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Abstract
We derive approximations to the bias and squared bias
with errors of order o(1∕n) where n is the sample size.
Our results hold for a large class of estimators, includ-
ing quantiles, transformations of unbiased estimators,
maximum likelihood estimators in (possibly) incorrectly
specified models, and functions thereof. Furthermore,
we use the approximations to derive estimators of the
mean squared error (MSE) which are correct to order
o(1∕n). Since the variance of many estimators is of order
O(1∕n), this level of precision is needed for the MSE esti-
mator to properly take the variance into account. We also
formulate a new focused information criterion (FIC) for
model selection based on the estimators of the squared
bias. Lastly, we illustrate the methods on data contain-
ing the number of battle deaths in all major inter-state
wars between 1823 and the present day. The applica-
tion illustrates the potentially large impact of using a
less-accurate estimator of the squared bias.

K E Y W O R D S

asymptotic theory, bias estimation, focused information criterion,
misspecified models, model selection, MSE estimation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2023 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of the Foundation of
the Scandinavian Journal of Statistics.

724 wileyonlinelibrary.com/journal/sjos Scand J Statist. 2024;51:724–759.

https://orcid.org/0000-0002-2029-4451
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SJOS
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsjos.12696&domain=pdf&date_stamp=2023-11-22


DÆHLEN et al. 725

1 INTRODUCTION

Bias estimation has a long tradition and an extensive list of techniques. Cox and Snell (1968)
give expressions of the bias of maximum likelihood estimators under the assumption of a
correctly specified model. The jackknife, a way of estimating bias based on resampling, was intro-
duced in Quenouille (1949), with important extensions in Quenouille (1956) and Tukey (1958).
Firth (1993) takes a different approach and proposes techniques for reducing the bias, and
hence removing the need for its estimation. In the present article, we build on classic the-
ory by deriving approximations to the bias of a large class of estimators. Our goal will be
to give comprehensive formulas throughout the article, and special attention should be given
to Section 2.3. Here we derive model-robust expressions for the bias of maximum likelihood
estimators. We believe the main theorem of this section serves as a modern extension of the
results in Cox and Snell (1968) and is a novel addition to the field of bias estimation and
correction.

Our main motivation for deriving precise bias approximations is estimation of mean squared
error, or MSE for short. This risk function measures the expected squared L2-distance from an
estimator to the value it is aiming for. In symbols, this means MSE( ̂𝜃) = E( ̂𝜃 − 𝜃0 )2, where ̂𝜃 is an
estimator of a parameter 𝜃0. Famously, the MSE decomposes into the sum of the squared bias and
the variance of the estimator evaluated. For many popular and well used estimators, for example,
means, medians, and maximum likelihood estimators, the variance component is relatively easy
to estimate. The bias component of the MSE, on the other hand, is often more complicated as
the true value 𝜃0 shows up in the expression. Furthermore, the variance of many estimators, for
example, quantiles, maximum likelihood estimators, and means, is of order O(1∕n), where n is
the sample size. Because, of this, estimators of the squared bias must have expected errors of order
o(1∕n) for the variability to be given sufficient weight in the estimated MSE. To achieve this, the
precise bias approximations is crucial.

Recently, estimation of bias and MSE has been developed in great detail within the field of
model selection. This is mainly due to the information criterion introduced in Claeskens and
Hjort (2003) and later extended by multiple authors. See for instance Zhang and Liang (2011),
Claeskens et al. (2006), or Claeskens and Hjort (2008). The criterion is called the focused informa-
tion criterion, or FIC for short, and ranks models by the quality of their estimate of a prespecified
parameter of interest. Quality is measured by MSE, and as a consequence, the formulation of
the FIC requires sophisticated estimators of the MSE and squared bias. Because of this, many
advanced techniques for estimation of the squared bias have been developed in the literature con-
cerning the FIC. The original versions of the criterion were created for situations where models
are nested within a true parametric alternative, with the degree of misspecification decreasing
by the order of O(1∕

√
n). In Jullum and Hjort (2017), however, a new version of the criterion is

given, which gives a general way of estimating the MSE of estimators.
The approximation given in Jullum and Hjort (2017) avoids the assumption of asymptotically

correctly specified models. Because of this, the estimators in this article have found use in multiple
situations, see for example, Jullum and Hjort (2019), Ko et al. (2019), Claeskens et al. (2019), and
Cunen, Walløe, and Hjort (2020). The approximations can, however, be shown to have an error
term of order O(1∕n) in cases where some or all of the quantities involved are asymptotically
biased. This makes the criterion too imprecise to give proper weight to the variance component
of the MSE. As a result the variability of estimators can potentially be greatly downplayed in the
estimator of the MSE developed in Jullum and Hjort (2017). In the present article, we will build on
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726 DÆHLEN et al.

the estimators given in Jullum and Hjort (2017) and derive an approximation to the MSE which
has expected error order o(1∕n).

We will start by considering precise bias estimation for a wide class of estimators. After-
wards, we will discuss MSE estimation and the FIC. In particular, we will consider when and
why the expressions given in Jullum and Hjort (2017) need to be corrected. In Section 4.1, we will
give a new version of the FIC, extending that of Jullum and Hjort (2017). Lastly, we will illustrate
the techniques developed in this article by estimating the MSE of a selection of estimators of the
difference in the median number of battle deaths in major inter-state wars before and after the
Korean war.

2 PRECISE BIAS ESTIMATION

Our main topic is precise estimation of the bias. We will work with estimators on the form

�̂� = 𝜇 + 1
n

n∑

i=1
𝜈(Yi) + 𝜖n. (1)

where Y1,…,Yn are i.i.d. from a distribution F and E𝜈(Y ) = 0 when Y ∼ F. At first glance, con-
sidering estimators on the form of (1) only might look slightly restrictive. In practice, however,
this condition holds for many commonly used estimators. If, for instance, �̂�1 is a mean, the above
equation holds trivially with 𝜈1(y) = y − 𝜇1. For the p quantile 𝜇p, 𝜈1(y) = [p − I(y ≤ 𝜇p)]∕f (𝜇p)
can be used when f , the density in the distribution F, exists. When �̂�1 is a maximum likelihood
estimator of 𝜇 in some parametric model f

𝜃

, (1) holds with 𝜈1(y) = ∇g(𝜃lf)TJ(𝜃lf)−1u(y, 𝜃lf) where
𝜃lf is the minimizer of the Kullback–Leibler divergence from the true distribution to the paramet-
ric family, u is the score function, J(𝜃lf) is the Fisher matrix in the model evaluated at 𝜃lf and g
is a function mapping 𝜃 to the value of 𝜇 in the parametric model, see Section 2.3 for details. In
addition, expressions for 𝜈1 when �̂�1 is a smooth function of the above estimators, can be derived
by the delta method. For conditions ensuring that (1) is satisfied for the influence function, see
for example, Thm. 5.5 in Shao (2003).

The main goal of this section is to find expressions for and estimators of

c = lim
n→∞

n E(�̂� − 𝜇) = lim
n→∞

n E𝜖n.

Before we can begin with estimation of the quantity, however, we need to discuss when nE𝜖n
converges and c is well-defined. We start with an informal argument which hopefully will provide
some intuition about what c is really is and when it exists.

Let Fn be the empirical distribution function of Y1,…,Yn ∈ R and F the true cumulative dis-
tribution function. Assume that �̂� can be represented as a functional of Fn, that is, that there exists
a function T such that �̂� = T(Fn). If T is sufficiently smooth, a Taylor expansion around F reveals

T(Fn) − T(F) = D(1)
F−Fn

T(F) + (1∕2)D(2)
F−Fn

T(F) + O(||Fn − F||3
∞), (2)

where D(k)
F−Fn

T is the kth order directional derivative of T in direction Fn − F. The expression above
is called the von Mises expansion, see for example, chap. 20 of Van der Vaart (1998) for more
details.

 14679469, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12696 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [09/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DÆHLEN et al. 727

The Donsker theorem, see for example Van der Vaart (1998, p. 266), ensures ||Fn − F||∞ =
Opr(1∕

√
n). Hence, (2) implies

T(Fn) − T(F) = D(1)
F−Fn

T(F) + (1∕2)D(2)
F−Fn

T(F) + opr(1∕n).

The first term on the right-hand side is a sum of influence functions of T and has expectation
zero. Under sufficient regularity, we therefore have

E{n[T(Fn) − T(F)]} = (n∕2)ED2TF−Fn(F) + o(1). (3)

Since D2TF−Fn(F) is the quadratic term in a Taylor expansion, we would expect it to be of order
O(||Fn − F||2) = Opr(1∕n), ensuring that the expression in (3) converges and c exists. A formal
statement, proof and precise set of conditions showing that this intuition is indeed correct is given
in Thm. 3.1 of Shao (1991).

In principle, we can always estimate c by approximating the right-hand side of (3). This
method is quite general and can, in theory, be used for most estimators. In practice, however, this
procedure is far from straightforward and, when done in full generality, results in incomprehen-
sible formulas requiring fine-tuning and extensive calculations in each new application. We will
therefore instead focus on some situations where precise formulas and/or estimation strategies
for c can be found.

We will present four ways to estimate c. First, we will work with functions of unbiased esti-
mators and quantiles. In Section 2.3 we will work with higher-order Taylor expansions of the
log-likelihood function to give expressions for the bias of maximum likelihood estimators. After-
wards, we will discuss how c can be estimated when �̂� is a function of estimators for which
approximations to the bias exists. Lastly, we will discuss resampling techniques.

Remark 1. In the following, we will derive multiple approximations to c. Most of
the formulas will be obtained by finding estimators with sufficiently small remain-
der terms, 𝛿n. Typically these will be of size opr(1∕n), and we will take this to imply
that their expected values are of order o(1∕n). For this to hold true, a sufficient
condition is that {n𝛿n}n is uniformly integrable. See, for example, Billingsley (1999,
p. 31) for a proof and details concerning uniform integrability or Shao and Wu (1989)
for an alternative set of regularity conditions. To make arguments more transpar-
ent, we will not focus on these technical details in the proofs, but take E opr(1∕n) =
o(1∕n) for granted. All required regularity conditions will, however, be stated in
the theorems and full proofs dealing with all technicalities may be found in the
Appendix B.

2.1 Functions of unbiased estimators

The first situation we will consider is when �̂� is a function of unbiased estimators. The following
result gives a formula for c in this case.

Theorem 1. Let â ∈ Rp be an unbiased estimator of a ∈ Rp such that
√

n(â − a) con-
verges in distribution to a N(0,Σ)-distributed variable and all components of

√
n(â − a)

to the power of three are uniformly integrable. Assume h ∶ Rp → R is a function for
which all partial derivatives up to and including order three exist and are continuous in
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728 DÆHLEN et al.

a neighbourhood of a. Then, if 𝜇 = h(a) and �̂� = h(â),

c + o(1) = nE(�̂� − 𝜇) = (1∕2)Tr[Hh(a)Σ] + o(1), (4)

where Hh(a) is the Hessian matrix of h evaluated at the point a. Furthermore, c can be
estimated consistently by

ĉ = (1∕2)Tr(Hh(â)̂Σ), (5)

where ̂Σ is some consistent estimator of Σ.

Proof. Taylor expanding h around a0 shows

�̂� − 𝜇 = (â − a)T∇h(a) + (1∕2)(â − a)THh(a)(â − a) + 𝜖n. (6)

for some remainder term 𝜖n. Typically, 𝜖n will be of order Opr(||â − a||3)which ensures
E𝜖n = O(n−3∕2) under uniform integrability. Under the conditions of the theorem, this
is indeed the case. Consult the Appendix B for details. Hence,

E(�̂� − 𝜇) = 0 + (1∕2)E[(â − a)THh(a)(â − a)] + o(1∕n).

As is shown in the Appendix B, the conditions in the theorem ensures that
√

n(â − a)
d
−−→N(0,Σ) implies nVarâ → Σ. Hence, by properties of the trace operator,

(4) holds true.
Lastly, since â and ̂Σ are consistent estimators of Σ and a, respectively, ĉ defined in

(5) converges in probability to c by the continuous mapping theorem. This concludes
the proof. ▪

The simplest examples of functions of unbiased estimators are unbiased estimators them-
selves. For such estimators h is linear and its Hessian zero. Hence, c = 0 and needs not be
estimated. Example include linear function of means and ordinary least squares regression
coefficients.

Another important example is maximum likelihood estimators in exponential families. To see
this, let f be a member of the exponential family. Then f is on the form

f (x) = A(x)B(𝜃) exp[𝜔(𝜃)TT(x)], (7)

for some functions A,B, 𝜔, and T and a parameter 𝜃. The maximum likelihood estimator based
on a sample Y1,…,Yn, is the maximizer of the log-likelihood function,

𝓁n(𝜃) =
n∑

i=1
log A(Yi) + n log B(𝜃) + 𝜔(𝜃)T

n∑

i=1
T(Yi),

which is the solution to the following equation

0 = nB′(𝜃)
B(𝜃)

+ 𝜔′(𝜃)T
n∑

i=1
T(Yi).

