) =

n∑

i=1

∂2

∂θ∂θ
log fθ(Xi).

Show that
√
n(θ̂ − θ0) =

{
− 1

n
In(θ̃)

}−1Un(θ0)√
n

,

where θ̃ lies somewhere between the least false parameter θ0 and its estimate θ̂.

(c) And deduce that √
n(θ̂ − θ0) →d Np(0, J

−1KJ−1),

in which J = J(θ0), K = K(θ0), and

J(θ) = −EF
∂2

∂θ∂θ
log fθ(X) = −

∫
∂2

∂θ∂θ
log fθ(x) f(x) dx,

K(θ) = VARF
∂

∂θ
log fθ(X) =

∫ ( ∂

∂θ
log fθ(x)

)( ∂

∂θ
log fθ(x)

)′

f(x) dx.

(d) Convince yourself that the above results constitute a generalisation of what you have

seen in textbooks by considering the idealised case, in which f = fθ0 for a certain true

value θ0. Show in particular that J = K and that J−1KJ−1 = J−1 in this case.
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(e) Rededuce the result of (c) using influence functions, cf. Exercises 19–22.

(f) Define

Ĵn = − 1

n
In(θ̂) = − 1

n

n∑

i=1

∂2

∂θ∂θ
log f

θ̂
(Xi),

K̂n =
1

n

n∑

i=1

( ∂

∂θ
log f

θ̂
(Xi)

)( ∂

∂θ
log f

θ̂
(Xi)

)′

.

Show that these are consistent for J and K respectively. This suggests that the

traditional estimator Ĵ−1/n of the covariance matrix for θ̂ could be replaced by the

model-robust Ĵ−1K̂Ĵ−1/n.

(g) See how the above results look like in some traditional parametric models.

(h) Consider generalising what you have seen here to regression models.

Exercise No. 42

Find the maximum likelihood estimator θ̂ and its limiting distribution in each of the

following parametric models. Find also the robust variance-covariance estimator Ĵ−1K̂Ĵ−1

and compare it with Ĵ−1.

(a) Xi ∼ exponential (1/θ), i.e. fθ(x) = (1/θ) exp(−xθ), x > 0.

(b) Xi ∼ N(ξ, σ2), both parameters unknown.

(c) Xi ∼ Gamma (α, β), i.e. fα,β(x) =
(
βα/Γ(α)

)
xα−1e−βx, x > 0.

(d) Unlike virtue, courage is not its own reward: it brings results. Explore your own

example.

Exercise No. 43

Back to bootstrapping: When analysing a parametric model there are at least two ways

of bootstrapping. The nonparametric bootstrap draws random X∗
i ’s from the nonpara-

metric estimate of the model structure, i.e. from the usual empirical distribution F̂ . The

parametric bootstrap, on the other hand, trusts the model and draws X∗
1 , . . . , X

∗
n from the

parametric estimate f
θ̂
. Let us see how these work in a specific and illuminating example,

namely the exponential distribution with parameter 1/θ.

(a) The maximum likelihood estimator is of course θ̂ = X̄. If the model is perfect, show

that θ̂ is distributed as θ χ2
2n/2n, and that θ̂ is approximately N(θ0,

1
nθ

2
0). If the model

is incorrect, show that θ̂ is approximately N(θ0,
1
nσ

2
0), where θ0 is the true mean and

σ0 is the true standard deviation.

(b) Consider parametric bootstrapping: Then X∗
1 , . . . , X

∗
n are drawn from the exponential

(1/θ̂) model. Show that θ̂∗ ∼ θ̂ χ2
2n/2n and that θ̂∗ is approximately N(θ̂, 1

n θ̂
2), in the

conditional situation given data. Conclude that parametric bootstrapping works fine

when the model is correct but that it goes astray when the model is incorrect with

σ2
0 6= θ20.

