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The problem: selection, averaging, post-inference

Typical setup: data (x1, y1), . . . , (xn, yn), with different candidate
regression models (also: time series, spatial models, survival
analysis models, etc.). Focus parameter µ, e.g.

E (Y | x0) or Pr{Y ≥ threshold | x0} or F−1(0.99 | x0).

We select among, or average over, candidate µ̂S :

µ̂∗ =
∑

models S

c(S |data)µ̂S .

E.g.

caic(S |data) =

{
1 for winning AIC model,

0 for the other models,

or csm−fic(S |data) ∝ exp{−λfic(S)}.

Choice of weights?; distribution of µ̂∗?; inference?
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A: Large-sample framework

Wide model: f (y , θ, γ), of dimension p + q.

Narrow model: f (y , θ, γ0), of dimension p, where γ0 is a known
null value.

Here θ = (θ1, . . . , θp) is protected, γ = (γ1, . . . , γq) is open.

Candidate models: for each S ∈ {1, . . . , q}, work with the model
where γj is free for j ∈ S , but γj = γ0,j for j /∈ S . Focus
parameter: µ = µ(θ, γ).

Estimate based on model S : find maximum likelihood estimates
(θ̂S , γ̂S) in model S , and then

µ̂S = µ(θ̂S , γ̂S , γ0,Sc ).

These range from

µ̂narr = µ(θ̂narr, γ0) to µ̂wide = µ(θ̂wide, γ̂wide).
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For each candidate model S , wish to assess (understand,
approximate, estimate)

distribution of
√
n(µ̂S − µ)

and
risk(S) = mseS(θ, γ) = nE {µ̂S − µ(θ, γ}2.

Variances are O(1/n), biases are fixed, type µ(θ, γ)− µ(θl.f., γ0).
But variances and squared biases become exchangeable currencies
in a local large-sample framework where

ftrue(y) = f (y , θ0, γ0 + δ/
√
n).

Here δ =
√
n(γ − γ0) is relative distance from narrow model to the

real model.

May now work out precise limit distributions for
√
n(µ̂S − µtrue)

and so on.
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B: Limit distributions and mse approximations

Master Theorem One (next page) gives limit distribution for each
µ̂S . Some quantities & notation are needed. Let

J = Var

(
∂ log f (Y , θ0, γ0)/∂θ
∂ log f (Y , θ0, γ0)/∂γ

)
=

(
J00 J01
J10 J11

)
be the Fisher information matrix at (θ0, γ0), with inverse

J−1 =

(
J00 J01

J10 J11

)
, with Q = J11.

Also, let

ω = J10J
−1
00

∂µ
∂θ −

∂µ
∂γ and τ20 = (∂µ∂θ )tJ−100

∂µ
∂θ ,

with derivatives at null point. Crucial ingredient:

Dn =
√
n(γ̂wide − γ0)→d D ∼ Nq(δ,Q).

Let finally QS = (πSQ
−1πt

S)−1 and GS = πt
SQSπSQ

−1; these are
q × q matrices with Tr(GS) = |S |.
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Master Theorem One gives orthogonal decomposition:

√
n(µ̂S − µtrue)→d ΛS = Λ0 + ωt(δ − GSD),

where Λ0 ∼ N(0, τ20 ) is independent of D ∼ Nq(δ,Q).

Narrow model: G∅ = 0, limit is Λ0 + ωtδ.

Wide model: Gwide = I , limit is Λ0 + ωt(δ − D).

Narrow better than wide model, for fixed focus parameter: when

(ωtδ)2 ≤ ωtQω, or |ωt(γ − γ0)| ≤ {ωtQω}1/2/
√
n,

which is an infinite strip. Narrow better than wide model, for all
focus parameters:

δtQ−1δ ≤ 1 or (γ − γ0)tQ−1(γ − γ0) ≤ 1/n.

Can do similar analyses for all submodels.
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Another Master Lemma says that there is joint convergence in
distribution of the 2q variables

√
n(µ̂S − µtrue) and

Dn =
√
n(γ̂wide − γ0) to the appropriate (Λnarr, . . . ,Λwide,D), each

element a function of Λ0 ∼ N(0, τ20 ) and D ∼ Nq(δ,Q).