 14679469, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12696 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [09/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DÆHLEN et al. 729

Solving the equation shows

̂

𝜃 = g−1

(
1
n

n∑

i=1
T(Yi)

)

,

where g is the function

g(𝜃) = −𝜔′(𝜃)−1 𝜕

𝜕𝜃

log B(𝜃) = −𝜔′(𝜃)−1 B′(𝜃)
B(𝜃)

.

Now assume the focus parameter takes the value k(𝜃) in the family parameterized by (7) and let
�̂� = k( ̂𝜃) be the maximum likelihood estimator of this quantity. Then

�̂� = h[ 1
n

n∑

i=1
T(Yi)],

where h(x) = k[g−1(x)]. This shows that the maximum likelihood estimators in exponential
families are functions of means. By Theorem 1, we get

c = (1∕2)Tr{Hh[ET(Y )]Var[T(Y )]}. (8)

It is worth noting that (8) makes no assumptions about the parametric model being correctly
specified. Hence, the expression in (8) holds true even when the true distribution of the data is
not a member of the parametric family f

𝜃

.

2.2 Quantiles

We will now consider the case where �̂� is a quantile. More specifically, for Y1,…,Yn ∼ F i.i.d. and
some p ∈ (0, 1), we will work with (1 − 𝛾)Y(j) + 𝛾Y(j+1), where Y(k) is the kth order statistic and j
and 𝛾 are functions of p and n. All of the standard quantile estimators in R and Python are on
this form, with j and 𝛾 given in Table 1.

We start by considering the case when Y1,…,Yn are uniformly distributed. The results are
stated in the following lemma.

Lemma 1. Let U1,…,Un be i.i.d. uniformly distributed variables and set �̂� = (1 − 𝛾)
U(j) + 𝛾U(j+1) with 𝛾 and j defined by any of the rows in Table 1. Then, c takes the
following form

c + o(1) = nE(�̂� − p) = n[(j + 𝛾)∕(n + 1) − p], (9)

as p is the p-quantile in the uniform distribution.

Proof. By standard results, the jth-order statistic follows a Beta(j,n − j +
1)-distribution. The expression in (9) follows. ▪

In many cases, the left-hand side of (9) converges as n grows to infinity. For the quantile ver-
sions inRwith thetype argument equal to 4, 5,…, 9, this is the case, and the corresponding limits
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730 DÆHLEN et al.

are shown in Table 1. When type is equal to 1, 2, or 3, however, the expression to the left in (9)
does not converge unless very specific conditions on how n changes from iteration to iteration is
assumed. In applications, we recommend reading the limit of (9) off Table 1 when using a quan-
tile estimator corresponding to one in the default quantile function in R with type equal to
4,…, 9. When type equal to 1, 2, or 3 is used, the left-hand side of (9) can be estimated directly
using j and 𝛾 from Table 1. The latter approach can, of course, also be used when type equals
4,…, 9, but using the limit in Table 1 leads to relatively simpler formulas.

We will now use Lemma 1 to find an expression for c for more general distributions than the
uniform.

Theorem 2. Let Y1,…,Yn be i.i.d. from a distribution F with p-quantile 𝜇 for some
fixed p ∈ (0, 1). Assume that F is invertible and that there exists a neighborhood around
𝜇 on which F is thrice continuously differentiable. Let f be the density in the distribution.
Then, when �̂� = (1 − 𝛾)Y(j) + 𝛾Y(j+1), with j and 𝛾 defined by either of the rows in Table 1,

c + o(1) = nE(�̂� − 𝜇) = n
f (𝜇)

(
j + 𝛾
n + 1

− p
)
−

f ′(𝜇)p(1 − p)
2f (𝜇)3

+ O(n−1∕2). (10)

provided n3∕2(�̂� − 𝜇)3 is uniformly integrable. Furthermore, c can be estimated consis-
tently by

n
̂f (𝜇)

(
j + 𝛾
n + 1

− p
)
−
̂f ′(𝜇)p(1 − p)

2̂f (𝜇)
3 , (11)

where ̂f (𝜇) and ̂f ′(𝜇) are some estimators going in probability to f (𝜇) and f ′(𝜇),
respectively.

Proof. We sketch the proof here. More details can be found in the Appendix B.
By the probability integral transform, Ui = F(Yi) is uniformly distributed. Fur-

thermore, Y(i) = F−1(U(i)) as F is increasing and preserves ordering of variables.

T A B L E 1 Each row in the table describes the nonparametric quantile estimator (1 − 𝛾)Y(j) + 𝛾Y(j+1).

Type j 𝜸 Limit
1 ⌊pn⌋ I(np ≠ ⌊pn⌋) —

2 ⌊pn⌋ (1∕2)I(np = ⌊pn⌋) + I(np ≠ ⌊pn⌋) —

3 ⌊pn − 1∕2⌋ I(np ≠ ⌊pn⌋ or j even) —

4 ⌊pn⌋ np − ⌊pn⌋ −p

5 ⌊pn + 1∕2⌋ np + 1∕2 − ⌊pn + 1∕2⌋ 1∕2 − p

6 ⌊pn + p⌋ np + p − ⌊pn + p⌋ 0

7 ⌊pn + 1 − p⌋ np + 1 − p − ⌊pn + 1 − p⌋ 1 − 2p

8 ⌊pn + (p + 1)∕3⌋ np + (p + 1)∕3 − ⌊pn + (p + 1)∕3⌋ 1∕3 − (2∕3)p

9 ⌊pn + p∕4⌋ np + p∕4 − ⌊pn + p∕4⌋ −(3∕4)p

Notes: The column Type gives the type argument that should be given to quantile in R to get the corresponding estimator. To
the far right we have displayed c, the limits of (9) when they exist. The symbol ⌊⋅⌋ denotes truncation.
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DÆHLEN et al. 731

Hence,

�̂� = (1 − 𝛾)F−1(U(j)) + 𝛾F−1(U(j+1)). (12)

A Taylor expansion around p shows

F−1(U(j)) = 𝜇 + (F−1 )′(p)(U(j) − p) + (1∕2)(F−1 )′′(p)(U(j) − p)2 + 𝛿′n. (13)

By arguments that can be found in the Appendix B, 𝛿′n = Opr[(U(j) − p)3]. All the
standard versions of quantile estimators, have j chosen in such a way that U(j) − p =
Opr(1∕

√
n). Hence, 𝛿′n = Opr(n−3∕2). A similar result holds for F−1(U(j+1)).

By the inverse function theorem (F−1 )′(p) = f (𝜇)−1 and (F−1 )′′(p) = −f ′(𝜇)f (𝜇)−3.
Combining this with (12) and (13), shows

�̂� = 𝜇 + f (𝜇)−1(�̂�U − p) − f ′(𝜇)f (𝜇)−3[(1 − 𝛾)(U(j) − p)2 + 𝛾(U(j+1) − p)2] + 𝛿n. (14)

where 𝛿n = Opr(n−3∕2) and �̂�U = (1 − 𝛾)U(j) + 𝛾U(j+1).
Direct computations reveal

nE[(1 − 𝛾)(U(j) − p)2 + 𝛾(U(j+1) − p)2] = p(1 − p) + o(1).

Furthermore, the arguments in the Appendix B ensure that 𝛿n = opr(n−1) implies
E(𝛿n) = o(n−1) under the present conditions. Plugging this into (14), shows

nE(�̂� − 𝜇) = nE(�̂�U − p)∕f (𝜇) − f ′(𝜇)p(1 − p)∕2f (𝜇)3 + o(1).

Combining the above equation with Lemma 1, shows (10). By the continuous map-
ping theorem (11) is consistent for c. This concludes the proof ▪

If a parametric model is known, we can estimate f (𝜇) and f ′(𝜇) by their maximum likelihood
estimate. When working with for instance nested models, one may then fit larger models by max-
imum likelihood and use the fit to estimate f (𝜇) and f ′(𝜇). Otherwise, kernel density estimation
can be used. In the Appendix A, we discuss the latter approach and give suggestion for bandwidths
minimizing the MSE of the estimates of f (𝜇) and f ′(𝜇).

2.3 Maximum likelihood estimators

In some situations, we either know or at least strongly believe, that the true underlying distribu-
tion of the data belongs to some parametric family. When this is the case, the maximum likelihood
estimator of the focus parameter will be both consistent and asymptotically unbiased for the true
value. Hence, it can be used as the consistent estimator, �̂�0, from Section 3.2. Because of this,
we need expressions for c when �̂� is a maximum likelihood estimator. Such expressions exist
already. Cox and Snell (1968) derived formulas for the limit of nE( ̂𝜃 − 𝜃0) when ̂

𝜃 is a maximum
likelihood estimator in a correctly specified model and 𝜃0 is the true value of this parameter. In
most situations, however, we do not know which, if any, parametric model the distribution of the
data belongs to. Using the results of Cox and Snell (1968) will therefore be too optimistic. In this
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732 DÆHLEN et al.

section, we will derive model robust expressions for c. These can be applied even when we do not
believe that the chosen model is the true one.

Let Y1,…,Yn ∈ Rd be i.i.d. random variables from some underlying distribution with den-
sity or probability mass function, g, and assume we fit a parametric model, f

𝜃

, to these
data using maximum likelihood. We will let ̂𝜃 ∈ Rp denote the maximum likelihood estima-
tor of 𝜃, that is, the maximizer of 𝓁n(𝜃) =

∑n
i=1 log f

𝜃

(Yi). Under the assumptions stated in
White (1982), ̂𝜃 converges in probability to the minimizer of the Kullback-Leibler divergence
from g to f

𝜃

,

KL(g, f
𝜃

) = Eg[log g(Y ) − log f
𝜃

(Y )].

The minimizer of this expression is in some sense, the “least false” parameter and is the quantity
we have denoted by 𝜃lf. By White (1982), we also know that the speed of convergence is Opr(1∕

√
n)

and that

√
n( ̂𝜃 − 𝜃lf)

d
−−→N(0, J−1KJ−1),

where

J = Eg

(
− 𝜕

2

𝜕𝜃𝜕𝜃

T
|||𝜃=𝜃lf

log f
𝜃

(Y )
)

and K = Varg

(
𝜕

𝜕𝜃

|||𝜃=𝜃lf
log f

𝜃

(Y )
)
. (15)

In the above, g is added as a subscript to emphasize that we are taking expectations with respect
to this distribution.

The normal limit of
√

n( ̂𝜃 − 𝜃lf) is proved by finding the root of the one term Taylor expansion
of∇𝓁n and showing that this is only opr(1∕

√
n) away from ̂

𝜃. This allows us to study the behavior
of an explicit expression rather than the, in general, only implicitly defined ̂

𝜃. For our purposes,
however, a linear approximation is not sufficient, as we want to estimate the bias with an error
of order o(1∕n) and therefore need higher precision than opr(1∕

√
n). This is the main idea in the

proof of the following proposition.

Theorem 3. Let Y1,…,Yn ∈ Rd be i.i.d. from a distribution F and let f
𝜃

be some para-
metric family of densities or probability point mass functions indexed by an open set
Θ ⊆ Rp. Furthermore, let ̂𝜃 be the maximum likelihood estimator when fitting this fam-
ily to the data and 𝜃lf the minimizer of the Kullback–Leibler divergence from F to f

𝜃

.
Then, the bias of ̂𝜃 is given by the following formula,

c + o(1) = nE( ̂𝜃 − 𝜃lf) = J−1

⎡
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

Tr(J−1V1)
⋮

Tr(J−1Vp)

⎞
⎟
⎟
⎟
⎠

+ 1
2

⎛
⎜
⎜
⎜
⎝

Tr(W1J−1KJ−1)
⋮

Tr(WpJ−1KJ−1)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

+ o(1), (16)

where J and K are defined in (15) and

Vj = Cov
(
𝜕

𝜕𝜃

|||𝜃lf
log f

𝜃

(Y ), 𝜕

2

𝜕𝜃𝜕𝜃j

|||𝜃lf
log f

𝜃

(Y )
)

and Wj = E
(

𝜕

3

𝜕𝜃𝜕𝜃

T
𝜕𝜃j

|||𝜃lf
log f

𝜃

(Y )
)

for j = 1,…, p, (17)
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DÆHLEN et al. 733

provided the following four regularity conditions hold true:

(A1) All partial derivatives up to and including order four of log f
𝜃

(y) at 𝜃lf exists and
are continuous for F-almost all y. In addition, with Y ∼ F we need all fourth
order moments of ∇

𝜃lf log f
𝜃

(Y ) and all second order moments of all second- and
third-order partial derivatives of log f

𝜃

(Y ) to exist and be finite.
(A2) The matrix J is positive definite.
(A3) All fourth-order powers of all components of

√
n[ ̂𝜃 − 𝜃lf − (nJ)−1∇𝓁n(𝜃lf)] are

uniformly integrable.
(A4) There exists a function m ∶ Rd → R such that in a neighborhood of 𝜃lf all

fourth-order partial derivatives of log f
𝜃

(y) are bounded by m(y) for F-almost all
y, and Em(Y )4 exists and is finite.