(c) And consider nonparametric bootstrapping: In this case X∗
1 , . . . , X

∗
n are drawn from

F̂ . Demonstrate that θ̂∗ is approximately N(θ̂, 1
n σ̂

2). Conclude that nonparametric

bootstrapping should work fine both when the model is correct and when it is incorrect!
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Exercise No. 44

Let us generalise. Assume only that i.i.d data X1, . . . , Xn are fitted to the p-dimensional

parametric family {fθ} with the maximum likelihood method.

(a) If the model is correct, then θ̂ is close to Np(θ0,
1
nJ

−1). If the model is incorrect, then

J−1 must be replaced by J−1KJ−1. Make sure you know the precise definitions of J

and K here.

(b) Parametric bootstrapping: Draw X∗
1 , . . . , X

∗
n from f

θ̂
. The result is a θ̂∗ that is close

to Np(θ̂,
1
n Ĵ

−1). Bootstrap analysis works under ideal model conditions but may go

wrong outside the model. Specifically, show that the bootstrap estimate of the (true)

standard deviation for θ̂i usually will be inconsistent.

(c) But show that nonparametric bootstrapping works in either case: The distribution of

θ̂∗ is close to Np(θ̂,
1
n Ĵ

−1K̂Ĵ−1).

Exercise No. 45

Does this mean that we always should use nonparametric bootstrapping, i.e. resample from

the original data points, even in parametric models? Give some pro’s and con’s.

If the model is right, or reasonably right, then much can be lost in estimating efficiency

when assessing variability. When estimating the variance of θ̂i, for example, both of the

bootstrapping schemes give consistent estimates, but the nonparametric version may have

much larger sampling variability than the parametric version.

(a) Show that the last point brought up roughly corresponds to studying the estimation

efficiency of Ĵ−1K̂Ĵ−1 versus Ĵ−1 for estimating

J = J(θ0) = −
∫ [ ∂2

∂θ∂θ
log fθ0(x)

]
fθ0(x) dx,

under model conditions.

(b) In the exponential example, the two estimators for θ20 are σ̂2 (nonparametric) and θ̂2

(parametric). Show this, and show that Var σ̂2 .
= 8θ40/n, Var θ̂

2 .
= 4θ40/n (uner model

conditions). Transform this to a statement about sample sizes.

(c) In the normal (ξ, σ2) example, show that the two estimators for the variance of σ̂ are

( 12 +
1
4 β̂) σ̂

2 (nonparametric) and 1
2 σ̂

2 (parametric). Here β̂ = Vn/σ̂
4−3 is the sample

kurtosis, with Vn = 1
n

∑n
i=1(Xi − X̄)4. Show further that σ̂2 has variance close to

2σ4
0/n while (1 + 1

2 β̂)σ̂
2 has variance close to 8σ4

0/n, under home turf conditions for

the model.

(d) Invent another example.

— One should probably carry out both parametric and nonparametric bootstrapping,

and scrutinise any significant differences that might result. The examples above show that

some of these differences might be incidental and due to large sampling variability on the

part of the nonparametric bootstrap.

Exercise No. 46
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Consider inventing an asymptotic mathematical framework for evaluating the different

estimation schemes, and the different bootstrapping schemes, which is able to reflect the

important case of a ‘reasonably but not exactly correct model’. Thus the true f is close

to but not equal to the best-fitting fθ.

One idea is the following. Take f(x) = fθ,νn
(x), where fθ,ν(.) is an enlarged parametric

family, with fθ(.) = fθ,ν0
(.). Let now νn be close to but not equal to ν0, for example

νn = ν0+ δ/
√
n. As an example, suppose data X1, . . . , Xn come from a distribution which

is Weibull and close to but not quite exponential, with

PrXi ≤ x = 1− exp
[
−(θx)βn

]
, x > 0,

where βn = 1 + δ/
√
n.

In this framework, try to characterise the behaviour of the maximum likelihood es-

timator θ̂, and try to sort out the differences in behaviour between parametric and non-

parametric bootstrapping.