Consider a model averaging operation

µ̂∗ =
∑
S

c(S |Dn)µ̂S ,

with weights summing to 1. Master Theorem Two says

√
n(µ̂∗ − µtrue)→d Λ0 + ωt{δ − δ̂(D)},

where
δ̂(D) =

∑
S

c(S |D)GSD.

This holds even when c(S |D) has a finite number of
discontinuities in D (as with AIC, FIC etc.), and with
cn(S |Dn)→d c(S |D), etc.
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Master Theorem Two implies that distribution and performance of
general post-selection or model-average estimator µ̂∗ for µ (rather
complicated) – is large-sample equivalent to studying distribution
and performance of

ωtδ̂(D) = ωt
∑
S

c(S |D)GSD for estimating ωtδ,

based on D ∼ Nq(δ,Q) (which is non-trivial, but much simpler).

This amounts to studying risk functions

risk(δ) = E{ωtδ̂(D)− ωtδ}2.

Using narrow model: δ̂(D) = 0, risknarr(δ) = (ωtδ)2.

Using wide model: δ̂(D) = D, riskwide(δ) ≡ ωtQω.

Using FIC is typically better than AIC: riskfic(δ) < riskaic(δ) in big
parts of the parameter space.

Two-way bridge: Finite-n-model problems ←→ Limit Experiment.
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The distributions of
post-selection and
model-average estimators are
captured by

∑
S c(S |D)GSD,

are typically very non-linear
mixtures of normals, and hence
not normal.
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Choosing weights, when averaging over models:
Suppose q = 3 with diagonal Q. General model averaging
estimator, weighting across 8 models:

µ̂∗ = c000µ̂narr + c100µ̂100 + c010µ̂010 + c001µ̂001

+ c110µ̂110 + c101µ̂101 + c011µ̂001 + c111µ̂111,

where weights ci ,j ,k = ci ,j ,k(Dn) may depend on data. Then
matters are determined by

δ̂(D) =
∑

8models

ci ,j ,k(D)Gi ,j ,kD

=

{c100(D) + c110(D) + c101(D) + c111(D)}D1

{c010(D) + c110(D) + c011(D) + c111(D)}D2

{c001(D) + c011(D) + c101(D) + c111(D)}D3


and

E{ωtδ − ωtδ̂(D)}2.

There’s overrepresentation – we learn that many different model
average operations are equivalent. We don’t need 7 weights here,
only 3, averaging over the 3 singletons.

11/40



C: AIC, FIC, and relatives

From Master Theorem One: limit risk of nE(µ̂S − µtrue)2 when
using model S is

mse(S) = E{Λ0 + ωt(δ − GSD)}2

= τ20 + ωtGSQG
t
Sω + ωt(I − GS)tδδt(I − GS)ω.

In the Limit Experiment, all quantities are known apart from δ, for
which we have D ∼ Nq(δ,Q).

Since DDt estimates δδt + Q, we use

fic(S) = τ20 +ωtGSQG
t
Sω+max{ωt(I−GS)t(DDt−Q)(I−GS)ω, 0}.

For real data (and finite n), we insert consistent estimators for
τ0, ω,GS ,Q, and Dn =

√
n(γ̂wide − γ0) for D.
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Large-sample analysis of AIC: with aicn,S = 2`n,max,S − 2(p + |S |),
we have

aicn,S − aicn,∅ →d aic(S ,D) = DtQ−1πt
SQSπSQ

−1D − 2|S |.

Via D ∼ Nq(δ,Q), this gives clear limits for

Pr{AIC selects S} → Prδ{aic(S ,D) > all other aic(S ′,D)}.

Can compare these probabilities with

Pr{FIC selects S} → Prδ{fic(S ,D) < all other fic(S ′,D)}.

Typically (but not uniformly), FIC has a bigger chance of finding
Sopt(δ), the model where mse(S , δ) is smallest.