In addition, c can be estimated consistently by replacing the matrices J and K and
Vj and Wj for j = 1,…, p by the empirical means, covariances, and variances of the
corresponding functions evaluated at 𝜃 = ̂

𝜃.

Proof. As mentioned previously, we will only sketch the proof of Theorem 3. For full
arguments taking care of all details, consult the Appendix B.

Fix j and let 𝜂j denote the jth component function of ∇𝓁n, that is, 𝜕𝓁n∕𝜕𝜃j. Taylor
expanding the function around 𝜃lf, shows

𝜂j(𝜃) = 𝜂j(𝜃lf) + (𝜃 − 𝜃lf)T∇𝜂j(𝜃lf) + (1∕2)(𝜃 − 𝜃lf)TH𝜂j(𝜃lf)(𝜃 − 𝜃lf) + 𝜖n(𝜃).

If 𝜂j is sufficiently regular, we have 𝜖n(𝜃) = O(n||𝜃 − 𝜃lf||3). At ̂𝜃 it therefore holds that

0 = 𝜂j(𝜃lf) + ( ̂𝜃 − 𝜃lf)T∇𝜂j(𝜃lf) + (1∕2)( ̂𝜃 − 𝜃lf)TH𝜂j(𝜃lf)( ̂𝜃 − 𝜃lf) + Opr(1∕
√

n), (18)

since ̂

𝜃 − 𝜃lf = Opr(1∕
√

n). Here we have used that the ̂

𝜃 maximizing 𝓁n satisfies
𝜂j( ̂𝜃) = 0.

Since 𝜃lf minimizes the Kullback–Leibler divergence, the derivative of
𝜃 → E log f

𝜃

(Y ) at 𝜃lf is zero. Hence,

E𝜂j(𝜃lf) =
n∑

i=1

𝜕

𝜕𝜃

|||𝜃=𝜃lf
E log f

𝜃

(Yi) = 0.

Because of this, taking the expectation of both sides of (18) shows

E[( ̂𝜃 − 𝜃lf)T∇𝜂j(𝜃lf)] + (1∕2)E[( ̂𝜃 − 𝜃lf)TH𝜂j(𝜃lf)( ̂𝜃 − 𝜃lf)] + O(1∕
√

n) = 0. (19)

We will work with each term in (19) separately, and use the result to find an expres-
sion for E( ̂𝜃 − 𝜃lf) with remainder term smaller than o(1∕n). In the following, let
bn = E( ̂𝜃 − 𝜃lf).

We start with the first term. By definition of 𝜂j and properties of the trace operator,

E[( ̂𝜃 − 𝜃lf)T∇𝜂j(𝜃lf)] = E
(
( ̂𝜃 − 𝜃lf)T

𝜕

2𝓁n

𝜕𝜃j𝜕𝜃
(𝜃lf)

)
= TrE

(
( ̂𝜃 − 𝜃lf)

𝜕

2𝓁n

𝜕𝜃j𝜕𝜃
(𝜃lf)T

)
.

By definition of the covariance, this equals
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734 DÆHLEN et al.

Tr

[

bnE
(
𝜕

2𝓁n

𝜕𝜃j𝜕𝜃
(𝜃lf)

)T
]

+ TrCov
(
̂

𝜃 − 𝜃lf,
𝜕

2𝓁n

𝜕𝜃j𝜕𝜃
(𝜃lf)

)

= bT
n E

(
𝜕

2𝓁n

𝜕𝜃j𝜃
(𝜃lf)

)
+ TrCov

(
̂

𝜃 − 𝜃lf,
𝜕

2𝓁n

𝜕𝜃j𝜕𝜃
(𝜃lf)

)
.

We recognize the vector E𝜕2𝓁n(𝜃lf)∕𝜕𝜃j𝜕𝜃 as −n times the jth column of the Fisher
matrix J. Let this be denoted by Jj. Furthermore, White (1982) showed that

̂

𝜃 − 𝜃lf = J−1n−1𝓁′n(𝜃lf) + opr(1∕
√

n). (20)

Hence,

E[( ̂𝜃 − 𝜃lf)T∇𝜂j(𝜃lf)] = −nbT
n Jj + 1

n
Tr

[
J−1Cov

(
𝓁′n(𝜃lf),

𝜕

2𝓁n

𝜕𝜃j𝜃
(𝜃lf)

)]
+ o(1).

Let u be the score function and uj its jth component function. Then, since the Yis
are independent and identically distributed,

Cov
(
𝓁′n(𝜃lf),

𝜕

2𝓁n

𝜕𝜃j𝜃
(𝜃lf)

)
=

n∑

i=1
Vj = nVj,

with Vj defined in (17). Putting all of our results together, shows that the first term of
(19) is equal to

−nbT
n Jj + Tr(J−1Vj) + o(1). (21)

The second term of (19) requires less effort. First notice that

( ̂𝜃 − 𝜃lf)TH𝜂j(𝜃lf)( ̂𝜃 − 𝜃lf) =
√

n( ̂𝜃 − 𝜃lf)Tn−1H𝜂j(𝜃lf)
√

n( ̂𝜃 − 𝜃lf).

By White (1982),
√

n( ̂𝜃 − 𝜃lf)
d
−−→U where U ∼ N(0, J−1KJ−1). Furthermore, by the

law of large numbers H𝜂j(𝜃lf)∕n = Wj + opr(1), where Wj is defined in (17). Hence,

( ̂𝜃 − 𝜃lf)TH𝜂j(𝜃lf)( ̂𝜃 − 𝜃lf)
d
−−→UTWjU. This implies

E[( ̂𝜃 − 𝜃lf)TH𝜂j(𝜃lf)( ̂𝜃 − 𝜃lf)] = Tr(WjJ−1KJ−1) + o(1). (22)

Here we have again used properties of the trace operator multiple times.
We are now ready to complete the argument. Combining (19), (21), and (22) for

j = 1,…, p, shows

0 = −nbT
n Jj + Tr(J−1Vj) + Tr(WjJ−1KJ−1) + o(1),

for j = 1,…, p. These p equations hold simultaneously if and only if

0 = −nJbn +
⎛
⎜
⎜
⎜
⎝

Tr(J−1V1)
⋮

Tr(J−1Vp)

⎞
⎟
⎟
⎟
⎠

+ 1
2

⎛
⎜
⎜
⎜
⎝

Tr(W1J−1KJ−1)
⋮

Tr(WpJ−1KJ−1)

⎞
⎟
⎟
⎟
⎠

+ o(1).

Rearranging the terms and multiplying the equation by (nJ)−1, shows (16).
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DÆHLEN et al. 735

Consistency of the estimators defined in Theorem 3 is shown in the
Appendix B. ▪

If one of the parameters of the model itself is chosen as focus parameter, Theorem 3 can be
used to estimate c. In most situations, however, �̂� is a function of ̂𝜃, and the above expressions do
not suffice. This is a special case of what we will discuss in Section 2.5. First, we will, however,
give extensions of Theorem 3 to the more general case of M- and Z-estimators.

2.3.1 M- and Z-estimators

The calculations made in the proof of Theorem 3 are not limited to maximum likelihood estima-
tors. Similar arguments can be made to find the bias of a more general class of estimators: M- and
Z-estimators. Examples of such estimators include copulas fitted using a two-stage procedure, see
Joe (2005) and Ko et al. (2019), and robust M-estimators, see for example, Huber (2009).

M-estimators are maximizers of expressions on the form

𝜃 →
1
n

n∑

i=1
𝜁(Yi, 𝜃), (23)

where 𝜁 ∶ Rd+p → R. The most obvious example of such estimators is maximum likelihood
estimators. In this case 𝜁(y, 𝜃) = log f

𝜃

(y). Because of their similarity, M-estimators share many
properties with maximum likelihood estimators. It can for instance be shown that the maximizer
of (23), ̂𝜃, converges almost surely to 𝜃0, the maximizer of the limit function 𝜃 → E𝜁(Y , 𝜃), and
that

√
n( ̂𝜃 − 𝜃0) has a normal limit, or in particular, that

√
n( ̂𝜃 − 𝜃0) = −V−1 1

√
n

n∑

i=1

𝜕

𝜕𝜃

|||𝜃=𝜃0
𝜁(Yi, 𝜃) + opr(1),

where V is the Hessian matrix of the limit function 𝜃 → E𝜁(Y , 𝜃) at 𝜃0. This expression is an
analogue to (20). For more details and proofs, consult Chap. 4 of Van der Vaart (1998).

Looking at the proof of Theorem 3 we notice that the arguments can be repeated for the more
general class of M-estimators. This is achieved by replacing log f

𝜃

(y) by the function 𝜁 and using
the properties listed in the previous paragraph in place of the corresponding results for maximum
likelihood estimators. The argument is very similar and will not be repeated here, but the result
is stated in the following theorem.

Theorem 4. Let Y1,…,Yn ∈ Rd be i.i.d. from a distribution F and ̂

𝜃 ∈ Rp be an
M-estimator maximizing n−1∑n

i=1𝜁(Yi, 𝜃). Furthermore, let 𝜃0 ∈ R be the maximizer of
the limit function 𝜃 → E𝜁(Y , 𝜃)where Y ∼ F. Then the bias of ̂𝜃 is given by the following
formula,

c + o(1) = nE( ̂𝜃 − 𝜃0) = J−1

⎡
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

Tr(J−1V1)
⋮

Tr(J−1Vp)

⎞
⎟
⎟
⎟
⎠

+ 1
2

⎛
⎜
⎜
⎜
⎝

Tr(W1J−1KJ−1)
⋮

Tr(WpJ−1KJ−1)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

+ o(1),

where J and K are defined as
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736 DÆHLEN et al.

J = E
(
− 𝜕

2
𝜁

𝜕𝜃𝜕𝜃

T (Y , 𝜃0)
)

and K = Var
(
𝜕𝜁

𝜕𝜃

(Y , 𝜃0)
)
.

and

Vj = Cov
(
𝜕𝜁

𝜕𝜃

(Y , 𝜃0),
𝜕

2
𝜁

𝜕𝜃𝜕𝜃j
(Y , 𝜃0)

)
and Wj = E

(
𝜕

3
𝜁

𝜕𝜃𝜕𝜃

T
𝜕𝜃j
(Y , 𝜃0)

)
for j = 1,…, p,

provided the regularity conditions (A1–A4) of Theorem 3 hold true after replacing
log f with 𝜁 , 𝜃lf with 𝜃0 and the maximum likelihood estimator with the maximizer of
n−1∑n

i=1𝜁(Yi, 𝜃).
In addition, c can be estimated consistently by replacing the matrices J and K and

Vj and Wj for j = 1,…, p by the empirical means, covariances, and variances of the
corresponding functions evaluated at 𝜃 = ̂

𝜃.

Assume that the function 𝜁 is differentiable in 𝜃. Maximization of (23) can then be rephrased
as solving

1
n

n∑

i=1

𝜕𝜁

𝜕𝜃

(Yi, 𝜃) = 0.

Solutions to equations like the one above, are called Z-estimators. In the proof of Theorem 3, it is
the fact that the maximum likelihood estimator is a Z-estimator which is used in the arguments.
Because of this, the result holds true also for this class of estimators, as stated in the following
theorem. The proof is very similar to that of Theorem 3 and is left out.

