Unbiased confidence

Tore Schweder

Dept of Economics University of Oslo

FocuStat, 22.05.2018

- 一司

3

Overview

- Confidence distributions and focused confidence curves
- Unbiased estimates, tests and confidence sets
- Unbiased confidence curves,
- Unbiasedness and tail-symmetry
- Normal data
- Asymptotic unbiasedness
- Deviance based confidence curves
- Uniformly most powerful unbiased confidence curves

Confidence distributions and confidence curves

Definition

- C(θ; X) is cdf of a confidence distribution when C(θ; x) is a cdf in θ for all possible data x and C(θ₀; X) ~ U(0, 1) when X ~ f_{θ₀}.
- cc(θ; X) is a confidence curve when 0 ≤ cc(θ; x) ≤ 1 for all x and θ, and cc(θ₀; X) ~ U(0, 1) when X ~ f_{θ₀}. It is *focused* if it has finite level sets for low levels.

Cumulative confidence distributions are un-focused confidence curves.

Traditional unbiasedness

- $\hat{\theta} = C^{-1}(1/2)$ is median unbiased: $P_{\theta}(\hat{\theta} \le \theta) = P_{\theta}(1/2 \le C(\theta)) = 1/2$
- An (1 − α)-level confidence set CS = {θ : cc(θ) ≤ 1 − α} is unbiased when it excludes false parameter with at least probability α:
 P_θ(θ₁ ∈ CS) ≤ P_θ(θ ∈ CS) = 1 − α for false parameters θ₁
- An α -level test is unbiased when it rejects H_0 with at least probability α when the alternative is true.

Unbiased confidence curves

Definition

A confidence curve *cc* is unbiased when $cc(\theta_1, X) \stackrel{ST}{\geq} U(0, 1)$ for false θ_1

- cc unbiased ⇒ {θ : cc(θ, X) ≤ 1 − α} is an unbiased confidence set of level 1 − α
- C unbiased $\Rightarrow C(\theta_0)$ is an unbiased *p*-value for $H_0: \theta \leq \theta_0$, reject H_0 when the *p*-value $\leq \alpha$ is an unbiased test.

The archetypal $C(\theta, X) = 1 - F(X; \theta)$ is unbiased.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Example: Exponential model

Example

Let X be exponentially distributed with rate parameter λ . The tail-symmetric confidence curve is

$$cc.ts(\lambda, X) = |1 - 2\exp(-\lambda X)|,$$

and the deviance based confidence curve

$$cc.d(\lambda, X) = K_1(Dev/1.1263).$$

 K_1 is the cdf of the χ_1^2 -distribution.

Figure: Cumulative distribution functions for $cc.d(\lambda_1)$ (panel title: λ_1) in the exponential model (red curve) and for $cc.ts(\lambda_1)$ (green curve). The black curve is the diagonal.

イロト イヨト イヨト イヨト

Normal data

For $X \sim N_p(\mu, \Sigma)$ the natural confidence curve for μ is

$$cc(\mu, X) = K_p((\mu - X)^t \Sigma^{-1}(\mu - X))$$

is unbiased, since The non-central χ^2 , $(\mu_1 - X)^t \Sigma^{-1}(\mu_1 - X)$ is stochastically larger than χ^2_p . Here, K_p is the cumulative χ^2_p , Σ is assumed known, and $\mu_1 \neq \mu$.

 Σ unknown:

$$cc(\mu) = H_p((\mu - X)^t \hat{\Sigma}^{-1}(\mu - X))$$

is unbiased, since the non-central Hotelling distribution is stochastically larger than the central one, H_p .

イロト イポト イヨト イヨト 二日

In smooth models, the deviance D_n is asymptotically Gaussian as the data size $n \to \infty$. The deviance based confidence curve

$$cc_n(\theta, X_n) = K_p(D_n)$$

is thus asymptotically unbiased.

Are deviance based confidence curves unbiased?

Lemma

The expected deviance is minimized at the true value.

Proof.

$$D(\theta_1) - D(\theta_0) = -2\log(f(X,\theta_1)/f(X,\hat{\theta})) + 2\log(f(X,\theta_0)/f(X,\hat{\theta}))$$

= $2\log(f(X,\theta_0)) - 2\log(f(X,\theta_1)),$

thus

 $E_0 D(\theta_1) \geq E_0 D(\theta_0)$

when $X \sim f(x, \theta_0)$ by the Kullback-Leibler divergence (Gibbs' inequality).

3

- 4 同 ト 4 三 ト 4 三 ト

Examples of unbiased deviance-based confidence curves

- Rate (or scale) of an exponential distribution
- scale, $\chi^2 df = 3$
- Scale and location, Cauchy distribution
- Shape and scale, Weibull distribution
- Shape, Gamma distribution, scale=1
- shape and scale, Gamma distribution

Example: Cauchy, $(\mu, \sigma) = (0, 1)$, n=10.

0.1

0.3

0.3

Tore Schweder (Dept of Economics)

Unbiased confidence

FocuStat, 22.05.2018 12 / 17

э

Example: Gamma, shape, fixed scale=1, n=10.

Figure: Cumulative distribution functions for $cc_d(\nu)$ (red curve) and for $cc_{ts}(\nu)$ (green curve). True shape = .5 The black curve is the diagonal. $(z \to z \to z \to z)$

Tore Schweder (Dept of Economics)

Unbiased confidence

Conjecture

Focused confidence curves based on deviance in parametric models are unbiased

3

3 D (3 D)

Most powerful unbiased focused confidence curves

Lehmann (1959): A most powerful unbiased test of $H_0: \psi = \psi_0$ versus $H_1: \psi \neq \psi_0$ in an exponential family model must be conditional (when there are nuisance parameters), and have as acceptance region a (finite) interval of the sufficient statistic for ν .

₩

Focused confidence curves based on the (conditional) deviance are uniformly most powerful unbiased confidence curves in exponential family models (when unbiased).

イロト イポト イヨト イヨト 二日

Example: Gamma shape parameter, known scale

Figure: True shape = .5, n = 10. The tail-symmetric is cc = |2C - 1|.

Summing up

 The classical concept of unbiasedness for tests and confidence regions carries over to confidence curves: cc is unbiased whenever for ψ₁ ≠ ψ₀

$$\mathsf{cc}(\psi_1,X) \stackrel{\mathsf{ST}}{\geq} \mathsf{cc}(\psi_0,X) \sim U(0,1), \ X \sim \mathit{f}_{\psi_0}$$

- Confidence curves for a linear parameter in normal models are unbiased.
- The expected deviance is always at least as large at false values of the parameter than at true ones.
- Conjecture: Focused confidence curves based on the deviance D, $cc(\psi) = F(D(\psi))$, are unbiased.
- Tail-symmetric confidence curves cc = |2C 1| are typically (slightly) biased. Focused confidence curves based on the (conditional) deviance are UMPUcc in exponential family models.

To the young ones:

- Prove the conjecture!
- Are focused confidence curves based on profile deviances unbiased?

17 / 17