Also, µ̂fic,final = µ̂Sfic
is typically (but not uniformly) better than

µ̂aic,final = µ̂Saic
:

E {ωt(δ − G
Ŝ ,fic

D)}2 < E {ωt(δ − G
Ŝ ,aic

D)}2 for big space of δ.
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FIC is set up to work for one given focus parameter at the time.

May generalise to AFIC, average-weighted FIC, when we have a list
of foci, {µ(u) : u ∈ U}, along with importance function w(u):

riskn(S) = nE
∑
u∈U

w(u){µ̂S(u)− µ(u)}2.

Details in Claeskens and Hjort (2008a, 2008b).

Message: AIC is (approximately) same as AFIC, when we’re
equally interested in everything.

For regression models, f (yi | xi , zi ), use AFIC for E(Yi | xi , zi ), with
same weight of importance for all (xi , zi ): then we’re back to AIC.
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Model selection is an un-smooth operation – and is inadmissible in
the decision theoretic sense. Complete class theorems (1950ies to
1970ies) =⇒ all admissible estimators µ̂ must be Bayes or
generalised Bayes:

δ̃(D) = E(δ |D) =

∫
δφ(δ − D) dπ(δ)∫
φ(δ − D) dπ(δ)

for some dπ(δ). (∗)

Prototype example: y1, . . . , yn are i.i.d. N(µ, 1). Model 0: µ = 0.
Model 1: µ ∈ R. Then

µ̂aic = ȳ I{|
√
nȳ | ≥

√
2} =

{
ȳ if |

√
nȳ | ≥

√
2,

0 if |
√
nȳ | <

√
2.

This is an ok estimator of µ – but can be uniformly improved upon.

I translate the situation to canonical form: with µ = δ/
√
n and

D =
√
nȳ ∼ N(δ, 1),
√
n(µ̂aic − µ) = δ̂aic(D)− δ = D I{|D| ≥

√
2} − δ.

I shall exhibit a generalised Bayes estimator (∗) which is uniformly
better than δ̂aic(D).
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I work with the generalised prior having point mass k at zero and
otherwise uniform on (−∞, u) ∪ (u,∞). The generalised Bayes
estimator takes the form

δ̃(D) = D +
−kDφ(D) + φ(D − u)− φ(D + u)

kφ(D) + 1 + Φ(D + u)− Φ(D − u)
.

With k = 4.4 and u = 1.6, the AIC is uniformly beaten:
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With D ∼ N(δ, 1), three estimators, δ̂(D) = c(D)D: AIC is
beaten; it pays to smooth.
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D: Optimal weights (and estimates thereof)

Candidate models M1, . . . ,Mk , estimators µ̂1, . . . , µ̂k for focus
parameter µ: Which weights should be used?

Suppose E µ̂j = µ+ bj , and variance matrix Σ. The linear
combination µ̂∗ = ctµ̂, with

∑m
j=1 cj = 1, has

E(µ̂∗ − µ)2 = ctΣc + (ctb)2 = ct(Σ + bbt)c .

This is minimised by µ̂∗ = (c∗)tµ̂, with

µ̂∗ =
1t(Σ + bbt)−1µ̂

1t(Σ + bbt)−11
, where c∗ ∝ (Σ + bbt)−11.

In our setup, with

√
n(µ̂S − µtrue)→d Λ0 + ωt(δ − GSD),

can read off biases, variances, covariances, for any set of candidate
S models.
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For candidate models S0,S1, . . . ,Sm, where S0 is narrow model,
consider µ̂∗ =

∑m
j=0 cj µ̂j . Limiting risk is

r(δ, c) = τ20 + ct(Σ + bbt)c ,

with biases bj = ωt(I − Gj)δ, and Σ with elements ωtGjQG
t
kω.

Minimising the risk: let Σ11 (m ×m) have elements ωtGjQG
t
kω,

and z (m × 1) have ωtGjδ. Then

c∗0 = 1− ωtδ
1tΣ−111 z

1 + ztΣ−111 z
,

c∗1
...
c∗m

 = ωtδ
Σ−111 z

1 + ztΣ−111 z
.

