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Background: personalized medicine

Genomic data are increasingly used
to achieve personalized medicine;
with the prediction of individual
treatment response or disease risk.

E.g. Norwegian Cancer Genomics
Consortium establishes nationwide
procedures for using patient genetics
“to guide the adaptation of cancer
treatment to the individual patient”.

Scenario for the future: the doctor
will first check your genetic code
when visiting the doctor’s office.
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Ridge regression

Consider the linear regression model

yi = xTi β + ε, i = 1, . . . , n,

with Var εi = σ2, data matrix X and outcome vector Y .

The high-dimensionality of genetic data (p � n) requires penalization;
ridge regression introduces an L2 penalty with tuning λ

β̂(λ) = arg min
β

n∑
i=1

(
yi − xTi β

)2
+ λ

p∑
j=1

β2j ,

with the explicit solution β̂(λ) = (XTX + λIp)−1XTY .

K. Hellton Building Bridges May 24, 2017 4 / 20



How to choose the tuning parameter

The canonical way to select the tuning parameter has become
K -fold cross-validation (CV), typically 5- or 10-fold.

Or some variation: generalized cross-validation (Golub et al., 1979),
approximate cross-validation (Meijer and Goeman, 2013).

For ridge regression there is a range of alternative procedures: marginal
maximum likelihood, bootstrapping, Bayesian methods, different versions
of AIC

Common for all, is that only one single tuning parameter is chosen for all
future predictions.
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Viewpoint of personalized medicine

After a medical study has finished and new patient enters the doctor’s
office, can we fine-tune the penalty towards the specific set of covariates,
x0, of the patient?

Assuming the linear regression model, the expected mean squared error
(MSE) of the ridge prediction

µ̂ = xT0 β̂(λ),

will be an explicit expression, over the distribution of Y :

MSEµ̂(λ; x0, β, σ) = EY

(
xT0 β̂(λ)− xT0 β

)2
=
{
xT0 ((XTX + λIp)−1XTX − Ip)β

}2

+ σ2xT0 (XTX + λIp)−1XTX (XTX + λIp)−1x0
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Hence we can minimize MSEµ̂ as a function of λ, to obtain an optimal
oracle tuning parameter for a specific x0:

λx0 = arg min
λ

MSEµ̂(λ; x0, β, σ),

Each x0 will give a different curve and an individualized tuning value, λx0 .
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The oracle tuning parameter, however, requires the true β and σ2.

We propose to estimate λx0 by using plug-in estimates of β and σ2 in the
MSE expressions to get an empirical MSE (Hellton and Hjort, 2017)

λ̂x0 = arg min
λ

M̂SEµ̂(λ; x0, β̃, σ̃
2),

= arg min
λ

{
V̂ar(λ; x0, β̃, σ̃

2) + b̂ias2(λ; x0, β̃, σ̃
2)
}
.

We propose to use the following plug-in estimates:

for p < n, the standard least squares β̃ = (XTX )−1XTY ,

for p > n, the ridge regression estimates with cross-validation.
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Fridge for p < n

The focused ridge, fridge, with an OLS plug-in, is then defined as

λ̂x0 = arg min
λ

{(
(λxT0 (XTX + λIp)−1β̃)2

− σ̃2λ2xT0 (XTX + λIp)−1(XTX )−1(XTX + λIp)−1x0
)
+

+ σ̃2xT0 (XTX + λIp)−1XTX (XTX + λIp)−1x0

}
,

where β̃ and σ̃2 are the OLS estimates and (·)+ = max{·, 0}.

As the squared bias is estimated directly from the bias, the overestimation

E
(

b̂ias
)2

= bias2 + Var b̂ias,

can be corrected by subtracting the variance of the bias, truncating at 0.
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Some theoretical characteristics

The covariate-specific MSEµ̂(λ; x0, β, σ
2) can have no or several minima:
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If we consider an orthogonal data matrix XTX = MI , the MSE is

MSEµ̂(λ; x0, β, σ
2) = (xT0 β)2

λ2

(M + λ)2
+ σ2xT0 x0

M

(M + λ)2
,

with the explicit solution λx0 =
σ2xT0 x0
M(xT0 β)

2 .