Exercise No. 47

Resampling methods in regression models is a very important subject, and a difficult

one. There are several ways to carry out both jackknifing and bootstrapping for a given

regression model, and the properties of each scheme, and the differences between schemes,

are not sufficiently well understood at present.

To cover some ground, let us begin in this and the following three exercises by trying

to understand how the ordinary estimation methods fare in general and specific regression

models. Then one can go on to bootstrapping and jackknifing afterwards.

A reasonably general regression framework for data (Xi, Yi) is as follows: A parametric

model postulates that Y | x ∼ fθ(y|x), whereas the true conditional distribution is some

unknown f(y|x). The prime example would be Y | x ∼ N(x′β, σ2) for a covariate vector

x of length p, with θ = (β, σ) being (p + 1)-dimensional. Observe that interest centres

on the conditional distribution of Y given its associate x, and the distribution of X alone

is not modelled at all. This distribution will nevertheless necessarily enter some of the

evaluations and expressions below, and likewise the simultaneous distribution of (X,Y ).

We write the former in the form of a density f(x) dx on its sample space and the latter in

the form of f(x, y) dxdy.

(a) Show that the maximum likelihood estimator θ̂, which maximises the observed x-

conditional likelihood Πn
i=1fθ(yi|xi), is consistent for a certain least false parameter

value θ0. This best fitting value is the one that minimises the distance function

∆[f, fθ] =

∫
∆x[f(.|x), fθ(.|x)] f(x) dx,

in which ∆x[f(.|x), fθ(.|x)] =
∫
f(y|x) log

(
f(y|x)/fθ(y|x)

)
dy happens to be the x-

conditional Kullback–Leibler distance between the true and the modelled density for

Y given x. — Note as in Exercise 41 (a) that concavity of the log likelihood is a simple

sufficient condition for consistency of θ̂ towards θ0.
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(b) Aiming at a result parallelling that of Exercise 41 (c), expose yourself to (i) art, (ii)

the matrices

Jx(θ) = −Ef(.|x)
∂2

∂θ∂θ
log fθ(Y |x) = −

∫
∂2

∂θ∂θ
log fθ(y|x) f(y|x) dy,

Kx(θ) = Ef(.|x)

( ∂

∂θ
log fθ(Y |x)

)( ∂

∂θ
log fθ(Y |x)

)′

=

∫ ( ∂

∂θ
log fθ(y|x)

)( ∂

∂θ
log fθ(y|x)

)′

f(y|x) d.y,

J(θ) = E JX(θ) =

∫
Jx(θ) f(x) dx,

K(θ) = EKX(θ) =

∫
Kx(θ) f(x) dx.

Show that √
n(θ̂ − θ0) →d N(0, J−1KJ−1),

in which J = J(θ0) and K = K(θ0).

(c) Demonstrate that J = K if the model holds true.

(d) Let

Ĵn = − 1

n

n∑

i=1

∂2

∂θ∂θ
log f

θ̂
(Yi|Xi),

K̂n =
1

n

n∑

i=1

( ∂

∂θ
log f

θ̂
(Yi|Xi)

)( ∂

∂θ
log f

θ̂
(Yi|Xi)

)′

.

Show that these are consistent for J and K.

(e) Explain how the results above may be used to construct model-robust confidence

regions for the least false parameters of the model.

(f) Quick: See how the machinery above works in the traditional normal linear regression

model. Study in particular the N(βx, σ2) and N(α + βx, σ2) cases, where x is one-

dimensional.

Exercise No. 48

Let us apply the method and results of the previous exercise to the traditional linear re-

gression model. The model postulates that Y given a p-vector of covariate measurements

x = (x1, . . . , xp)
′ is normal with mean x′β =

∑p
j=1 βjxj and variance σ2. Let us, con-

servatively and counterbalancedly, postulate only that Y | x has some density f(y|x).
Define

L = EXX ′ =

∫
xx′ f(x) dx and β0 = L−1EXY = L−1

∫
xy0(x) f(x) dx,

where y0(x) = E(Y |x) =
∫
yf(y|x) dy is the true conditional expectation of Y given x.