Theorem 5. Let Y1,…,Yn ∈ Rd be i.i.d. from a distribution F and ̂

𝜃 ∈ Rp be a
Z-estimator solving 0 = n−1∑n

i=1𝜉(Yi, 𝜃). Furthermore, let 𝜃0 ∈ R be the solution to the
limit equation 0 = E𝜁(Y , 𝜃) where Y ∼ F. Then the bias of ̂

𝜃 is given by the following
formula,

c + o(1) = nE( ̂𝜃 − 𝜃0) = J−1

⎡
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

Tr(J−1V1)
⋮

Tr(J−1Vp)

⎞
⎟
⎟
⎟
⎠

+ 1
2

⎛
⎜
⎜
⎜
⎝

Tr(W1J−1KJ−1)
⋮

Tr(WpJ−1KJ−1)

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

+ o(1),

where J and K are defined as

J = E
(
−𝜕𝜉
𝜕𝜃

(Y , 𝜃0)
)

and K = Var𝜉(Y , 𝜃0).

and

Vj = Cov
(
𝜉(Y , 𝜃0),

𝜕𝜉j

𝜕𝜃

(Y , 𝜃0)
)

and Wj = E
(

𝜕

2
𝜉j

𝜕𝜃𝜕𝜃

T (Y , 𝜃0)
)

for j = 1,…, p,

provided the regularity conditions (A1–A4) of Theorem 3 hold true after replacing
𝜕 log f∕𝜕𝜃 with 𝜉, 𝜃lf with 𝜃0 and the maximum likelihood estimator with the solution to
0 = n−1∑n

i=1𝜁(Yi, 𝜃). In the above 𝜉j is the jth component function of 𝜉.
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DÆHLEN et al. 737

In addition, c can be estimated consistently by replacing the matrices J and K and
Vj and Wj for j = 1,…, p by the empirical means, covariances and variances of the
corresponding functions evaluated at 𝜃 = ̂

𝜃.

Lastly, we remark that Theorem 4 and Theorem 5 hold true even when ̂

𝜃 is only “almost” an
M- or a Z-estimator. In fact, it is sufficient that ̂𝜃 is an estimator which can be expressed as the
root of a function on the form

𝜃 →
n∑

i=1
𝜉(Yi, 𝜃) + 𝛿n(𝜃),

where 𝛿n(𝜃) = opr(1) uniformly in a neighbourhood of the root of the limit function 𝜃 → E𝜁(Y , 𝜃).
This follows from the fact that 𝛿n(𝜃) can be incorporated into the remainder term of (18).

2.4 Resampling techniques

The last way of estimating c we will present is resampling techniques. We will discuss two
methods: the bootstrap and the jackknife. The main ideas will be presented briefly here, but
additional details, proofs, and discussions can be found in for example, Efron (1982), Efron and
Tibshirani (1993), or Shao and Tu (1995).

The bootstrap was first introduced in Efron (1979), and has since become a popular statistical
tool. To see how the procedure can be used to estimate c, notice that by (1)

E[n(�̂� − 𝜇)] = nE𝜖n = c + o(1).

The left-hand side of this equation can be easily estimated with bootstrap. Let �̂�∗j be the estimator
of 𝜇 based on the jth out of B bootstrap samples. Then

ĉboot =
n
B

B∑

j=1
(�̂�∗j − �̂�),

is an estimator of c, see for example, Chap. 10 of Efron and Tibshirani (1993).
The bootstrap procedure is quite general and works for most focus parameters. Hence, this

technique is an option when all other methods fail. Using the procedure in practice is, however,
often inconvenient, as a very large number of bootstrap samples must be drawn to achieve suffi-
cient precision. To see this, notice that the bootstrap estimate B−1∑B

j=1(�̂�
∗
j − �̂�) is a Monte Carlo

estimate of its expectation. Since the variance of �̂�∗j is of order O(1∕n) by (1), the central limit
theorem ensures that the Monte Carlo error of B−1∑B

j=1(�̂�
∗
j − �̂�) is of order Opr(1∕

√
nB). Hence,

the error of ĉboot is of order Opr(
√

n∕
√

B). For ĉboot to be consistent we would therefore need
B ≫ n. To achieve a convergence rate of Opr(1∕

√
n) for c we would need a million bootstrap sam-

ples when n = 1000, and even with a mere 50 data points, we would need B to be greater than
2000. Because of this, the computational burden might be too heavy for bootstrap to be practical
in many situations.

The jackknife is another resampling technique. It was introduced in Quenouille (1949) and
Tukey (1958), and was developed specifically for the purpose of estimating the bias with an error
of order o(1∕n). It is therefore well suited for estimating c.
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738 DÆHLEN et al.

The jackknife estimate of the bias of �̂� is defined as

ĉjack = (n − 1)

(

�̂� − 1
n

n∑

i=1
�̂�−i

)

.

Here �̂�−i is the same estimator of 𝜇 as �̂�, but based on Y1,…,Yi−1,Yi+1,…,Yn, for i = 1,…,n rather
than the full dataset. More formally, we assume there is a functional T, such that �̂� = T(Fn) and
�̂�−i = T(F−i

n ), where F−i
n is the empirical distribution function based on all but the ith data point.

Under certain smoothness conditions, ĉjack is consistent for the true value c. This is shown in Thm.
3.1 of Shao (1991).

The jackknife procedure is a flexible and general tool for bias estimation. That being said,
the method requires n applications of the functional T to estimate c. In cases where application
of the functional is computationally expensive or n is very large, the jackknife estimate can be
slow to calculate. To ease the computational burden, it is possible to use less computer inten-
sive versions of the standard jackknife procedure. Options include the one-step jackknife and the
grouped jackknife. See Chap. five of Shao and Tu (1995) for an overview. These methods limit
the number of times T needs to be applied, reducing the overall computational cost. In certain
situations, however, resampling techniques can be too time consuming to be practical, even with
modifications like these. In such cases, the formulas derived in the previous sections can be used
instead.

2.5 Functions of the above

In the previous sections, we derived formulas and described strategies for estimating c in certain
situations. We will now show how these results can be used to estimate the bias of even more
complex estimators.

Theorem 6. Let ̂𝜃 be some estimator of 𝜃 for which c
𝜃

, the limit of nE( ̂𝜃 − 𝜃) is known.
Assume furthermore that

√
n( ̂𝜃 − 𝜃) converges in distribution to a N(0,Σ)-distributed

variable. and that h ∶ Rp → R is a function for which all partial derivatives up to an
including order three exists and are continuous in a neighborhood of 𝜃. Then if 𝜇 = h(𝜃)
and �̂� = h( ̂𝜃),

c = ∇h(𝜃)Tc
𝜃

+ (1∕2)Tr[Hh(𝜃)Σ]. (24)

Furthermore, if ĉ
𝜃

is a consistent estimator of c
𝜃

,

∇h( ̂𝜃)Tĉ
𝜃

+ (1∕2)Tr[Hh( ̂𝜃)̂Σ], (25)

converges in probability to c.

Notice the similarities with Theorem 1. When ̂

𝜃 is unbiased, the first term of (24)
reduces to (4).

Proof. As before, we present a proof sketch only. A full argument is similar to that of
Theorem 1. Consult the proof of this theorem in the Appendix B for more details.
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DÆHLEN et al. 739

A Taylor expansion reveals the following

�̂� = 𝜇 + ∇h(𝜃)T( ̂𝜃 − 𝜃) + (1∕2)( ̂𝜃 − 𝜃)THh(𝜃)( ̂𝜃 − 𝜃) + opr(1∕n).

Let bn = E( ̂𝜃 − 𝜃). Taking expectations on both sides of the above equation, shows

nE(�̂� − 𝜇) = ∇h(𝜃)Tnbn + (n∕2)E[( ̂𝜃 − 𝜃)THh(𝜃)( ̂𝜃 − 𝜃)] + o(1),

which, by standard rules for the trace operator, is equivalent to nE(�̂� − 𝜇) =
∇h(𝜃)Tnbn + (1∕2)Tr[Hh(𝜃)Σ] + o(1). By assumption nbn converges to c

𝜃

, and
hence,

c = ∇h(𝜃)Tc
𝜃

+ (1∕2)Tr[Hh(𝜃)Σ].

Since ĉ
𝜃

is consistent for c
𝜃

, (25) converges to c by the continuous mapping
theorem. ▪

Now that we have discussed c in detail, we are ready to move onto our main application:
estimation of the MSE and the FIC.

3 ESTIMATING MSE

We will start by introducing notation and assumptions. In addition, we will derive equations that
show explicitly the quantities needed to estimate the MSE.

3.1 An approximation to the MSE

Assume we have i.i.d. data Y1,…,Yn ∈ Rd from a distribution, F. Let �̂�1 be an estimator of some
focus parameter with true value 𝜇0 ∈ R based on these data, and assume �̂�1 admits an influence
function, 𝜈1, with a small enough remainder term, in the sense that

�̂�1 = 𝜇1 +
1
n

n∑

i=1
𝜈1(Yi) + Sn, (26)

with E𝜈1(Y ) = 0 and Sn = Opr(1∕n). Lastly, let c1 denote the limit of nESn.
Direct computations show

MSE(�̂�1) = E(�̂�1 − 𝜇0)2 = b2 + 𝜏

n
+ 2bc1

n
+ 2E

(
Sn

n

n∑

i=1
𝜈1(Yi)

)

+ ES2
n + o(1∕n), (27)

where b = 𝜇1 − 𝜇0 and 𝜏 is the variance of 𝜈1(Y ). By the above assumptions Sn = opr(1∕
√

n).
Hence, S2

n = opr(1∕n). In addition, n−1∑n
i=1𝜈1(Yi) = Opr(1∕

√
n) by the central limit theorem.

Because of this, n−1Sn
∑n

i=1𝜈1(Yi) = opr(1∕n). If we further assume S2
n and Snn−1∑n

i=1𝜈1(Yi) to be
uniformly integrable, the above is sufficient for the last two terms in (27) to be of order o(1∕n),
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740 DÆHLEN et al.

see for example, Billingsley (1999, p. 31). Hence, the MSE of �̂�1 takes the following form

MSE(�̂�1) = b2 + 𝜏∕n + 2bc1∕n + o(1∕n).

We summarize our findings in a theorem for easier reference.

Theorem 7. Assume Y1,…,Yn ∈ Rd are i.i.d. from a distribution F, and �̂�1 is an
estimator of 𝜇0 satisfying

�̂�1 = 𝜇1 +
1
n

n∑

i=1
𝜈1(Yi) + Sn,

for some Sn = Opr(1∕n). Furthermore, let b = 𝜇1 − 𝜇0, and take c1 to be the limit of
nESn. Then

MSE(�̂�1) = b2 + 𝜏∕n + 2bc1∕n + o(1∕n), (28)

where 𝜏 is the variances of 𝜈1(Y ), provided this quantity exists and is finite and nSn is
uniformly integrable.

To estimate the MSE of �̂�1, we need to approximate all quantities in (28). This will be the topic
of the next section.

3.2 Estimating to the correct order

Looking at (28), we notice that the limiting bias, b, is constant while the remaining terms decrease
at the speed of O(1∕n). Because of this, b will dominate when n gets large. Hence, minimizing the
MSE asymptotically reduces to choosing a �̂�1 with b = 0. In practice, however, we do not have infi-
nite data points, and blindly choosing the estimator with the lowest limit bias is therefore rarely
useful. Most applications require extremely flexible estimators to ensure that the bias disappears
in the limit. Such procedures often have high variance. As a result, their MSEs tend to be high
in finite samples. Because of this, many statistical applications instead attempt to find a trade-off
between bias and variance. For our MSE estimates to be useful, they therefore need to take both
the bias and variance into account. Since the latter is of order O(1∕n), we will need to create an
approximation with an error of a smaller order. Otherwise, the variance is on the same scale as
the error of the estimator, washing out the effect of the variability.

We will create an estimator of the MSE which is only o(1∕n) away from (28) in expected value.
To do this, we need to estimate three quantities: the asymptotic bias b, the variance 𝜏 of 𝜈1(Y )
and the limit c1 of nESn. If we can find asymptotically unbiased estimators for these quantities,
the two last terms in (28) can be estimated with an error of o(1∕n), due to the n appearing in the
denominator of these terms. We do, however, need to be extra careful with the estimator of the
squared bias. This quantity is not divided by n, and hence, we need to make sure that the bias of
the estimator is of order o(1∕n).

To estimate the asymptotic bias, we need to approximate the distance from the limit of our
estimator, 𝜇1, to the truth, 𝜇0. This is impossible to do without having some idea of the value of 𝜇0.
Because of this, we need to introduce a second estimator which is consistent for this true value.
We will call this estimator �̂�0 and make similar assumptions about its form to the ones made for
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DÆHLEN et al. 741

�̂�1, that is,

�̂�0 = 𝜇0 +
1
n

n∑

i=1
𝜈0(Yi) + Tn, (29)

with Tn being an error term of order Opr(1∕n) and 𝜈0 ∶ Rd → R a function such that E𝜈0(Y ) = 0.
The introduction of �̂�0 might seem slightly counter-intuitive at first glance, and one might

wonder why we would bother with �̂�1 when we have a consistent estimator available. The answer
to this concern is that even though �̂�1 is inconsistent for 𝜇0, its MSE might still be lower than that
of the consistent estimator �̂�0, making in preferable for estimation. In addition, �̂�0 does not need
to satisfy all the conditions we require of �̂�1. The most obvious example of this is when we wish to
fit a parametric model to the data. In such cases we might “need” �̂�1 to be a maximum likelihood
estimator, while this condition is not required of �̂�0. This is a crucial point when working with
the FIC, which will be discuss in Section 4.

