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Introduction and summary

Develop Bayesian nonparametric framework for estimation and inference for
stationary Gaussian time series with expectation zero, i.e.

(Y1, . . . , Yn) ∼ N(0,Σ(f)), (1)

where f is the spectral density, and where Pn refers to the corresponding
measure.

In summary:

(i) develop a family of priors for the covariance functions, and

(ii) establish Bernshtĕın–von Mises type of results for this family of priors.

The main part of this talk will be used to motivate:

(a) an alternative contiguous measure P ∗n to Pn above, and

(b) a class of growing (so-called) piecewise constant priors.

We will use (b) to break the main argument into smaller components, and
(a) will be used to simplify the techniques and conditions needed.
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The plan

1) Assumptions and basic notation for stationary time series

2) Summary of parametric Bernshtĕın–von Mises

3) Parametric models and the Whittle log-likelihood

4) Contiguity

5) Parametric Bernshtĕın–von Mises

6) Nonparametric modelling

7) Prior specification

8) Main conditions and for nonparametric Bernshtĕın–von Mises

9) Illustration
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The main model, and some notation and conditions

Let Y1, . . . , Yn be a stationary Gaussian time series with covariance matrix
Σ specified by the elements

Σk,l = Cov(Yk, Yl) = C(|k − l|), for k, l = 1, . . . , n.

If the covariance function is absolute summable, i.e. if

∞∑
h=0

|C(h)| <∞,

then there exist a spectral density f defined by

f(ω) =
1

2π

∞∑
h=−∞

e−iωhC(h) =
C(0)

2π
+

1

π

∞∑
h=1

cos(ωh)C(h),

Furthermore, we have that

C(h) = Cf (h) =

∫ π

−π
e−iωhf(ω) dω = 2

∫ π

0

cos(ωh)f(ω) dω,

and we will sometimes write Σf or Σ(f) to make this connection clear.
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Wold’s Theorem and a simple example

Wold’s Theorem: A function C(h) is a covariance function for some real
valued stationary process {Yt} if and only if there exists a positive
non-decreasing and bounded function F on the interval [0, π) such that

C(h) = 2

∫ π

0

cos(ωh) dF (ω), for all h ≥ 0.

Wold’s Theorem (above) has a central role in the prior construction.

Example: For an autoregressive model of order one, i.e.

Yt = ρYt−1 + σεt, where |ρ| < 1.

and εt are i.i.d. and εt ∼ N(0, 1). Then, the spectral density is

fσ,ρ(ω) =
σ2

2π(1− 2ρ cosω + ρ2)
(2)

for σ > 0 and |ρ| < 1, and the covariance function C(h) = σ2ρh/(1− ρ2).
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What and how to place priors on covariances

The only part of the model (above) that is not specified is the covariance or
spectral density.

Not easy to define priors on the space of covariance functions directly.

The reason being that the resulting Σ has to be positive-semidefinite, i.e.

atΣa ≥ 0 for all vectors a ∈ Rn.

From Wold’s Theorem (above), all positive non-decreasing and bounded
function F on [0, π] will generate a valid covariance functions and matrix.

And it is much easier to construct priors on the space of such functions.

The general workflow can be summarised by:

π(C(·)) π(C(·) |data)

↓ ↑
π(F (·)) −→ π(F (·) |data)
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Why nonparametric Bayes?

Subjective and natural prior knowledge for the covariance is not (I suppose)
so common.

Therefore, we think of nonparametric priors as placing a nonparametric
envelope around a parametric family.

Note, we do at this point see why it is called a piecewise constant prior.

7/24



Why nonparametric Bayes?

Subjective and natural prior knowledge for the covariance is not (I suppose)
so common.

Therefore, we think of nonparametric priors as placing a nonparametric
envelope around a parametric family.

Note, we do at this point see why it is called a piecewise constant prior.
7/24



What are Bernshtĕın–von Mises results?

Suppose X1, . . . , Xn are i.i.d. with Xi ∼ G(x, θ0), then for a large class of
parametric models

θ̂n = arg max
θ
`n(θ)

satisfy √
n(θ̂n − θ0)→d N(0, I(θ0)−1), (3)

where I(θ0) is the Fisher information (matrix).

For a Bayesian, most priors π on θ, will (under mild assumptions) satisfy

√
n(θ − θ̂n) |X1, . . . , Xn →d N(0, I(θ0)−1) (4)

in probability.