Define also

σ2
0(x) = E(Y − x′β0)

2|x =

∫
(y − x′β0)

2 f(y|x) dy.
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Observe that this is not quite the true conditional variance of Y , it is rather equal to

{y0(x)− x′β0}2 +Var(Y |x).
(a) Find the maximum likelihood estimators:

β̂ =
( n∑

i=1

XiX
′
i

)−1 n∑

i=1

XiYi = L̂−1 1

n

n∑

i=1

XiYi,

σ̂2 =
1

n

n∑

i=1

(Yi −X ′
iβ̂)

2.

Here the familiar matrix L̂ = 1
n

∑n
i=1 XiX

′
i is the natural estimator for L.

(b) What are the least false or best fitting parameter values βl.f., σl.f.? Show that βl.f.

is indeed equal to β0 defined above, and can be defined as the value that minimises

E(Y − X ′β)2 =
∫ ∫

(y − x′β)2 f(x, y) dx dy. And show that the best fitting σ is σ0

given by

σ2
0 = Eσ2

0(X) =

∫
σ2
0(x) f(x) dx.

(c) In the general notation of the previous exercise, show that

J =
1

σ2
0

(
L 0
0 2

)
and K =

1

σ2
0

(
M a
a′ b2

)
,

in which

M =
1

σ2
0

EXX ′(Y −X ′β0)
2 =

∫
xx′σ

2
0(x)

σ2
0

f(x) dx,

a = E
(Y −X ′β0)

3

σ3
0

X, and b2 = E
(Y −X ′β0)

4

σ4
0

− 1.

(d) Infer that

β̂ is asymptotically ∼ Np(β0,
1
nL

−1ML−1).

L is estimated by L̂. In this framework, where E(Y − x′β0)
2|x may depend upon x,

we also need a consistent estimate of M . Show that

M̂ =
1

σ̂2

1

n

n∑

i=1

XiX
′
i(Yi −X ′

iβ̂)
2

is one such.

(e) In particular, the textbook method for making inference about the βj coefficients,

which is based on

VAR β̂
.
= σ̂2

( n∑

i=1

XiX
′
i

)−1

,

is only valid in the variance-homogeneous case σ2
0(x) ≡ σ2

0 .
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(f) On the other hand you ought to admit that the textbook method, based on (i) exact

expectation E (Y |x) = x′β0, (ii) exact variance homogeneity, and (iii) exact normality,

is impressively robust (for large samples) against failures of (i) and (iii). Observe that

the β0 parameter has a perfectly acceptable statistical interpretation even without (i),

cf. (a).

(g) Construct a model-robust confidence interval for σ with confidence coefficient close to

90%.

Exercise No. 49

It may be instructive to actually calculate the various least false parameters in a couple of

constructed examples, in which the true probability mechanisms are known. Here is one

such:

The model is the simple linear one-dimensinal normal regression, where Y given x is

N(α+βx, σ2). The true state of affairs, however, is as follows: The conditional expectation

is y0(x) = 1 + x + cx2; the conditional variance is Var(Y |x) = v2(1 + dx2); and the

conditional distribution is exactly normal. To find the relevant quantities exactly one

also needs the distribution of x’s, as made clear in the previous exercises. Take X to be

standard normal.

Based on these assumptions, find explicitly the best fitting line (or the least false line)

α0 + β0x; the standard deviation parameter σ0; the limit distribution of (α̂, β̂); and the

limit distribution of σ̂. Give your answers in terms of the given constants c, d, v.

Construct an example yourself, in which the distribution of Y given x is taken to be

something non-normal.

Exercise No. 50

Consider the logistic regression model, involving a 0–1 variable Y whose probability of

being equal to 1 is thought to be influenced by covariate measurements x1, . . . , xp, in the

following way:

Pr{Y = 1 | x} =
exp(α+

∑p
j=1 βjxj)

1 + exp(α+
∑p

j=1 βjxj)
.