Since �̂�0 is consistent for the true value 𝜇0, the asymptotic bias can be estimated consistently
by the following quantity

̂b = �̂�1 − �̂�0 = b + 1
n

n∑

i=1
𝜙(Yi) + Rn,

where 𝜙 = 𝜈1 − 𝜈0 and Rn = Sn − Tn. Squaring the above expression shows

̂b
2
= b2 +

(
1
n

n∑

i=1
𝜙(Yi)

)2

+ R2
n + 2

(
b + Rn

n

n∑

i=1
𝜙(Yi) + bRn

)

.

Taking expectations on both sides of the equation and arguing as in Section 3.1, reveals

Êb
2
= b2 + 𝜅∕n + 2bERn + o(1∕n),

under the assumption of uniform integrability of R2
n and n−1Rn

∑n
i=1𝜙(Yi). In the above,

𝜅 = Var𝜙(Yi). Since Rn = Sn − Tn, we further have

Êb
2
= b2 + 2bc1∕n + 𝜅∕n − 2bETn + o(1∕n).

Just as for Sn, ETn will typically be of order O(1∕n). So let c0 be the limit of nETn. Then, the above
equation implies

Êb
2
= b2 + 2bc1∕n + 𝜅∕n − 2bc0∕n + o(1∕n).

We summarize the results in a theorem for easier reference.

Theorem 8. Assume Y1,…,Yn ∈ Rd are i.i.d. from a distribution F, and �̂�1 and �̂�0 are
estimators satisfying

�̂�1 = 𝜇1 +
1
n

n∑

i=1
𝜈1(Yi) + Sn and �̂�0 = 𝜇0. +

1
n

n∑

i=1
𝜈0(Yi) + Tn.
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742 DÆHLEN et al.

for some Sn,Tn = Opr(1∕n). Furthermore, let ̂b = �̂�1 − �̂�0 andb = 𝜇1 − 𝜇0, and take c0
and c1 to be the limits of nETn and nESn. Then

Êb
2
= b2 + 2bc1∕n + 𝜅∕n − 2bc0∕n + o(1∕n), (30)

where 𝜅 and 𝜏 are the variances of 𝜙(Y ) = 𝜈1(Y ) − 𝜈0(Y ) and 𝜈1(Y ), respectively,
provided 𝜅 and 𝜏 exists and are finite and nSn and nTn are uniformly integrable.

The first two terms in (30) appear in (28), the asymptotic approximation we wish to estimate.
The last two terms, however, do not and need to be corrected for. If we can find consistent esti-
mators, ĉ0 and �̂�, for c0 and 𝜅, respectively, the following estimator is only o(1∕n) away from
b2 + 2bc1∕n in expected value

̂b
2
− �̂�∕n + 2̂bĉ0∕n. (31)

The approximation ̂b
2
− �̂�∕n + 2̂bĉ0∕n + 𝜏∕n of the MSE, therefore has an error of order o(1∕n)

in expectation. Here �̂� and 𝜏 are the empirical variances of 𝜙(Y1),…, 𝜙(Yn) and 𝜈1(Y1),…, 𝜈1(Yn),
respectively.

Sometimes, (31) will be negative, leading to an estimate of the squared bias which less than
zero. By definition, however, b2 ≥ 0. Negative estimates are therefore both counter-intuitive and
always further away from the true value than 0. Hence, when negative estimates show up, we will
truncate them to zero, as in Jullum and Hjort (2017). This leads to the following estimator of the
MSE of �̂�1

̂MSE(�̂�1) = max{0, ̂b
2
− �̂�∕n + 2̂bĉ0∕n} + 𝜏∕n. (32)

Estimators for b, 𝜅, and 𝜏 have already been discussed. By definition c0 is the limit of
nE(�̂�0 − 𝜇0), and estimation of this quantity was discussed in length in Section 2.

Remark 2. The estimator in (32) is not the only way to estimate the MSE of �̂�1.
Rather than adding 2̂bĉ0∕n to ̂b

2
to remove the bias, we could subtract ĉ0∕n from

�̂�0 before estimating b. This would correct the bias of �̂�0 and remove the need to
add 2̂bĉ0∕n to the squared bias estimate. Such a procedure is indeed an alternative
to using (32), but does not lead to a significantly different estimator. By correcting
the bias of �̂�0 before using it to estimate the MSE of �̂�1, we are left with the estima-
tor ̂b

2
+ 2̂bĉ0∕n + ĉ2

0∕n2 − �̂�∕n of the squared bias. The expected difference between
this expression and (30) is a term of order O(1∕n2). As we are attempting to create
estimators with biases of order o(1∕n), the difference between the two approaches is
negligible.

That being said, estimating and subtracting ĉ0 is only one out of many ways
to remove bias from �̂�0. Modifying the score function as in Firth (1993), removes
the O(1∕n) part of the bias of the maximum likelihood estimator. For M-estimators,
similar alterations can be made to the moment equations to achieve approximate
unbiasedness, see Kim (2016). For situations where such techniques are available,
correcting the bias of �̂�0 before using it to estimate b is indeed an alternative to the
methods suggested in this article.
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DÆHLEN et al. 743

4 THE FOCUSED INFORMATION CRITERION

As mentioned previously, estimation of the MSE has been developed recently in the literature
concerning the FIC. This criterion attempts to choose the model with the most precise estimate
of a prespecified focus parameter, 𝜇, rather than the one fitting the data the best overall. This is
achieved by ranking candidate models by the MSE of their estimate of 𝜇. The estimator in (32) can
therefore be seen, not only as a way to approximate MSEs, but indeed as an information criterion.

Assume we fit a parametric model f
𝜃

using maximum likelihood. The resulting estimator ̂𝜃 of
𝜃 then satisfies the following equation

̂

𝜃 = 𝜃 + J(𝜃lf)−1 1
n

n∑

i=1
u(Yi, 𝜃lf) + Opr(1∕n),

where u is the score function and 𝜃lf and J(𝜃lf) are as defined in Section 3.1. See for example, Thm.
5.39 in Van der Vaart (1998) for a proof and a set of conditions. Applying the delta method ensures
that the focus parameter satisfies (26) with 𝜈1(y) = ∇𝜇(𝜃lf)TJ(𝜃lf)−1u(y, 𝜃lf), where ∇ denotes the
gradient operator. Because of this, the MSE of𝜓( ̂𝜃) can be estimated using (32), provided a consis-
tent estimator of the true value exists and satisfies the conditions stated previously in this chapter.
Since the FIC of the parametric model is the MSE of 𝜓( ̂𝜃), we can compute the FIC of f

𝜃

using
(32). A related idea is used in Jullum and Hjort (2017), and their formulas are indeed quite sim-
ilar to ours. We will now discuss the FIC of Jullum and Hjort (2017) in closer detail and use (32)
to define a new FIC.

4.1 The new and old FIC

In Jullum and Hjort (2017), the authors derive a FIC, allowing for comparison of multiple
nonnested parametric models and nonparametric alternatives, by evaluating how well a certain
pre-specified parameter of interest 𝜇 is estimated. This quantity is called the focus parameter, and
a model’s FIC score is an approximation to the MSE of its estimator �̂�1 of 𝜇.

To derive the criterion, the authors proceed more or less as we have done in Section 3. They
argue that ̂b

2
= (�̂�1 − �̂�0)2 tends to overshoot the actual bias of �̂�1 and that 𝜅∕n = Var𝜙(Yi)∕n

should be subtracted from the expression ot correct for this. Using our notation, their final formula
for the FIC is as follows,

FICold = max{0, ̂b
2
− �̂�∕n} + 𝜏∕n.

This expression is very similar to the one given in (32). The only difference is that the above
expression lacks the 2̂bĉ0∕n term, which is present in (32). Because of this, FICold is easier to
compute than the expression in (32), but, unless b or c is zero, the expected value of the quantity
is O(1∕n) away from the true MSE of �̂�1. Hence, the FIC of Jullum and Hjort (2017) will, in many
cases, underemphasize the importance of the variance since the error of the estimated squared
bias is on the same scale as this quantity. We therefore propose the following new form of the FIC,
which in some sense can be seen as a corrected version of FICold,

FICnew = max{0, ̂b
2
− �̂�∕n + 2̂bĉ∕n} + 𝜏∕n.
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744 DÆHLEN et al.

As argued previously, this estimator is only o(1∕n) from the true MSE of �̂�1. With this new version
of the FIC, we need to estimate c0, as was discussed in Section 2. All other quantities can be
approximated by the canonical estimators.

4.2 How much does it matter?

Even though the the FIC from Jullum and Hjort (2017) is slightly off its mark, this version of the
FIC has had success in many applications. See, for instance, Cunen, Walløe, and Hjort (2020),
Claeskens et al. (2019), Wang and Hobæk Haff (2019), and Hermansen et al. (2015). It is therefore
natural to ask “how wrong” this formula really is. In this section, we will present some examples
illustrating the differences.

Firstly, notice that when �̂�0 is unbiased, c = 0. When this is the case, the term distinguish-
ing FICold from FICnew is equal to zero and the two versions of the criterion agree. This happens
when �̂�0 is a mean or some bias corrected estimator. Another perhaps less trivial example is linear
combinations of the regression coefficients used in linear regression. These estimators are unbi-
ased for the true values, provided the model is correctly specified. Hence c0 is zero in this case.
Because of this, the use of the FIC in, for instance, Cunen, Walløe, and Hjort (2020) and Claeskens
et al. (2019) is unproblematic.

Another situation where FICold and FICnew give very similar results, is when either b or c
are very small. If either �̂�1 or �̂�0 are almost unbiased for the true value 𝜇0, this can happen, and
the term distinguishing the two versions of the criterion is too small to have any real effect. In
addition, we truncate negative estimates of the squared bias to zero. In some cases, the estimated
squared bias will be less than zero regardless of whether we subtract 2̂bĉ0∕n or not. Hence, the two
criteria can end up being very similar, if not equal, when the bias is small, relatively speaking. An
example of such a situation, is when estimating the difference in median life lengths of Roman
era Egyptian men and women using data from Pearson (1902). Jullum and Hjort (2017) analyze
this data set in their article and use FICold to choose the model estimating the focus parameter
with the highest precision. We repeated their computations in addition to calculating FICnew for
the same data. In this example, the two information criteria gave almost identical results. The
reason for this, is that the bias estimate is truncated for all but one model. This happens for both
FICnew and FICold, and hence, the two criteria agree for all but the Gompertz model. For this one
case, FICnew was 0.022 larger than FICold. The Gompertz model is, however, by far the worst of the
ones considered in Jullum and Hjort (2017) with very high estimated MSE of the focus parameter.
Because of this, adding 0.022 to the result, does not change the conclusions we would draw from
using the FIC in this case.

The above example might lead one to believe that the difference between the new and old FIC
is negligible in all but a few situations. It might therefore be tempting to use FICold rather than
FICnew because of its relatively easier formulation. This, however, is not to be advised, as there in
general is no bound on the size of term 2bc∕n. To see this, consider fitting an exponential model
to i.i.d. data points Y1,…,Yn ∼ Gamma(k,

√
k) for a fixed number k in order to estimate the SD

in the distribution, which is 1 for all k. In this situation, the limiting bias in the model will grow
with k, and as a result FICold will loose precision when k is large. A small simulation supports
this claim. For a selection of k-values, we simulated one million data sets of size n = 100. In each
case, we fitted an exponential model and computed FICold as well as FICnew using the SD as focus
parameter. We used the empirical SD as the consistent estimator �̂�0. In Figure 1, we illustrate the
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DÆHLEN et al. 745

F I G U R E 1 The figure displays the absolute value of the difference between the mean of 106 simulated
FIC-values and the true mean squared error as functions of the shape parameter in the underlying
Gamma(k,

√
k)-distribution of the data. The error for the old version of the information criterion is shown by a

grey dashed line, while the error of new version is plotted as a solid black line. The focus parameter is the SD in
the distribution and the empirical SD is used as the consistent estimator �̂�0. The sample size is n = 100.

results. We have plotted the estimated absolute value of the error of both FICold and FICnew as
functions of k, the shape parameter in the true underlying Gamma distribution. The figure shows
clearly that not taking the term 2bc∕n into account, causes the error of FICnew to grow large as k
increases.

This is of course only a toy example, but shows that there, at least in theory, is no bound
on 2bc∕n and that in certain situations ignoring its effect can be very problematic. We therefore
recommend using FICnew unless working exclusively with unbiased estimators. We will now illus-
trate this even further by trying out the new and old FIC on a dataset where the two criteria give
very different results.