The weights contain various δδt terms, and data information is
Dn →d D ∼ Nq(δ,Q). Choices include: (i) inserting Dn for δ; (ii)

inserting DnD
t
n − Q̂ for δ, with truncation; (iii) estimating all

relevant terms in r(δ, c) and then minimising.
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Example 1: weighting between narrow and wide only,

µ̂∗ = (1− c)µ̂narr + cµ̂wide.

Optimal (oracle) weight:

c∗ =
(ωtδ)2

(ωtδ)2 + ωtQω
.

May use

ĉ∗ =
(ωtD)2

(ωtD)2 + ωtQω

or

ĉ∗ =
max{(ωtD)2 − ωtQω, 0}

max{(ωtD)2 − ωtQω, 0}+ ωtQω

=

{
0 if (ωtD)2 ≤ ωtQω,

1− (ωtQω)/(ωtD)2 if (ωtD)2 > ωtQω.
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Example 2: weighting across the singletons,

µ̂∗ = c0µ̂narr +

q∑
j=1

cj µ̂j ,

where µ̂j is from the model having only γj on board.

Optimal weights are readily found. For the case of Q diagonal
(κ21, . . . , κ

2
q):

c∗j = ωtδ
δj/(ωjκ

2
j )

1 +
∑q

j ′=1 δ
2
j ′/κ

2
j ′
.

At least three natural choices for estimating these.

Example 3: Can find the best weight for

µ̂∗ = (1− ρ̂)µ̂narr + ρ̂
1

q

q∑
j=1

µ̂singleton j .

Also: various empirical Bayes like model averaging procedures.
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E: The Quiet Scandal of Statistics

Given that data follow a model M, one may typically construct a
confidence interval

Pr{low(M) ≤ µ ≤ up(M) |model M holds} .= 0.95.

Typically,
[low(M), up(M)] = µ̂M ± 1.96τ̂M/

√
n,

or something first-order equivalent – and in our framework,
τM = (τ20 + ωtGMQG t

Mω)1/2.

This is ‘textbook material’ (and ‘textbook modus’).

Suppose model M has been selected among various competitors,
using AIC or FIC or BIC – then reporting [low(M),up(M)] is too
simplistic and overly optimistic. (1) The model might still have a
bias; (2) the initial model selection phase is ignored.

This hiding (or ignoring, or forgetting) uncertainty is called the
Quiet Scandal of Statistics (Leo Breiman).
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Illustration: 100 intended 90% confidence intervals for
µ = F−1(0.10); M1 exponential, M2 Weibull; truth = a little bit
away from M1; method = AIC. Half of the intervals are ok; the
other half too short and also biased.
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May use Master Theorems One and Two to understand and assess
the degree of overoptimism. How much smaller than 0.95 is
Pr{low(M̂) ≤ µ ≤ up(M̂)}, when M̂ is selected by e.g. AIC?

Pr
[
a ≤
√
n{µ̂(Ŝ)− µtrue}/τ̂(M̂) ≤ b

]
→ clear limit(δ).

δ1
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The Smaller Scandal of Statistics: a clever statistician works out
clever weights for model averaging,

µ̂∗ =
∑
S

c(S |Dn)µ̂S ,

but does the rest of the analysis pretending (i.e. ignoring the
difficulties) that the weights are nonrandom.

But distributions (and limit distributions) of

√
n
{∑

S

c(S)µ̂S − µtrue

}
and

√
n
{∑

S

ĉ(S)µ̂S − µtrue

}
are very different, particularly in parts of the parameter space
where models are bumping into each other.

Clear theory for both covered by Master Theorem Two. Sometimes
cleverness doesn’t pay off – the variability in ĉ(S) might mess up
the benefits of hunting for clever weights.
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F: Bagging

Suppose µ̂ is some post-selection or model-average (or otherwise
complicated) estimator of µ:

µ̂ =
∑
S

c(S |Dn)µ̂S .