The interpretation is that the relative proportion of {Y = 1} events in a homogeneous

subgroup of the population under study, where all individuals have the same x-vector,

should be close to the right hand side, for a suitable set of α, β1, . . . , βp.

Of course one cannot expect such a relation to hold exactly, and we are lead to view it

merely as an approximation to some true, underlying function Pr{Y = 1 | x} = q(x), say.

Try to work out the analogue of Exercise 48 for the logistic regression model, once again

employing the general machinery of Exercise 47. How can the least false parameters that

the maximum likelihood estimators are aiming at, be characterised? What is the model-

robust estimator of the covariance matrix of β̂? — For details and further comments, see

Hjort (1988, NCC–report).

Exercise No. 51
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Back to resampling again: There are several ways in which to carry out jackknifing and

bootstrapping in regression models. Consider the ordinary linear regression model, with

data (xi, Yi) that ideally satisfy Yi = x′
iβ + εi, where the unobservable residuals εi come

from a distribution F with mean zero.

Here are four different bootstrapping schemes.

Boot 1: View the (p+1)-tuples (x1, y1), . . . , (xn, yn) as having come from a common

distribution G inRp+1. The nonparametric estimate of this distribution is Ĝ, placing equal

mass 1
n on each (p+ 1)-tuple. Draw therefore a bootstrap sample (X∗

1 , Y
∗
1 ), . . . , (X

∗
n, Y

∗
n )

from Ĝ, i.e. from the n observed tuples, and compute

β̂∗ =
( n∑

i=1

X∗
i X

∗′

i

)−1 n∑

i=1

X∗
i Y

∗
i

and other relevant bootstrap statistics from these.

Boot 2: View yi as having come from a signal term x′
iβ plus a noise term εi. Estimate

the first by x′
iβ̂ and simulate the second by drawing an ε∗i from an estimate of their

distribution. One possibility is the nonparametric F̂ which places equal mass 1
n on each

estimated residual ε̂j = yj − x′
j β̂. The bootstrap sample on which to base this particular

scheme’s β̂∗ is therefore (x1, Y
∗
1 ), . . . , (xn, Y

∗
n ), where Y ∗

i = x′
iβ̂ + ε∗i and where the ε∗i ’s

are drawn independently from F̂ .

Boot 3: The previous method is semi-parametric: It uses a parametrically estimated

signal part and a nonparametrically estimated noise part. A fully parametric bootstrap

method is the similar version that instead draws residuals ε∗i ’s from N(0, σ̂2).

Boot 4: The first method is utterly nonparametric, and in a way the special charac-

teristics of the regression situation, concerned with modelling the distribution of Y given

its associate x, were lost. A smoother and more regressionistic but still nonparametric

scheme is as follows: By some nonparametric smoothing method, estimate the conditional

expectation E(Y |x) by some ŷ0(x). Hundreds of such methods have been discussed in the

literature during the last ten years. Let ε̂i = yi− ŷ0(xi) this time, and let Y ∗
i = ŷ0(xi)+ε∗i

with a simulated residual from the empirical or smoothed distribution of ε̂j ’s.

How do these schemes perform?

Exercise No. 52

52: Preliminaries. (a) Test for normality:

Tn =
1

n

n∑

i=1

∣∣X(i) − ξ̂ − σ̂Φ−1(ui)
∣∣

σ̂(Φ−1)′(ui)ui(1− ui)
.

Invariant. .50, .60, .70, .80, .90, .95, .99 points: .268, .283, .301, .323, .356, .388, .469;

based on 1000 simulations. (b) τ = E|X − µ|, the MAD. Limit distibution. (c) Testing

equality of two such. Refer to Hjort (1988, SJS) about choice of kappahat.

53: Dr. Livingstone I. Presume. Estimate of

θ = θ(F1, F2) =
µ1 − µ2√

σ1σ2
.

Nonsmooth. Six categories. Bootstrapping: from top.
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