4.3 Application—battle deaths in inter-state wars

In Pinker (2011) it is claimed that the world is gradually becoming more peaceful. Such statements
have since been a heated topic of discussion. See for example, Cirillo and Taleb (2016a, 2016b),
Clauset (2018), or Cunen, Hjort, and Nygård (2020). When investigating claims like that of Pinker
statistically, proper modeling is important.

In this section, we will use the FIC to evaluate suitability of different models for checking
the claim of Pinker based on the Correlates of War (CoW) dataset (Sarkees & Wayman, 2010).
This dataset consists of the number of battle deaths in the 95 most recently concluded wars.
The number of battle deaths is by no means a complete measure of violence. Hence, using the
CoW data set to assess the claim of Pinker is of course somewhat lacking. Nevertheless, we use
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746 DÆHLEN et al.

these data to estimate the difference in median battle deaths between newer and older inter-state
wars.

To compare recent wars to older ones, we need to decide which conflicts should be consid-
ered new. Cunen, Hjort, and Nygård (2020) investigate this question. Their analysis finds that the
Korean War marks a change in the number of battle deaths in inter-state wars. Building on this,
we define the “old” wars to be all conflicts before and including the Korean war. The remaining
wars are treated as “new” conflicts.

We consider the data points as independent. Furthermore, we assume that the battle deaths
in the recent wars are identically distributed and that the same holds true for the older wars.
In our analysis, we consider eight different models and investigate how well they estimate the
difference in median deaths between newer and older inter-state wars. For each case, we fit the
corresponding model to the data sets consisting of newer and older wars separately. Afterwards,
we use the fitted models to estimate the difference between median number of battle deaths in
older and more recent wars. To evaluate the different models, we compute FICnew for each case. As
the consistent estimator, �̂�0, we use the difference between the empirical median for the older and
newer wars. We use the default method in R with type equal to 7 to estimate this quantity. Since
the two datasets are independent, 𝜅∕n and 𝜏∕n are estimated by the sum of the corresponding
quantities for each separate data set. To approximate c0 and b, we take the difference between the
corresponding estimates for older and more recent wars. Afterwards, the squared bias is estimated
and truncated to zero in the cases where the approximation is negative. It is worth noting that the
forms of 𝜅, 𝜏, b, and c0 are relatively simple in this case where the focus parameter is the difference
between two quantiles. For more complicated functions, for example, �̂�B∕�̂�A where �̂�A and �̂�B are
the median number of battle deaths in newer and older wars, respectively, the delta method and
the result of Section 2.5 need to be applied.

We worked with a slightly modified version of the data. In the CoW dataset only wars with
more than 1001 battle deaths are registered. To avoid problems with observations on the bounds
of the support, we replaced all observations of 1001 with 1001.01. The same trick is used in Cunen,
Hjort, and Nygård (2020). See this article for more explanations and discussions. After transform-
ing the data, we fitted eight parametric models. Firstly, Dagum, Log-logistic, Pareto IV, Lomax,
log-normal and log-Cauchy distribution were fit to the data shifted by 1001 to the left. Secondly,
we fitted log-Gamma and log-Weibull distributions to the data scaled by 1000. The resulting val-
ues of FICnew for each model can be found in the plot in the left panel of Figure 2 together with the
maximum likelihood estimate of the focus parameter for each model. From the figure, we notice
that using the log-normal distributions results in the lowest MSE for the focus parameter. With
this model, the estimated difference between median battle deaths before and after the Korean
War is 2066.

To illustrate the difference between FICnew and FICold, we also computed the criterion of Jul-
lum and Hjort (2017). The results are displayed in Figure 2. From the plot, we notice that the two
methods indeed give very different estimates of the MSE for many of the models, though not all.
In fact, using FICnew rather than FICold actually leads to different models being chosen. With the
model selected by FICold the difference between median number of battle deaths before and after
the Korean War is estimated to be 3958, which is almost twice as large as the estimate we got
from the model chosen by FICnew. This shows that the additional term in FICnew does have a real
implication and is important for analysing the CoW dataset correctly.

The above analysis can be repeated for other quantiles than the median. In the right panel of
Figure 2 we have computed and displayed the FIC values for and estimates of the difference in
the third quartile in the two distributions. This can be used as a measure of how violence in the
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F I G U R E 2 The figure shows FICold (colored grey) and FICnew (colored black) for different models fitted to
the correlates of war (CoW) dataset together with the models corresponding estimate of the focus parameter. The
focus parameter is the difference in the p-quantile for older and newer wars. The value of p is shown in the title of
each plot.

more deadly wars has changed in recent years. From the plot we notice that the two criteria give
similar results in this case, with both the new and the old FIC selecting the Lomax model with
an estimate of 28,740 for the focus parameter.

The plots in Figure 2 give some insight into how the new and old version of FIC differ. For
the case of the median, c0∕n was estimated to be approximately 1227. This is a positive number,
and hence the nonparametric estimate of the focus parameter is biased upward. Because of this,
we would expect models underestimating the focus parameter compared to the nonparametric
estimate, to be “less off” than what the naive estimate ̂b suggests. Models estimating the focus
parameter to be even larger than �̂�0, on the other hand, are likely to be more biased than what ̂b
would lead one to believe. This intuitive idea is what is caught by FICnew, but not FICold. If ̂b and
ĉ0 have the same signs, 2̂bĉ∕n > 0 and the model is penalized by the criterion developed in this
article, whereas when �̂�0 is biased in the opposite direction of sign(̂b), 2̂bĉ∕n < 0, resulting in a
lower value of FICnew than FICold unless the estimate of the squared bias is truncated to zero.

The above calculations show that there can be real and impactful differences between the
old and new FIC. This is, however, not a guarantee that FICnew performs better than FICold in
this example. To investigate whether this is the case, we need to compute the true value of the
focus parameter and compare the true MSEs with the corresponding FICnew and FICold scores. In
theory, this is a simple task, but in practice we do now know the true underlying random structure
of battle deaths in inter-state wars. Because of this, we cannot check the performance of FICnew
and FICold directly. To get some indication on the quality of the MSE estimates we will therefore
instead work with a distribution similar to our data set where the truth is known. To achieve this,
we fitted a Lomax model to the data as explained previously. Afterwards, we simulated 10,000
datasets from this model. For each simulated dataset, we computed �̂�1, FICold and FICnew for
each of the models considered in this section. We used the difference in median number of battle
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748 DÆHLEN et al.

deaths before and after the Korean war as the focus parameter. Afterwards, we used the 10,000
samples to estimate the expected value of FICnew and FICold in addition to the true MSE for �̂�1 for
each model. For five out of the eight models considered, the average value of FICnew was closer
to the true MSE than FICold. For the remaining three cases FICold performed better than FICnew.
The wo criteria were more or less equally variable, with VarFICnew∕VarFICold ranging from 0.655
to 1.186 for the different models.

Comparing only the FIC-scores gives somewhat of a limited view. FICold and FICnew differ
only in their estimate of the squared bias. The estimated variance is identical in the two criteria.
Because of this, an over- or underestimated variance might make it beneficial to under- or over-
estimate the squared bias, respectively, as this “cancels” parts of the error made by the variance
estimate. Although this might lead to more precise estimates of the MSE in certain cases, such
cancellation happens mostly due to “luck” and is in general not something one should hope or
aim for. We therefore believe it is more relevant to compare the quality of the estimates of the
squared bias made by each criterion rather than the full MSE scores. Looking only at the esti-
mated squared bias shows that the cancellation described above has happened in two of the cases
where FICnew performed better than FICold. We find that the estimate of the squared bias in the
new criterion is indeed closer to the true value than the estimate provided by FICold in all but one
model.

Choosing to fit a Lomax model and simulate from this is of course not the only way one
can generate data similar to the number of battle deaths in the 95 most recent and concluded
inter-state wars. We could fit any of the models considered in this section or even draw bootstrap
samples from the dataset itself. We have tried out a number of these methods, and similar results
were found in all cases. For the sake of clarity and brevity, we will therefore not go into depth
about all settings, but taking the average over all simulation settings gives the following result.
More often than not, FICnew performed better than FICold when it comes to estimation of the
MSE. Furthermore, the squared bias estimate provided by FICnew were on average more precise
than the one from FICold for a little more than five out of eight models. In addition, the average
value of VarFICnew∕VarFICold ranged from 0.457 to 1.025 between the different models.

5 CONCLUDING REMARKS

In this article, we have only considered the framework of i.i.d. data, but extensions to more com-
plicated situations are certainly possible. For regression and classification settings with responses
Yi and predictors Xi for i = 1,…,n, the formulas derived in this article are directly applicable when
the covariates are considered random. This is because the tuples Zi = (Yi,Xi) for i = 1,…,n can be
considered as i.i.d. data points in this case. In addition, results like the Lindeberg–Feller theorem
(see e.g., Billingsley, 1995, p. 359) allows most of the formulas derived in this article to be general-
ized to situations where the covariates are considered nonstochastic. It is, however, worth noting
that in regression and classification settings, nonparametric estimators satisfying (29) can be hard
to come by. This is especially true when the number of covariates is high. In such cases, a solu-
tion can be to replace the true parameter, 𝜇0, by the least false parameter in a widest model. This
is in some sense the closest we can get to the true value, and the FIC should therefore measure
the MSE of estimators relative to this quantity. Claeskens et al. (2019) and Cunen, Walløe, and
Hjort (2020) take this approach for the simpler FIC of Jullum and Hjort (2017). Modifications
along the same lines can be made for the FIC derived in this article as well, but to use the more pre-
cise information criterion developed in this article, c0 needs to be estimated. This can be achieved
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DÆHLEN et al. 749

using Theorem 3. Further extensions of the iid framework include dependent and censored data
. Arguments similar to those given in Hermansen et al. (2015) and Jullum and Hjort (2019),
respectively, can be used to generalize the results of this paper to these more complicated data
structures.

FIC is a popular research topic and there exists many extensions. Most of which can also be
made for the criterion developed in this article as well. We will mention two such extensions, but
many other possibilities exist. For an overview of techniques, consult Claeskens and Hjort (2008).

In certain situations, multiple focus parameters are of interest and should be taken into
account when performing model selection. One way of achieving this for the FIC is to use aver-
age FIC (AFIC). Assume the focus parameters can be written as 𝜇(u) for u in some index set U.
A risk function taking all parameters into account is the following expression,

E
(

∫U
[�̂�(u) − 𝜇(u)]2 dW(u)

)
=
∫U

bias[�̂�(u)]2 dW(u) +
∫U

Var�̂�(u) dW(u),

where W is some distribution over U indicating how much each focus parameter matters relative
to the others. The risk of the estimators �̂�(u) for u ∈ U can therefore be estimated by the following
expression

AFIC = max

{

0,
∫U

(
̂b(u)2 − �̂�(u)

n
+ 2̂b(u)ĉ0(u)

n

)

dW(u)

}

+ 1
n ∫U

𝜏(u) dW(u).

Here ̂b(u), ĉ0(u), �̂�(u)a, and 𝜏(u) are the estimators discussed previously in this article computed
for the estimator �̂�(u). Notice that AFIC does not equal the integral of the individual FIC scores
as we truncate possibly negative estimates of the integrated squared bias rather than the individ-
ual bias estimates for each u ∈ U to zero. For more information about and variants of AFIC, see
Claeskens and Hjort (2008, pp. 179–183).

FIC scores can be used for more than strictly selecting the optimal model for estimating the
focus parameter. An alternative approach, is to use model averaging. Assume we have p models
with estimates �̂�1,…, �̂�p of the focus parameter. Rather than using the FIC to choose the esti-
mator with the lowest MSE, we could use the weighted average �̂�avg =

∑p
j=1wj�̂�j, where wj are

weights summing to one. The weights should be related to the FIC scores such that �̂�js with low
MSE are given more weight than �̂�js for which FIC(�̂�j) is large. Inspired by Eq. 6.1 in Jullum and
Hjort (2017), we suggest the following form for the weights

wj =
exp[−𝜆FIC(�̂�j)]

∑p
k=1 exp[−𝜆FIC(�̂�k)]

,

for some tuning parameter 𝜆.
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APPENDIX A. KERNEL DENSITY ESTIMATION

In Section 2.2, we derived an estimator for c when �̂� is a quantile. To use the formula in (10),
however, we need consistent estimators of both the density f and its derivative f ′ at 𝜇p.

The classic kernel density estimators are

̂f (x) = 1
nh0

n∑

i=1
K
(

xi − x
h0

)
and ̂f

′
(x) = − 1

nh2
1

n∑

i=1
K′

(
xi − x

h1

)
. (A1)

In the above, h1 and h2 are called the bandwidths and K is the kernel. In principle, the kernel can
be any nonnegative and differentiable function, but to simplify calculations we will assume it is
symmetric. The obvious choice for such a kernel is the standard normal density, 𝜙.