An alternative to µ̂ is its bagging version, or averaging over
bootstraps. Bootstrapped data, say (x1, y

∗
1 ), . . . , (xn, y

∗
n ) with the

y∗i sampled from f (yi | xi , θ̂wide, γ̂wide), yield

µ̂∗ =
∑
S

c(S |D∗n)µ̂∗S .

I do this B = 1000 times:

µ̂bagg =
1

B

B∑
b=1

µ̂∗b.

This smooths out the sharp decisions of model selection etc.
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Prototype situation: y1, . . . , yn are i.i.d. N(µ, 1), AIC gives
µ̂ = ȳ I{|

√
nȳ | ≥

√
2}, equivalent to using δ̂(D) = D I{|D| ≥

√
2}

when D ∼ N(δ, 1). Bagging smooths out:
δ̂bagg(D) = E∗D

∗ I{|D∗| ≥
√

2}, with D∗ ∼ N(D, 1).
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Recall from Master Theorem Two that
√
n(µ̂− µtrue)→d Λ0 + ωt{δ − δ̂(D)}

with δ̂(D) =
∑

S c(S |D)GSD. We have

√
n(µ̂bagg − µtrue) =

1

B

B∑
b=1

√
n(µ̂∗b − µtrue)

.
=d

1

B

B∑
b=1

[
Λ∗0,b + ωt{δ − δ̂(D∗b)}

]
,

where Λ∗0,b ∼ N(0, τ20 ) and D∗b ∼ Nq(Dn,Q). Limit operation gives
Master Theorem Three:
√
n(µ̂bagg−µtrue)→d Eboot

[
Λ0+ωt{δ−δ̂(D∗)}

]
= Λ0+ωt{δ−δ̂bagg(D)},

with

δ̂bagg(D) = Eboot{δ̂(D∗) |D} =

∫
δ̂(x)φ(x − D,Q) dx .
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Bagging the post-selection methods lowers max-risk, without losing
much close to the narrow model:
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Even very complicated procedures (post-selection,
model-averaging, etc.) can be bagged. Can also attempt
double-bagging (but in some simple cases I’ve been through it
doesn’t help much).

Bridging from start-method to bagged-method, via shrunken bags:
For any ρ ∈ [0, 1], I can construct a method

µ̂shrunken bag =
1

B

B∑
b=1

µ̂(data∗b)

corresponding to (D∗ |D) ∼ Nq(D, ρQ), and

δ̂ρ-bagg = Eρ-bagg{δ̂(D∗) |D} =

∫
δ̂(x)φ(x − D, ρQ) dx .

For ρ = 0: the start-method itself, no additional smoothing.
For ρ = 1: (usual) bagging.
For ρ = 0.5: a shrunken bag.
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G: Post-selection and post-averaging inference

Consider any post-selection or post-averaging estimator

µ̂ =
∑
S

cn(S |Dn)µ̂S .

Wish to construct [low,up] such that

Pr{low ≤ µtrue ≤ up} .= 0.90.

This is a tall order, as the distribution of µ̂ is (very) complicated,
depending also on smaller local variations in the parameter space.

Attempts at constructing approximate pivots

Tn =
√
n(µ̂− µtrue)/κ̂

do not quite succeed:

Tn →d
Λ0 + ωt{δ − δ̂(D)}

κ(D, δ)
.

This is fine, the distribution is precise (and can be precisely
simulated), for any given δ – but hard to use.
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We have

√
n(µ̂∗ − µtrue)→d Λ(δ) = Λ0 + ωt{δ − δ̂(D)}

and may simulate this limit distribution for each given δ:

Prδ{low(δ) ≤ Λ(δ) ≤ up(δ)} = 0.95.

So the ‘oracle interval’ is

CI = [µ̂∗ − up(δ)/
√
n, µ̂∗ − low(δ)/

√
n].

A simple attempt: Insert estimate D for δ:

CI = [µ̂∗ − up(D)/
√
n, µ̂∗ − low(D)/

√
n].

But this typically doesn’t work, and coverage is off.

