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Why is it good to be focused?

A little story: a proud big father takes his little 2 year old daughter to the doctor.
Both are having a sore throat and apparently they both need antibiotics to get
better. The doctor’s focuses:

1 The average dose level needed for the little girl to get cured

2 The average dose level needed for the father to get cured

Relevant information (covariates): age and weight.

Focus 1: mean dose level = µ(age girl, weight girl),
Both age and weight are important

Focus 2: mean dose level = µ(age father, weight father).
Perhaps age is not important (knowing that it is an adult),
weight might be important.

Classical model selection criteria (AIC, BIC, etc.) yield one model formula
µ(age, weight) that works well on average: perhaps a too high dose for the little
girl, not high enough for the father.
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Notation

Example: a linear model Y = β0 + Xβ + σε,

θ0: length p, parameters included in all considered models.
A natural choice would be θ0 = (σ, β0)

γ: length q, parameters on which we perform variable selection. e.g., γ = β.

Likelihood model f (y |x , θ0, γ)
Focus: quantity of interest µtrue = µ(θ0, γ)
e.g. µ(σ, β0, β) = β0 + xnewβ prediction for a new observation.

Many choices for estimation: µ(θ̂, γ̂1, . . . , γ̂q), µ(θ̂, γ̂3, γ̂5), µ(θ̂, γ̂1), etc.
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Many choices for estimation: µ(θ̂, γ̂1, . . . , γ̂q), µ(θ̂, γ̂3, γ̂5), µ(θ̂, γ̂1), etc.

Properties of a good estimator:

• Small or no bias
• Small variance

}
↪→small MSE= bias2 + var

Select that model S ⊂ {1, . . . , q} for which the estimated MSE of the estimator

µ(θ̂0, γ̂S) is the lowest.

↪→ Need to estimate the MSE of µ(θ̂0, γ̂S) in each of the considered models.
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The original Focused Information Criterion

Local misspecification framework: γtrue = γ0 + δ/
√
n

This is used to avoid the bias to dominate the MSE expression.

Take q = length(γ) fixed. S ⊆ {1, . . . , q} and let (θ̂S , γ̂S) be the MLE estimator.

In this submodel, the estimator of the focus is µ̂S = µ(θ̂S , γ̂S).

Taylor expansion:
√
n(µ̂S − µtrue) ≈

(
∂µ
∂θ

)>√
n(θ̂S − θ0) +

(
∂µ
∂γS

)>√
n(γ̂S − γ0,S)−

(
∂µ
∂γ

)>
δ.

We write MSE (S) the mean squared error of
√
n(µ̂S − µtrue).

The focused information criterion is defined as FIC (S) = M̂SE (S).
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The original Focused Information Criterion (2)

In the classical low-dimensional framework, Claeskens & Hjort (2003) show that

for µ̂S = µ(θ̂, γ̂S), µtrue = µ(θ0, γ0 + δ/
√
n), and with ω = J10J

−1
00

∂µ
∂θ −

∂µ
∂γ ,

√
n(µ̂S − µtrue)→dΛS ∼ N{E (ΛS), Var(ΛS)}

with mean E (ΛS) = ω>(Iq − GS)δ and variance

Var(ΛS) =(
∂µ

∂θ
)>J−100

∂µ

∂θ
+ ω>π>S J

11,SπSω

where GS = π>S J
11,SπS(J11)−1. Fisher information matrix

Jfull = Var(Score) =

(
J00 J01
J10 J11

)

with inverse J−1full =

(
J00 J01

J10 J11

)
where J11 = (J11 − J10J

−1
00 J01)−1.
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Application to fMRI data
The focus guides the model selection and is more important than the model

Prefrontal cortex Parietal lobe
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68 regions of interest ’ROI’;
240 measurements over time
(X1,t , . . . ,X68,t), t = 1, . . . , 240.

Nodewise regression models

Neighborhood selection [Meinshausen–Bühlmann ’06]:
Xi ‘response node’, other Xj (j 6= i) covariates in a linear regression
Lasso to determine the neighborhood of node i

n̂eλi = {j ∈ V : θ̂ij 6= 0}

Êλ,and = {(i , j) : i ∈ n̂eλj and j ∈ n̂eλi }

Êλ,or = {(i , j) : i ∈ n̂eλj or j ∈ n̂eλi }
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Instantaneous and temporal effects

Nodewise Gaussian AR1 model, local misspecification, and a penalty

L(θ, γ) =
−n
2

log(2π)− n

2
log σ2 −

n∑
k=2

yk − α− x̃Tk β − ρyk−1
2σ2

−λn
n
{

dγ∑
j=1

ψ(|βj − βj0|) + ψ(|ρ− ρ0|)},

where θ = (σ2, α) and γ = (ρ, β).