The standard strategy is to minimize the asymptotic integrated MSE. Minimizing the L2 dis-
tance between ̂f and ̂f

′
and the corresponding true values is reasonable when a good overall fit is

desired. In our situation, however, we are only interested in using the kernel density estimates to
approximate f (𝜇p) and f ′(𝜇p). Hence, we should choose bandwidths minimizing the MSE of these
estimators and not the full integrated MSE. Arguing as in Singh (1979), one can show that this is
achieved by

h1 =
( R(K)f (𝜇p)

S(K)2f (2)(𝜇p)2

)1∕5

n−1∕5 and h2 =
( 3R(K′)f (𝜇p)

S(K)2f (3)(𝜇p)2

)1∕7

n−1∕7
,
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where f (k) denote the kth derivative of f and

R(H) =
∫

R

H(u)2 du and S(H) =
∫

R

u2H(u) du.

See Chap. 2 of Wand and Jones (1995) for more details.
To estimate the optimal bandwidths, we need to know the value of f (𝜇p), f (2)(𝜇p) and f (3)(𝜇p).

These quantities are, however, unknown by definition of the problem. To estimate them, we there-
fore suggest fitting parametric models to the data. This can lead to inconsistent estimators of f (𝜇p),
f (2)(𝜇p) and f (3)(𝜇p), but this will only result in bandwidths being slightly off from the optimal
ones. The estimators in (A1) will still converge in probability to the true values, f (𝜇p) and f ′(𝜇p)
when inconsistent estimators of f (𝜇p), f (2)(𝜇p), and f (3)(𝜇p) are used to find optimal bandwidths.

We recommend the following rule of thumb: If the distribution has a heavy tail, fit a Pareto
distribution to the data. Otherwise, fit a normal distribution. These distributions are chosen
mainly because their maximum likelihood estimators have closed form expressions, allowing
f (𝜇p), f (2)(𝜇p), and f (3)(𝜇p) to be estimated without numerical optimization.

Combining all of the above, leads to the following rule of thumb for estimating f (𝜇p) and f ′(𝜇p):

̂f (x) = 1
nh0

n∑

i=1
𝜙

(
xi − x

h0

)
and ̂f

′
(x) = 1

nh2
1

n∑

i=1
𝜙

′
(

xi − x
h1

)
.

where 𝜙 is the standard normal density and

h0 = �̂�p

[
2
√
𝜋(Y(1)∕𝜇p)�̂� �̂�(�̂� + 1)2(�̂� + 2 )2n

]−1∕5
and h1

= �̂�p

[
(4∕3)

√
𝜋(Y(1)∕𝜇p)�̂�(�̂� + 1)2(�̂� + 2)2(�̂� + 3)2n

]−1∕7
,

when the distribution of Y is heavy tailed and

h0 = 𝜎2 exp
[
(�̂�p − Y )2∕10�̂�2

]{√
2�̂�

[
(�̂�p − Y )2 − �̂�2

]2
n
}−1∕5

and

h1 = 𝜎2 exp
[
(�̂�p − Y )2∕14�̂�2

]{
(2
√

2∕3)�̂�(�̂�p − Y )2
[
(�̂�p − Y )2 − 3�̂�2

]2
n
}−1∕7

,

otherwise. In the above, �̂�, Y , and Y(1) are the empirical SD, mean, and minimum value in the
sample, respectively. In addition, �̂�p is the empirical quantile and

�̂� =

[
1
n

n∑

i=1
log(Yi∕Y(1))

]−1

.

Lastly, we would like to remark that there exists more sophisticated methods for estimating
f (𝜇p) and f ′(𝜇p) than the ones presented here. For instance, rather than using a purely non-
parametric or parametric estimate, a semi-parametric approach is possible. Parametric and
nonparametric models can be combined as in, for example, Hjort and Glad (1995) and Efron
and Tibshirani (1996). Another approach is to use local likelihoods, see Hjort and Jones (1996)
and Loader (1996).
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DÆHLEN et al. 753

APPENDIX B. COMPLETE PROOFS

We will use the following notation. If A is a matrix Aj,k denotes the (j, k)th component of A.
Furthermore Aj is notation for the jth column vector of A. Similarly, aj denotes the jth component
of a if a is a vector. Lastly we will use ∇x0 f (x) and Hx0 f (x) as the gradient and hessian matrix of f
at x0, respectively.

B.1 Uniform integrability
To give full proofs and sets of conditions for the theorems in the article, we will need to show
that multiple quantities are uniformly integrable. We give the definition here, for the sake of
completion.

Definition 1 (Uniformly integrable, Billingsley (1999)). A sequence of random
variables (Xn)n ⊆ R is uniformly integrable if the following holds,

lim
K→∞

sup
n

E(|Xn| ∶ |Xn| ≥ K) = 0.

We also state a lemma containing multiple results concerning uniform integrability. These
results are not new and proofs can be found in most textbooks on the subject. Properties we will
use are nevertheless included here fore easier reference in the arguments that follow.

Lemma 2. In the following, let (Xn)n, (Yn)n ⊆ R be two sequences of random variables.
Furthermore, let An ∈ Rp×q and Bn ∈ Rq×p′ be random matrices and C ∈ Rq×p′′ a fixed
matrix.

(i) Xn is uniformly integrable if and only if |Xn| is uniformly integrable.
(ii) Let a, b ∈ R and assume that Xn and Yn are uniformly integrable, then aXn + bYn

is uniformly integrable
(iii) Let X2

n and Y 2
n be uniformly integrable, then XnYn is uniformly integrable.

(iv) If Xp
n is uniformly integrable, Xq

n is uniformly integrable for all 1 ≤ q < p.
(v) If Xn converges in distribution to X and E|Xn| converges to E|X|, Xn is uniformly

integrable.
(vi) If each component of An is uniformly integrable, each component of CAn is

uniformly integrable as well.
(vii) If the square of each component of An and Bn both are uniformly square inte-

grable, each component of AnBn is uniformly integrable.

Proof. (i) holds by definition. (ii) follows from the triangle inequality and (iii) from
Hölder’s inequality. Since EXp

n converges to EXp by uniform integrability of Xp
n ,

supn E(|Xn|q+𝜖) <∞ where 𝜖 = (p − q)∕q > 0. By (3.18) in Billingsley (1999, p. 31),
this implies that Xq

n is uniformly integrable, proving (iv). Case (v) is a consequence of
Thm. 3.6 in Billingsley (1999, p. 32), the continuous mapping theorem and case (i).
The two remaining points follow from (ii) and (iii) respectively. ▪

B.2 Functions of unbiased estimators
We start with the simplest case: functions of unbiased estimators.
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754 DÆHLEN et al.

Theorem 9 (Functions of unbiased estimators). Let â ∈ Rp be an estimator of a0
such that

√
n(â − a0) converges in distribution to some U with finite second moment.

Assume that all components of
√

n(â − a0) to the power of three are uniformly integrable
and that there exists a neighborhood  of a0 on which h ∶ Rp → R has continuous
partial derivatives up to order 3. Then

lim
n→∞

n E[h(â) − h(a0)] =
1
2

Tr[Hh(a0)EUUT].

Proof. Since all components of
√

n(â − a0) are uniformly square integrable, case
(vii) of lemma 2 ensures that all components of En(â − a0)(â − a0 )T are uni-
formly integrable as well. Hence, En(â − a0)(â − a0 )T converges to EUUT and
nE(â − a0)THh(a0)(â − a0) = Hh(a0)EUUT + o(1). To show the theorem, we there-
fore only need to prove that, nE𝜖n(â) = o(1), where 𝜖n(â) is the remainder
term in (6).

Choose a compact subset K of with a0 in its interior. Since â converges in prob-
ability to a0, it lies in the interior of K with probability tending to one. Without loss of
generality, we will therefore assume that â lies in the interior of K. Since all third-order
partial derivatives of h are continuous on this set, the extreme value theorem guar-
antees that they are bounded by some M ∈ R. Hence, by standard results for Taylor
expansions of multivariate functions,

|𝜖n(â)| ≤
M
3!

||â − a0||3
1.

See for example, Coroll. 6.5.8 in Lindstrøm (2017). In the above, || ⋅ ||1 denotes the L1

norm on Rp. Since all components of
√

n(â − a0) to the power of three are uniformly
integrable, and n3∕2||â − a0||3

1 is OPr(1) by the continuous mapping theorem, we have
E|𝜖n(â)| = O(n−3∕2). ▪

For the special case of empirical means, the theorem simplifies somewhat.

Corollary 1 (Functions of means). Let Y1,…,Yn ∈ Rd be random variables with
empirical mean �̂� and expected value 𝜇0. Assume further that the expected value of all
components of Yi to the power of four exists, and that h is a function with continuous
partial derivatives up to order three in a neighborhood of 𝜇0. Then

lim
n→∞

n E[h(�̂�) − h(𝜇0)] =
1
2

Tr[Hh(𝜇0)VarYi].

Proof. By the central limit theorem
√

n(�̂� − 𝜇0) converges to a normal distribution
with variance VarYi. Because of this, the result follows from Theorem 9 provided all
components of

√
n(�̂� − 𝜇0) to the power of three are uniformly integrable. By case (iv)

of lemma 2, this holds true when all components of
√

n(�̂� − 𝜇0) to the power of four
are uniformly integrable. We will show this latter statement.

Fix j. By the continuous mapping theorem, n2[(�̂� )j − (𝜇0 )j ]4 converges in dis-
tribution to U4 where U ∼ N[0, (VarYi)j,j]. Furthermore, utilizing that Y1,…,Yn are
independent and have mean zero one can show
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DÆHLEN et al. 755

E

(
1

√
n

n∑

i=1
[(Yi )j − (𝜇0 )j]

)4

=

1
n2

n∑

i=1
{E[(Yi )j − (𝜇0 )j ]4 − 3(VarYi )2j,j} + 3(VarYi)4j,j → 3(VarYi)2j,j,

which is equal to the fourth moment of the jth component of U. Hence,
n2[(�̂�)j − (𝜇0)j

]4 is uniformly integrable and Theorem 9 can be applied. ▪

B.3 Quantiles
The second case is quantiles.

Theorem 10 (Quantiles). Let Y1,…,Yn be i.i.d. with distribution F and let 𝜇p be the
true p-quantile in the distribution. Assume |

√
n(�̂�p − 𝜇p)|3 is uniformly integrable and

that there exists a neighbourhood of 𝜇p on which F ∶ Rp → R has continuous partial
derivatives up to order 3, then

nE(�̂�p − 𝜇p) =
n

f (𝜇p)

(
j + 𝛾
n + 1

− p
)
−

f ′(𝜇p)p(1 − p)
2f (𝜇p)3

+ O(n−3∕2),

where f is the density function in the distribution F and �̂�p is the empirical quantile
defined by �̂�p = (1 − 𝛾)Y(j) + 𝛾Y(j+1) with j and 𝛾 defined by either of the rows in Table 1.

Proof. The only thing we need to prove is that E𝛿n = o(1∕n), where 𝛿n is defined in
(14) of the article. The rest of the argument is similar to those given in the article.
Since 𝛿n is a sum of remainder terms, it suffices to show that the expected value of
each of them are o(1∕n). We will focus on 𝛿′n, defined in Equation (13) of the article.
The other case is similar.

By standard results for quantiles, �̂�p is consistent for 𝜇p and
√

n(�̂�p − 𝜇p) con-
verges in distribution to a N[0, p(1 − p)∕f (𝜇p)] distribution. This allows us to argue as
in the proof of Theorem 9, to show

n3∕2E𝛿′n ≤
M
3!

E|
√

n(�̂�p − 𝜇p)|3
.

Since |
√

n(�̂�p − 𝜇p)|3 is uniformly integrable by assumption and |
√

n(�̂�p −
𝜇p)|3 = O(1) by the continuous mapping theorem, the above equation ensures
E𝛿′n = O(n−3∕2). ▪

B.4 Maximum likelihood estimators
We will now prove Theorem 3 of the article. We start by showing a lemma.