When re-expressed in terms of the geometry of x0 and β

λx0 =
σ2

M‖β‖2 cos2 αx0

we can see that the length of x0 does not play a role, while the length of β
and αx0 , the angle between x0 and β, controls the effect of focusing.
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The competitor: cross-validation

Cross-validation is the standard fine-tuning procedure, and n-fold
leave-one-out CV is given by

λ̂CV = arg min
λ

n∑
i=1

(
yi − xTi β̂−i ,λ

)2
.

LOOCV has an explicit expression for ridge regression, and is therefore
particularly easy to calculate:

λ̂LOOCV = arg min
λ

n∑
i=1

(
yi − xTi β̂λ

1− xTi (XTX + λI )−1xi

)2

.

But what is the difference between cross-validation and the fridge?
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Consider known β = [1,−1] and σ2 = 0.16, and a data matrix X with two
clusters of observations:
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The right cluster will have yi close to 0, and the left cluster yi close to 2.
This is equivalent to αx0 being either close to 0 or π/2.
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Individualized risk predictions

Personalized medicine: genomics data are used to predict risk of
complications

Cashion et al. (2013) investigated whether gene expression from adipose
tissue can be used to predict future weight gain:

measuring 28 869 genes,

in 25 kidney transplant patients.

To illustrate the focused approach, we predict each observation
out-of-sample using fridge and ridge regression with standard LOOCV.
For fridge, we use the ridge-regression with CV as the plug-in estimate
implemented in the R package fridge.
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The difference in prediction
error for each observation
between fridge (black) and
CV (grey) is colored
according to the method
with the lowest error.

Fridge gives a 4 % lower
averaged squared prediction
error compared to
cross-validation.
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Logistic fridge

Fridge can be extended to logistic regression by using parametric
bootstrap to estimate the squared bias and variance expressions.

Möckel et al. (2014) investigated whether gene expression can be used to
predict the response of a specific treatment in glioma tumors, with the
outcome being either a satisfactory response or no response. We have
measurements

of the top 3000 genes associated with the outcome,

for 18 patient samples.

Each observation is predicted out-of-sample using logistic fridge and
logistic ridge regression with standard LOOCV, as implemented by glmnet
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The ROC curves for the
two methods show that
fridge gives a slightly
higher Area Under the
Curve (AUC) compared
to cross-validation.
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A ridge-bridge; personalized covariate selection

For a covariate of a specific patients

x0 = (x0,1, . . . , x0,p),

can an additional subset selection, x0,S be put on top of fridge?

We look for the optimal xT0,SβS ,λ; simultaneously searching for both the
best selection of covariates and the best ridge tuning parameter.

Consider a subset S ∈ {1, . . . , p} where

β̂S(λ) = (XT
S XS + λI|S |)

−1XT
S Y ,

then the bias and variance of the prediction can be estimated separately:

MSE(X0,S , λ) = Var(X0, S , λ) + bias2(X0,S , λ).
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A ridge-bridge

We need to optimize over both parameters λ and S ; for instance by

1 minimizing λ for each subset S to obtain an estimated risk,

2 then selecting the subset Ŝ with the lowest risk,

3 yielding the estimated tuning λ̂(Ŝ).

The subset-specific bias has a general expression using the projection
matrix πS :

bias(x0,S , λ) = xT0 AT
S (λ)β, AS(λ) = XTX (XTX + λI|S |)

−1πS − I .

Some issues: For large p, a search over all 2p models is infeasible.
The connection to Lasso?
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Hellton, K. H. and Hjort, N. L. (2017). Personalized predictions through
focused fine-tuning of ridge regression. Statistics in Medicine, in
revision.

The R package fridge is available at GitHub under khellton/fridge

Thank you!
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