At lth node, estimated focus µ̂l ;Sl
= µ(θ̂Sl

, γ̂Sl
)

Graphwise

FIC(G(ES ,V)) =

p∑
l=1

M̂SE(µ̂l ;Sl
).
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Penalty functions

Local quadratic approximation to ψ when not differentiable at zero.

ridge: `2, ψl(|γj − γj0|) = (γj − γj0)2;

lasso: `1, ψl(|γj − γj0|) = |γj − γj0|;
bridge: ψb(|γj − γj0|) = |γj − γj0|α; α > 0;

hard thresholding: ψh(|γj − γj0|) = λ2 − (|γj − γj0| − λ)2I (|γj − γj0| < λ);

adaptive lasso: ψal(|γj − γj0|) = wj |γj − γj0|;
SCAD (first derivative):

ψ
′

s(|γj − γj0|) = I (|γj − γj0| ≤ λ) +
(aλ−|γj−γj0|)+

(a−1)λ I (|γj − γj0| > λ); a > 2.

Data-driven penalty constant

λ̂S = arg min
c

MSE(µ̂S)
√
n/ψ

′′
(0)

Joint work with E. Pircalabelu, L. Waldorp, S. Jahfari; AoAS
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The Focused Information Crit. for high-dimensional data

Joint work with T. Gueuning, SJS
Limitations of original formula

p or q growing is not supported by the theory.

Fisher information matrix J is often not invertible, e.g. if p + q > n.

Penalty that performs selection brings additional selection uncertainty with it.

New setting: likelihood model f (y |x , θ0, γ) with dim(θ) = p fixed and
dim(γ) = qn diverging, allowing p + qn > n.

We distinguish two cases:

The submodel is low-dimensional (p + |S | < n)

The submodel is high-dimensional (p + |S | ≥ n), requiring a regularized
estimator. We construct a desparsified estimator.
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FIC in high-dimension: low-dimensional submodel

Likelihood model f (y |x , θ0, γn) with γn = γ0,n + δn/
√
n of dimension qn.

We consider a low-dimensional submodel S for which the MLE estimator (θ̂S , γ̂S)
is available.

Assumptions∥∥[(∂µ
∂θ

)>
,
(
∂µ
∂γS

)>]∥∥
∞ = K = O(1) in a neighborhood of θ0, γ0.

Sparsity condition on δn: sn = o(n1/4) with S0,n = {j : δn,j 6= 0} and
sn = |S0,n|

required for the following Taylor series expansion to be valid:

√
n(µ̂S − µtrue) ≈

(
∂µ

∂(θ, γS)

)>( √
n(θ̂S − θ0)√
n(γ̂S − γ0,S)

)
−
(
∂µ

∂γ

)>
δ.
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FIC in high-dimension: low-dimensional submodel

We obtain the following limiting mean squared error:

MSE (S) =

(
∂µ
∂θ
∂µ
∂γ

)> (
BSδδ

>B>S + π∗tS J−1S π∗S
)(∂µ

∂θ
∂µ
∂γ

)

with BS = π∗tS J−1S

(
J01
πSJ11

)
−
(

0p×qn
Iqn

)
and we define

FIC (S) = M̂SE (S).

Main advantage:

Only JS needs to be inverted, not the full information matrix, which might
not be invertible.

This FIC gives exactly the same value as the original FIC when p + q < n
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FIC in high-dimension: high-dimensional submodel

If p + |S | > n then the MLE is not available.
Regularization methods can be used.
Example, for adaptive lasso (Zou 2006) is proven:

I Consistent variable selection
limn→∞ P

(
Â = {j : β̂j 6= 0} = {j : βj,true 6= 0} = A

)
= 1

I Asymptotic normality
√
n(β̂A − βA)→ N(0,ΣAdapt.L)

Information not sufficient to directly construct a FIC
I For the construction of the FIC, the estimator’s asymptotic distribution is used

to estimate the MSE.

I We want the full distribution, of all components, not only those of the true
active set.
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We use the desparsified estimator introduced by van de Geer, Bühlmann,
Ritov & Dezeure (2014, AoS), whose distribution can be tracked.

We now restrict to a linear model.

Y = Xββ0 + Xγγn + σε

Extensions to GLM and convex loss functions are possible.

Like in most of the high-dimensional literature, we assume that σ2 is known.
In practice, use σ̂2

ε = RSS/(n − d̂f) with d̂f the number of non-zero
coefficients of the penalized estimator of γn.

Protected variables: β0. Unprotected variables: γn = δn/
√
n.
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A desparsified estimator

Let MS be a relaxed inverse of JS = 1
nσ2X

∗t
S X ∗S (by construction not invertible if

p + |S | > n), obtained by the nodewise regression technique.(
β̂desp
S

γ̂despS

)
=

(
β̂Lasso
S

γ̂LassoS

)
+ MS

1
nσ2X

∗t
S

(
Y − X ∗S

(
β̂Lasso
S

γ̂LassoS

))
= MS

1
nσ2X

∗t
S Y +

(
Ip+|S| −MSJS

)(β̂Lasso
S

γ̂LassoS

)
.