Lemma 3. Let Y1,…,Yn be i.i.d. data points from a distribution F and  =
{log f

𝜃

| 𝜃 ∈ Θ} a family of densities indexed by an open set Θ. Let 𝜃lf denote the min-
imizer of the Kullback–Leibler divergence from F to  and ̂

𝜃 the maximum likelihood
estimator. Furthermore, let

Jn = −
1
n

H
𝜃lf𝓁n(𝜃) and J = −H

𝜃lf E log f
𝜃

(Y ),
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756 DÆHLEN et al.

and

Wn =
1
n

𝜕

3𝓁n

𝜕𝜃𝜕𝜃

T
𝜕𝜃

j (𝜃lf) and W j = 𝜕

3

𝜕𝜃𝜕𝜃

T
𝜕𝜃j

|||𝜃lf
E log f

𝜃

(Y ),

where 𝓁n denotes the likelihood function based on Y1,…,Yn and Y ∼ F. Then the
following quantities are uniformly integrable:

(1) n2( ̂𝜃j − (𝜃lf)j)4 for each j = 1,…, p
(2) n

[
(Jn)j,k − Jj,k

]2 for each j, k = 1,…, p
(3) n[(Wn)j,k −Wj,k]2 for each j, k = 1,…, p,

provided the following assumptions hold true:

(A1) All partial derivatives up to order 4 of log f
𝜃

(y) at 𝜃lf exists and are continuous
for almost all y. In addition, all fourth moments of ∇

𝜃lf log f
𝜃

(Y ) and all second
moments of all second- and third-order partial derivatives of log f

𝜃

(Y ) at 𝜃lf exists
and are finite.

(A2) The matrix J is positive definite.
(A3) All fourth-order powers of

√
n[ ̂𝜃 − 𝜃lf − (nJ)−1∇𝓁n(𝜃lf)] are uniformly inte-

grable.

Proof. We start with (1). Fix j and introduce the two variables

Nn = n−1∕2(J−1)j∇𝓁n(𝜃lf) and 𝛿n =
√

n
{
̂

𝜃j − (𝜃lf)j −
[
(nJ )−1]j∇𝓁n(𝜃lf)

}
.

Then,
[√

n( ̂𝜃 − 𝜃lf)
]4
= (Nn + 𝛿n)4 = N4

n + 𝛿4
n + 4Nn𝛿

3 + 4N3
n𝛿n + 6N2

n𝛿
2
n.

We will show that each term is uniformly integrable. By case (ii) of Lemma 2, this
ensures that n2( ̂𝜃j − (𝜃lf)j)4 is uniformly integrable.

By the central limit theorem, Nn converges in distribution to a random variable
N ∼ N(0, 𝜎2) where

𝜎 =
[
(J−1)j

]TVar[∇
𝜃lf log f

𝜃

(Yi)](J−1)j.

Furthermore, elementary computations show

EN4
n =

1
n
(E{

[
(J−1 )j

]T∇
𝜃lf log f

𝜃

(Yi)}4 − 3𝜎4) + 3𝜎4 → 3𝜎4 = EN4
,

since all fourth-order moments of ∇
𝜃lf log f

𝜃

(Yi) exist and are finite. Hence, by cases
(v) and (iv) of Lemma 2, Np

n is uniformly integrable for p ≤ 4.
By assumption and case (iv) of Lemma 2, 𝛿p

n is uniformly integrable for p ≤ 4. The
remaining terms now follow directly. Since 𝛿2

n and N2
n are uniformly integrable, case

(iii) of Lemma 2 ensures that Nn𝛿n is uniformly integrable. This, together with uni-
form integrability of N4

n and 𝛿4
n and yet another application of case (iii) in Lemma 2,

shows that Nn𝛿
3
n and N3

n𝛿n are uniformly integrable.
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DÆHLEN et al. 757

We will now prove (2). The argument for (3) is similar and hence omitted.
Fix j and k. By the law of large numbers n

[
(Jn)j,k − Jj,k

]2 converges almost surely
to VarH

𝜃lf log f
𝜃

(Yi)j,k. Furthermore, the expected value of n
[
(Jn)j,k − Jj,k

]2 is equal
to VarH

𝜃lf log f
𝜃

(Yi)j,k. Hence, by case (v) of Lemma 2, n
[
(Jn)j,k − Jj,k

]2 is uniformly
integrable. ▪

We are now ready to prove Theorem 3 of the article.

Theorem 11. Let all quantities be defined as in Lemma 2 and assume that (A1–A3)
hold true. Then the bias of ̂

𝜃 − 𝜃lf is on the form given in Theorem 3 of the article,
provided the following additional assumption:

• There exists a neighborhood,  of 𝜃lf and an integrable function m such that
all fourth-order partial derivatives are bounded by m(y) and Em(Y )4 exists and
is finite.

Proof. By the mean value theorem, the following holds for all i, j, k = 1,…, p,

‖‖‖
𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k
log f

𝜃

(y) − 𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k

|||𝜃lf
log f

𝜃

(y)‖‖‖ ≤
‖‖‖

𝜕

4

𝜕𝜃𝜕𝜃i𝜕𝜃j𝜕𝜃k

|||𝜃∗ log f
𝜃

(y)(𝜃 − 𝜃lf)
‖‖‖,

for some 𝜃∗ on the line segment between 𝜃 and 𝜃lf. Hence, if we assume without loss
of generality that is convex, the existence of m as described in (A4), ensures that
for all 𝜃 ∈ ,

‖‖‖
𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k
log f

𝜃

(y) − 𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k

|||𝜃lf
log f

𝜃

(y)‖‖‖ ≤ Cm(y)||𝜃 − 𝜃lf||,

for some C > 0. If we further, without loss of generality, assume that  is compact
we can use the above equation and the triangle inequality to show

‖‖‖
𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k
log f

𝜃

(y)‖‖‖ =
‖‖‖

𝜕

3

𝜕𝜃i𝜕𝜃j𝜕𝜃k

|||𝜃0
log f

𝜃

(y)‖‖‖ + C′m(y),

for some positive C′ ∈ R. The right-hand side does not depend on 𝜃 and has finite
expectation, hence all third-order partial derivatives of log f

𝜃

(y) are bounded by a fixed
integrable function. This together with condition (A1) and (A2) of Lemma 3, ensures
that ̂𝜃 exists with probability tending to 1, ̂𝜃 converges in probability to 𝜃lf and that

̂

𝜃 = 𝜃lf + (nJ)−1𝓁n(𝜃lf) + oPr(1). (B1)

This follows from Thms. 5.41 and 5.42 in Van der Vaart (1998). Since ̂

𝜃 converges to
𝜃lf in probability, the probability of ̂𝜃 lying in goes to one. In the following, we will
therefore assume that ̂𝜃 ∈ without loss of generality.

To show Theorem 3 in the article we need to prove that the expected value of
the remainder term 𝜖n( ̂𝜃) is of order O(1∕

√
n), and that each component of W j

nn( ̂𝜃 −

𝜃lf)( ̂𝜃 − 𝜃lf)T and
√

n( ̂𝜃 − 𝜃lf)
√

n
(

Jj
n − Jj

)T
is uniformly integrable. The rest of the

argument is similar to that given in the article.
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758 DÆHLEN et al.

We start with the remainder term 𝜖n( ̂𝜃). Since m bounds all fourth order partial
derivatives of log f

𝜃

(y) in  for almost all y, standard results concerning remainder
terms in Taylor expansions can be used to show

|𝜖n( ̂𝜃)| ≤
1
3!

n∑

i=1
m(Yi)|| ̂𝜃 − 𝜃lf||3

1.

Taking expectations on both sides of the inequality shows,

E
√

n|𝜖n( ̂𝜃)| ≤
1
6

E
[

m(Y )||
√

n( ̂𝜃 − 𝜃lf)||3
1

]
.

Furthermore, applying Hölder’s inequality twice, reveals

E
√

n|𝜖n( ̂𝜃)| ≤
1
6
(
Em2(Y )4

)1∕4
(

E||
√

n( ̂𝜃 − 𝜃lf)||4
1

)3∕4
.

By (B1)
√

n( ̂𝜃 − 𝜃lf) = O(1). Applying the continuous mapping theorem, ensures
n2|| ̂𝜃 − 𝜃lf||4

1 = O(1). Furthermore, uniform integrability of n2|| ̂𝜃 − 𝜃lf||4
1 can be shown

using case (1) of lemma 3 and case (ii) and (iii) of Lemma 2. Hence, E||
√

n( ̂𝜃 − 𝜃lf)||4
1 =

O(1), showing that E𝜖n( ̂𝜃) = O(1∕
√

n).
Uniform integrability of each component of W j

nn( ̂𝜃 − 𝜃lf)( ̂𝜃 − 𝜃lf)T holds true as
long as the square of each component of W j

n is uniformly integrable and each
component of

√
n( ̂𝜃 − 𝜃lf) to the power of four is uniformly integrable. This follows

from case (vii) of Lemma 2. Each component of
√

n( ̂𝜃 − 𝜃lf) to the power of four is
uniformly integrable by (1) in Lemma 3. For W j

n, notice that the square of each com-
ponent of W j

n is uniformly integrable by (3) in Lemma 3. Hence, W j
nn( ̂𝜃 − 𝜃lf)( ̂𝜃 − 𝜃lf)T

is uniformly integrable.

For the last case, notice that each component of
√

n( ̂𝜃 − 𝜃lf)
√

n
(

Jj
n − Jj

)T
is uni-

formly integrable by case (vii) in Lemma 2 if the square of each component of√
n( ̂𝜃 − 𝜃lf) and

√
n(Jj

n − Jj) is uniformly integrable. By by case (1) of Lemma 3 and
case (iv) of Lemma 2, the square of each component of

√
n( ̂𝜃 − 𝜃lf) is uniformly inte-

grable, while the square of each component of
√

n(Jj
n − Jj) is uniformly integrable by

case (2) of Lemma 3. ▪

To show consistency of the estimator of c defined in Theorem 3, we first state and prove a
lemma.

Lemma 4. Let Y1,…,Yn ∈ Rd be i.i.d. from some distribution F, ̂𝜃 ∈ Rp a consistent
estimator of 𝜃0 ∈ Rp and 𝜓 ∶ Rd+p → Rq a function. Then n−1∑n

i=1𝜓(Yi, ̂𝜃) converges
in probability to E𝜓(Y , 𝜃0) where Y ∼ F, if there exists an F-integrable function m ∶
Rd+p → R and a neighborhood for 𝜃0 such that ||𝜓(y, 𝜃)|| ≤ m(y) for F-almost all y
and all 𝜃 ∈ and 𝜓(y, 𝜃) is continuous in 𝜃 with probability 1 for all 𝜃 ∈ .

Proof. Since ̂𝜃 is consistent for 𝜃0, there exists a compact subset K of such that ̂𝜃 ∈
K with probability tending to 1. We will assume ̂𝜃 ∈ K ⊆ , without loss of generality.

Since K is compact and 𝜓 is continuous in 𝜃 with probability 1 on K, the existence
of m as in the theorem, guarantees that the uniform law of large numbers holds true on
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DÆHLEN et al. 759

K. Hence, sup
𝜃∈K

||n−1 ∑
𝜓(Yi, 𝜃) − E𝜓(Y , 𝜃)|| converges in probability to 0. This implies

that ||n−1 ∑
𝜓(Yi, ̂𝜃) − E𝜓(Y , 𝜃0)||

pr
−−→ 0, showing the theorem. ▪

Theorem 12. Let all quantities be defined as in Lemma 3, and assume that condi-
tion (A1–A4) of lemma 3 and Theorem 11 hold true. Then, replacing J, K, Vj, and Wj
for j = 1,…, p in Theorem 3 with the empirical variances, covariance or means of the
corresponding functions evaluated at ̂𝜃 yields a consistent estimator of c.

Proof. By the continuous mapping theorem, it suffices to show that the proposed
estimators of J, K, Vj, and Wj for j = 1,…, p are consistent.

Arguing as in the beginning of the proof of Theorem 11, one can show that there
exists functions m1(y), m2(y) and m3(y) with finite expectation bounding all first-,
second-, and third-order partial derivatives of log f

𝜃

(y) in a neighborhood of 𝜃lf, respec-
tively. This, combined with Lemma 4, ensures that the estimators for J and Wj for
j = 1,…, p are consistent. The estimator of the matrix K is

1
n

n∑

i=1
∇ log f

̂

𝜃

(Yi)∇ log f
̂

𝜃

(Yi)T .

The existence of m1 guarantees that the norm of the above expression is bounded by
Cm1(y)2 for some C > 0. Direct computations show m(y) = C1g(y) + C2m(Y ) where
g(y) is some linear combination of first-, second-, and third-order partial derivatives
of log f

𝜃

(y) at 𝜃lf. By condition (A1), Eg(Y )2 exists and is finite and hence, Hölder’s
inequality implies

Em1(Y )2 ≤ Eg(Y )2 + 2(Eg(Y )2Em(Y )2)1∕2 + Em(Y )2.

Each term on the right-hand side of this equation is finite, showing that Em1(Y )2 < ∞.
By lemma 4, the estimator of K is consistent for the true value of the matrix. The
argument for the estimators of Vj for each j = 1,…, p is similar and left out. ▪
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