32/40



Safer (yields guaranteed conservative 0.90 intervals for each
parameter we’re interested in): consider

En = {δ : (δ−Dn)tQ̂−1(δ−Dn) = n(γ−γ̂wide)tQ̂−1(γ−γ̂wide) ≤ zq,0.95}.

Then Prδ{δ ∈ En} → 0.95. Also, from

Prδ{low(δ) ≤ Λ(δ) ≤ up(δ)} = 0.95.

form the wider

low∗ = min{low(δ) : δ ∈ En},
up∗ = max{up(δ) : δ ∈ En},

To be safe, we need to pass from oracle intervals

CI = [µ̂∗ − up(δ)/
√
n, µ̂∗ − low(δ)/

√
n]

to the wider

CI ∗ = [µ̂∗ − up∗/
√
n, µ̂∗ − low∗/

√
n].

Here Prδ{µtrue ∈ CI ∗} → p(δ) ≥ 0.90.
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Illustration, one-dimensional case: low(δ),up(δ), along with
low∗(D),up∗(D).
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Checking coverage, of simple method (via oracle interval, and
plug-in of Dn for δ), and of safer method:
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H: Concluding remarks

1. Model selection: used in (at least) two conceptually different
ways. To explain or to predict? Answer: it depends (on context,
situation, problem, end users).

Often, selection and averaging are used to form
µ̂∗ =

∑
S c(S |data)µ̂S , or prediction – it’s a (clever) black box.

Sometimes, interpretation of final model is more important.

Scylla & Charybdis: if you insist on

Pr{Ŝ = Strue} → 1 as n grows,

then
risk(θ, γ) = Eθ,γ{µ̂final − µ(θ, γ)}2

will typically be much worse (in parts of the parameter space).
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2. Other loss and risk functions (and other Focused Information
Criteria): We may use

√
n(µ̂S − µtrue)→d Λ0 + ωt(δ − GSD)

to assess and estimate other risk functions

riskS(δ) = E L
(
Λ0 + ωt(δ − GSD)

)
than for squared error loss L(z) = z2.

In particular, clear FIC formulae available for linex loss

La(z) = {exp(az)− 1− az}/a2,

and for hit-or-miss loss

L(z) =

{
1 if |z | ≥ ε,
0 if |z | < ε.
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We wish to select model S with highest hit probability

pn(S) = Pr{
√
n|µ̂S − µtrue| ≤ ε}.

Here

pn(S)→ p(S , δ) = Pr{|Λ0 + ωt(δ − GSD)| ≤ ε}.

and high p(S , δ) is seen to be the same as small

λ(S , δ) = log(τ20 + ωtGSQG
t
Sω) +

ωt(I − GS)δδt(I − GS)tω

τ20 + ωtGSQG
t
Sω

.

This leads to hit-FIC formulae, upon using DDt − Q for δδt (with
truncation), etc.

38/40



3. New-FIC: Suppose y1, . . . , yn are i.i.d. from distribution G .
Focus parameter µ = µ(G ). Consider k + 1 competing models –
parametric models 1, . . . , k and the nonparametric
µ̂nonpara = µ(Gn). May work with biases and variances of µ̂para to
form ficpara and ficnonpara, without O(1/

√
n) framework.

Doable also for e.g. regression: should I use a + bx , or
a + bx + cx2, or a nonparametric smoother m̂(x), for estimating
E(Y | x), on a given interval [xlow, xup]? But it’s a bit messy,
requiring bandwidths for different purposes, etc.

See Jullum and Hjort (Sinica, 2016), Hermansen, Hjort, Jullum
(2016, for time series).

4. FIC selection and averaging with 3q choices: Aalen’s linear
hazard regression model,

hi (s) = xi ,1α1(s) + · · ·+ xi ,qαq(s) for i = 1, . . . , n.

Choose, for each covariate, between (i) zero, (ii) constant, (iii)
nonparametric.
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FIC plot for the PBC data set: all 36 = 729 estimates of
cumulative hazard rate at time = 1 yr, for a 70 yr old high-risk
man.
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