Bernshtĕın–von Mises generally means to establish (3) and (4).

Example: The prototype illustration is with i.i.d. Xi ∼ N(µ0, 1) and a
normal prior π ∼ N(0, 1) for the location µ, where it can be show that

√
n(X̄n − µ0) and

√
n(µ− X̄n) |X1, . . . , Xn

has the same limit distribution.
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How to prove Bernshtĕın–von Mises results?

There are exist several strategies for proving Bernshtĕın–von Mises, from
the direct (example above) to the very general.

Our strategy is based on, or similar to, following technique/observation.

If √
n(θ̂n − θ0)→d N(0, I(θ0)−1)

it is clear that if s =
√
n(θ − θ̂n) and

Bn =

∫ ∣∣∣∣π(s |X1, . . . , Xn)−
√

(θ0)√
2π

e−
s2I(θ0)

2

∣∣∣∣ds→pr 0

then we have Bernshtĕın–von Mises type of results.

The key observation is that Bernshtĕın–von Mises (at least for parametric
models) can be related to statements about convergence in probability.
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Parametric estimation and the Whittle log-likelihood

Let Y1, . . . , Yn be a stationary Gaussian time series with covariance matrix
Σ(fθ0) with elements

Σ(fθ0)k,l = Cov(Yk, Yl) = 2

∫ π

0

cos(|k − l|)fθ0(ω) dω

Then the full Gaussian log-likelihood is

`n(θ) = − 1
2

[
n log(2π) + log |Σ(fθ)|+ Y tΣ(fθ)

−1Y
]

and the maximum likelihood estimator

θ̂n = arg max
θ
`n(θ),

and associated large-sample properties, are somewhat complicated because
of the inverse covariance matrix.

There is a popular alternative, the Whittle estimator θ̃n, which is the
maximiser of the so-called Whittle log-likelihood

`∗n(fθ) = −n
2

{
log 2π +

1

π

bn/2c∑
j=1

log(2πfθ(ωj))
2π

n
+

1

π

bn/2c∑
j=1

In(ωj)

fθ(ωj)

2π

n

}
,

where In(ω) = |
∑n
t=1 Yt exp(−iωt)|2/(2πn) is the periodogram.
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Convergence in probability and contiguity of probability measures

A natural question is whether the Whittle pseudo maximum likelihood
estimator is consistent, i.e. if

An = |θ̃n − θ0| →pr 0,

which is a question about convergence in probability with respect to Pn.

This, however, becomes complicated (under Pn), since θ is hidden inside the
inverse of the covariance matrix.

One solution is to introduce an alternative (simpler) contiguous probability
measure, say P ∗n , to the original Pn.

Definition: Let (Ωn,An) be a measurable space equipped with probability
measures Pn and P ∗n . Then Pn and P ∗n are said to be mutually contiguous,
if for every measurable sequence of sets An ∈ An, we have that

Pn(An)→ 0 if and only if P ∗n(An)→ 0.

In summary, contiguity of probability measures ensures that convergence in
probability transfers from P ∗n to Pn (and back again).
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if for every measurable sequence of sets An ∈ An, we have that

Pn(An)→ 0 if and only if P ∗n(An)→ 0.

In summary, contiguity of probability measures ensures that convergence in
probability transfers from P ∗n to Pn (and back again).
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The Whittle (log-likelihood) model

Let Y ∗1 , . . . , Y
∗
n be a stationary Gaussian time series from the model with

spectral measure (step-function)

F ∗(t) =
2πf(0)

n
+

4π

n

∑
ωj≤t

f(ωj), where ωj = 2πj/n for j = 0, 1, . . . , b, n/2c

which is valid (i.e. the series/model exist) by Wold’s Theorem.

Then, the corresponding covariance matrix can be decomposed as

Σ∗(f) = 2πQt
nDn(f)Qn

where Qn are orthonormal and

Dn(f) = diag(f(ω1), f((ω2), . . . , f(ωbn/2c))

Furthermore, the log-likelihood function for the series Y ∗1 , . . . , Y
∗
n is

`n(f,Y ∗) = ˜̀
n(f,Y ∗),

it is exactly equal to the Whittle approximation, and the periodogram
ordinates are (exact)

I∗n(wj) ∼ f(ωj)Exp(1).
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Contiguity and consistency of the Whittle estimator

Let P ∗n be the probability measure for the new series Y ∗1 , . . . , Y
∗
n .