Interpretation 1: Correction of the Lasso bias, proportional to λ.

Interpretation 2: Correction of the bias of MS
1

nσ2X
∗t
S Y

(the least squares estimator J−1S
1

nσ2X
∗t
S Y is not available).
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FIC for a high-dimensional subset S

Calculations give

MSE (S) ≈

(
∂µ
∂θ
∂µ
∂γ

)> (
B ′Sδδ

>B ′>S + π∗>S MSJSM
>
S π
∗
S

)(∂µ
∂θ
∂µ
∂γ

)

with B ′S =

(
π∗tS J−1S

(
J01
πSJ11

)
−
(

0p×qn
Iqn

))(
Iq − π>S πS

)
and we define

FIC (S) = M̂SE (S).
Particular cases:

If S0,n ⊆ S then B ′Sδ = 0p+q (no bias).

If MS = J−1S then B ′S = BS , corresponding to the FIC formula for low-dim
submodel.
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Riboflavin data (R package hdi)

n = 71, p = 4088 predictors (gene expressions)

y : riboflavin production of the Bacillus subtilis bacteria.
Training set: n′ = 50, test set: n′′ = 21.

Lasso Best FIC FIC 1 FIC 2
Avg Squared pred. error (21 focuses) 0.235 0.180 0.177 0.182
Average number of selected variables 27 6.7 4.6 10.7
Number of vars. selected at least once 27 120 77 177
Number of vars. selected at least 3 times 27 5 2 10

FIC1: stepwise, start with empty set

FIC2: stepwise, start with lasso selection

FIC uses much fewer variables than Lasso (6.7 versus 27)

Number of different variables used by the FIC much larger than for Lasso
(120 versus 27).
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Minimum mean squared error estimation

Starting assumptions:

Linear model Y = Xθθ0 + Xγγn + ε

Linear focus µtrue = x>0

(
θ0
γn

)
Local misspecification γn = δ/

√
n

FIC searches among submodels of the big X = (Xθ,Xγ) to produce µ̂S = XSY
with XS = π∗>S (X ∗>S X ∗S )−1X ∗>S .

However,

Estimation is more important than identifying a submodel

Relax constraint: search a matrix X such that MSE of µ̂ = XY is minimized
over all matrices X ∈ R(p+q)×n.
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Under local misspecification and with a linear focus:

MSE(X ) = x>0 XAX>x0 − x>0 XBx0 − x>0 B>X>x0 + x>0 Cx0

with

A = X

( √
nθ0
δ

)⊗2
X> + nσ2

ε In, B = X

( √
nθ0
δ

)⊗2
,

C =

( √
nθ0
δ

)⊗2
.

This leads to Xopt = B>A−1 and µopt = x>0 B>A−1Y .
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With β = (θ>0 , δ
>/
√
n)>,

Xopt = β(Xβ)>
(
Xββ>X> + σ2

ε In
)−1

.

Use initial estimators β̃, σ̃2.

β̂ = β̃(X β̃)>
(
X β̃β̃>X> + σ̃2

ε In
)−1

Y

For low dimensions MMSE of Farebrother (1975), Wan and Ohtani (2000). Not
known yet for high-dimensional data.

Simulations indicate that FIC and MMSE are competitive, both dominate lasso.
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Reiterating

FIC

15

Ke
ep the focus!

M
inimize MSE

Thank you!
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Nodewise regression
Construction of MS which acts as a relaxed inverse of JS .
For each j ∈ {1, . . . , p + |S |} compute

η̂j = arg min
η∈Rp+|S|−1

1

2n

∥∥X ∗S,j − X ∗S,−jη
∥∥2
2

+ λj ‖η‖1 ,

where X ∗S,j is the j th column of X ∗S and X ∗S,−j ∈ Rn×(p+|S|−1) is X ∗S without its
jth column, and we form

ÂS =


1 −η̂1,2 . . . η̂1,p+|S|
−η̂2,1 1 . . . η̂2,p+|S|

...
...

. . .
...

−η̂p+|S|,1 −η̂p+|S|,2 . . . η̂p+|S|,p+|S|


with components of η̂j indexed by k ∈ {1, . . . , j − 1, j + 1, . . . , p + |S |}. We define

MS = T̂−2S ÂS

with T̂ 2
S = diag(τ̂ 21 , . . . , τ̂

2
p+|S|) and τ̂ 2j = 1

n

∥∥∥X ∗S,j − X ∗S,−j η̂j

∥∥∥2
2

+ λj ‖η̂j‖1. Back
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