Then, it can be shown that Pn and P ∗n are mutually contiguous; see
Choudhuri et al. (2004) for details.

For the parametric model with spectral density fθ, proving consistency of
the Whittle estimator is considerably simplified under P ∗n .

The main reason being that under P ∗n

I∗n(w0), . . . , I∗n(wbn/2c)

are sufficient, and independent with I∗n(wj) ∼ fθ0(ωj)Exp(1).

In a way, we have changed a problem with dependent observations to a
problem with independent ‘observations’.

The nice thing about contiguity, is that consistency for θ̃n (derived under
P ∗n) can be carried over (via the contiguity bridge) to Pn.

The consistency of the Whittle estimator is already well known in the
literature; the proof using contiguity might be new.
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Bernshtĕın–von Mises results for parametric time series models

Furthermore, it is well known that actual maximum likelihood estimator in
this setup (see e.g. Dzhaparidze (1986))

√
n(θ̂n − θ0)→d N(0, J(fθ0)−1)

for a certain Fisher information matrix J(fθ0).

This result is also true if θ̂n is replaced by θ̃n.

Furthermore, we may use the same type of reasoning to simplify and use

Bn =

∫ ∣∣∣∣π(s | y1, . . . , yn)−
√

(θ0)√
2π

e−
s2I(fθ0

)

2

∣∣∣∣ds
to prove Bernshtĕın–von Mises under P ∗n , using, among others that

π(s |Y1, . . . , Yn) = π(s | I∗n(w0), . . . , I∗n(wbn/2c)).

Again, contiguity ensures that we also have (parametric) Bernshtĕın–von
Mises under the original measure Pn.
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From parametric to nonparametric

Let Y1, . . . , Yn be a series generated by a model with spectral measure F .

One canonical nonparametric estimator for F is

F̂n(t) =
2π

n

bn/2c∑
j=0

In(2πj/n),

with In(w) = |
∑n
t=1 Yt exp{iωt}|2/(2πn), has the following (normalised)

limit
√
n(F̂n(t)− F (t))→d W (2π

∫ t

0

f(ω)2 dω), (5)

see e.g. Ibragimov (1963) for details.

Let Bn(t) =
√
n(Fn(t)− F̂n(t)), the goal is to obtain conditions such that

Bn(t) |Y1, . . . , Yn →d W (2π

∫ t

0

f(ω)2 dω) (6)

in Pn-probability.

And nonparametric Bernshtĕın–von Mises means establishing (6).

First, we need to define Fn(t) and an appropriate prior distribution.
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The piecewise constant priors

Let 0 = w0 < w1 < · · · < wm = π be a growing partition, then a piecewise
constant prior on the spectral density results in the prior

Fn(t) =
∑

{l :wl≤t}

(wl+1 − wl)fl, with i.i.d. fl ∼ πj

on the spectral measures, for t = wl and with linear interpolation between
these points.

The number of cells/windows will grow with n; making it nonparametric.
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Nonparametric Bernshtĕın–von Mises

Let n = k ×m, where m is the number of windows.

Furthermore, let wl − wl−1 = 2π/m, and define the estimator (for t = wl
and with linear interpolation between these points)

F̄n(t) =
2π

m

∑
{l :wl≤t}

Īn,l,

where Īn,l is the average of the I(ωj) inside window [wl−1, wl).

Now, we may decompose

Bn(t) =
√
n(Fn(t)− F̂n(t))

=
√
n(Fn(t)− F̄n(t)) +

√
n(F̄n(t)− F̂n(t))

=
∑

{l :wl≤t}

zl + rn(t)

(7)

where zl =
√
n/m(fl − Īn,l) =

√
k(fl − Īn,l).

In short, we now need show

(i) rn(t) to be small in probability (approximation quality), and

(ii) that
∑
{l :wl≤t}

zl |Y1, . . . , Yn has the right limit.
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√
k(fl − Īn,l).
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Īn,l,
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Nonparametric Bernshtĕın–von Mises

The size of
rn(t) =

√
n(F̄n(t)− F̂n(t))

is essentially a question about approximation quality.

And, if the underlying F (t) is continuous, the size of rn(t) can be shown to
be sufficiently small (in probability) provided

√
n/m2 → 0,

again, a key part of the argument is the contiguity result; see also
Hermansen & Hjort (2015) for details.
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Nonparametric Bernshtĕın–von Mises

The second part of the argument is related to the limit distribution of the
posterior, which should match the nonparametric estimator, i.e.∑

{l :wl≤t}

zl
∣∣Y1, . . . Yn →d W (2π

∫ t

0

f(ω)2 dω),

in Pn-probability.

Essentially a question about finite dimensional convergence and tightness.

Using Helland (1982) and the contiguity bridge, it is possible to break the
problem down into statements of convergence in probability at the level of

zl |Y1, . . . , Yn for all l = 1, . . . , n.

From results in Hermansen & Hjort (2015) the main condition (in addition
to standard regularity assumptions) is

m/
√
n→ 0,

which (essentially) ensures sure that the prior is ‘washed out’ of the limit.
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The second part of the argument is related to the limit distribution of the
posterior, which should match the nonparametric estimator, i.e.∑

{l :wl≤t}

zl
∣∣Y1, . . . Yn →d W (2π

∫ t

0

f(ω)2 dω),

in Pn-probability.

Essentially a question about finite dimensional convergence and tightness.

Using Helland (1982) and the contiguity bridge, it is possible to break the
problem down into statements of convergence in probability at the level of

zl |Y1, . . . , Yn for all l = 1, . . . , n.

From results in Hermansen & Hjort (2015) the main condition (in addition
to standard regularity assumptions) is

m/
√
n→ 0,

which (essentially) ensures sure that the prior is ‘washed out’ of the limit.

19/24



The illustration - Air pollutant data

Hourly measurements of fine particulate matter (PM2.5), i.e. tiny particles,
or droplets, that are two and one half microns or less in width.

Exposure can cause eye, nose, throat and lung irritation, and in long-term
may affect lung function and is also related to asthma and heart diseases.

For health reasons, government regulations typically restrict the daily
average emission to 25-35 µg/m3.

Figure: Observed and prognosis (24h in advanced) of PM2.5 at Alnabru (Norway),
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The illustration - Air pollutant data

The Norwegian Institute for Air Research (NILU) and Norwegian
Meteorological Institute (MET) makes prognosis for PM2.5 using the
current history and computer simulations.

The prognosis can be used to predict periods with potential high emissions,
enabling the legislature to take appropriate actions in advanced.

There are certain systematic biases in the prognosis, however, which may
be corrected using a stochastic model.

Figure: The difference between observed and prognosis (made 24h in advanced) of
PM2.5
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The illustration - The focus and the posterior

Here, we will focus on the probability that at least one of three following
PM2.5 measurements will exceed the critical value of 25 µg/m3, i.e.

1− Pr{Yn+1 ≤ a, Yn+2 ≤ a, Yn+3 ≤ a | datak}
with a = log(25), Yi = PMprog

2.5,i + εi and datak = {Yn, . . . , Yn−k+1}, by
placing a nonparametric envelope around an AR(1) model.

Figure: Empirical periodogram and samples from posterior (left), and posterior
density for threshold probability and density based on mle for an AR(7) (AIC
winner), normal approximation and delta method (right).
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Concluding remarks

We have established Bernshtĕın–von Mises for a class of stationary time
seires models with a class of growing piecewise constant priors, i.e.

Fn(t) =
∑

{l :wl≤t}

(wl+1 − wl)fl, with i.i.d. fl ∼ πj ,

where w1, . . . , wm is a partition of [0, π].

The (non-standard) condition is related to the number m of components in
the prior, requiring that m = cnα with 1/4 < α < 1/2 and c a constant.

Most time series does not have expectation zero, a more natural model is

Yt = µ+ εt

where εt is a stationary process.

It is possible to put a prior µ and use (e.g.) MCMC for posterior inference.

A joint Bernshtĕın–von Mises for µ and Fn(t) is not trivial.

However, I see the outline of another contiguity bridge for the series

Ŷt = Yt − µ̂ = Yt − Ȳn

And, similar for the canonical model with covariates, i.e.

Yt = xt
tβ + εt.
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Ŷt = Yt − µ̂ = Yt − Ȳn

And, similar for the canonical model with covariates, i.e.

Yt = xt
tβ + εt.

23/24



Concluding remarks
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And, similar for the canonical model with covariates, i.e.

Yt = xt
tβ + εt.

23/24



Concluding remarks
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