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Minimum disparity, i.i.d. case

Suppose y1, ..., ¥, i.i.d. from g, and we use model fy(-) = f(-,6).
With B(-) convex and smooth on the half-line, and with B(1) =0,

de.f) = [ (% )nay

is a divergence (Johan Jensen inequality, 1906). Note that
dim > 2 is ok.

Hence it's a good estimation idea to use
6 = argmin d(g, fy),

where g is a ‘wider’ estimate of g. Can use
» g nonparametric, like the kernel density estimator [99% of all
MinDisp papers use this|, or e.g. Hjort—-Glad f(y, 8)r(y);
» g via Bayesian nonparametrics (e.g. along with prior for 0);
» g via g = (1 —¢e)fy + eH modelling;
» g(y) =gy, 0, ) from a bigger parametric family.
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Minimising [ B(g/fs)fy dy corresponds to solving

/A(g)fguedy =0,

where ug = 0log fy /00 is score function and

A(p) = pB'(p) — B(p)

is the Ratio Adjustment Function (RAF). So, § solves
_ g _
Ho(0) = /A(fe)fguady 0.

We have A'(p) = B”(p), so A(p) is increasing.

Properties of A(p) drive robustness properties of 0.

3/777



A few Min Dispair schemes

1. B(p) = plog p: then d = KL(g, fy), and A(p) = p. Estimator:
solution to [ g(y)u(y,0)dy =0 ... famous divergence, efficient at
model, close to ML (inside and outside model), and not robust.

2. B(p) = —log p: then d = KL(fy, g), the converse of what we
learn in school, and A(p) = log p — 1. Estimator: solution to

Hr(6) = [ og £ . 0)uly.6)dy = .

3. B(p) =1—/p: then d =1 — [ \/gfydy, the Hellinger
distance; A(p) = %\/ﬁ — 1, and the estimator solves

Hu(6) = [ @) 2updy =o.

4. B(p)=1—p'P: thend =1 — fg1/pf-01/q dy, with
1/p+1/q = 1. Estimator maximises fgl/Pfel/q dy.
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Issues to pursue
So, 0 is the minimiser of d(g,fy) = [ B(g/fs)fs dy.

» 1 g nonparametric: properties 07

v

2 And what is really required of g7 Fine-tuning?

3 @ is often efficient at the model, with ﬁ(@— gML) —pr 0;
how different is it (then) from ML?

4 g bigger-parametric: properties 0?
5 Which B(p) make the procedures robust?
6 Choice of B(p) function (in a class of good ones)?

v

v

v

v

v

7 Generalising from i.i.d. to regression?

v

8 Goodness of fit, based on

D, = mind(g, fy) = d(g, f(-.0))?

v

9 Model selection using Min Dispair? Is there a MDIC,
Minimum Divergence Information Criterion?
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Example: Speed of light data, n = 66, two outliers to the left.

0.08
|
i

density
0.06
L

0.04
|

0.02
|

0.00
L

T
20

speed of light data
6/777



Minimising 1— [ g%/P£/% dy, for different p, where 1/p+1/q = 1:

good ML 27.75 bad ML 10.74
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Minimising d(nonparametric, parametric)

Starting with a B(p), use A(p) = pB’(p) — B(p), to define the
least false Ay as solution to

/A(g)fgu@dy -0

and the MinDisp estimator 0 as solution to

Un(6) = /A(g)f@ue dy = 0.

Under some conditions,
_ &Y A(E -
VUn(60) = ﬁ/{A(fgo) A<f00)}f90ueo dy —g U ~ N,(0, K).

Along with 2nd order derivative matrix to a J, and other technical
details, we're led to

V(0 —0) =g J71U ~ N,(0, JKJY).
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The conditions for convergence of

ViUn(60) = v/n / {A(g) —A(£) } sy dy

o

basically amount to
ﬁ/A’(f)(g —g)ugdy =g U [think v/nh? — 0]
0o
and

~ 2
ﬁ/A”(g> MU% dy —pr 0 [think v/nh — od].
f0, 0,

1. The literature is far too dominated by ‘always’ using the kernel
density estimator (granted, even there it's ‘technical’).

2. At the model, with g = f5,, matters simply, both J and K are
proportional to Jsg,, and sandwich becomes Jﬁ_si: the MinDisp is
as efficient as ML.

3. Sam-Erik needs within-reach generalisations of these matters to
O(1/+/n) neighbourhoods around given models.
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Minimum Dispair with Bigger-Parametric Start

Suppose y1, ..., Yy, are i.i.d. from some g. We fit data to
g(y,0,7), which contains f(y,0) as a special case:

f(y,0) =g(y,0,7%) for aknown ~p.

With (5, 7) the ML in bigger model, the minimum dispair
estimator for 8 is 0, the minimiser of

o@.0) = [ 8(5rt )iy 00dy.

We have 0 —,; 6o, the least false value minimising

[ B(E% ) rtr0) 0y

where (61,71) are KL minimisers in the bigger model. If small

model is correct, 6 is consistent for the right 6.
10/777



Assume smaller model correct, g(y, 6o,v0) = f(y, 6o).

Theorem A: MinDisp is efficient at the model:
V(8 — 6o) =4 Np(0, J(60) 1)

Theorem B: Can use

. g(y,0,7) A
D, = min d(g,f(-,0)) = / B(f(y,é\)> f(y,0)dy

as a goodness-of-fit test statistic:
nDp —q 3B"(1)x3

under model, where g = dim(7).

Theorem C: Can work out ﬁ(a— 01) outside model conditions.
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Remarks & questions re subset of Sam-Erik's PhD

A. Why isn’t everyone using Minimum Dispair? Why don’t we
teach minimum disparity estimators in our courses?

We can choose B and g, and compute
b= argmin/ B(%)fgdy.
0

It is efficient at the model (close enough to the ML then) and
robust.

» slim following (Basu et collegae; students of Lindsay; Hooker;
a few other mild epicentres — though we've invented MWL
and WIC).

> technicalities, fine-tuning choices, theorems are still lacking,
and they're nitty-gritty demanding?

> statisticians are happy with ML and closer cousins?

» robustness isn't judged an important issue (despite
propaganda in the 70ies and 80ies)?

> doesn't easily generalise to regression?
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B. We need clearer conditions on g (and I'm bored by the default
kernel method).

C. We should work out a suitable MDIC, a Minimum Disparity
Information Criterion (non-trivial task).

The distance from truth to fitted model is [ B(g/f;)f;dy. What
we directly observe is D, = [ B(g/f;)f;dy. Need analysis of

A, = /B(é)fgdy—/B(i)fgdy

0

< [o(E)a-owes [o(5)E s,

0

For some g, may show
(nh)Y2A, —4 /B’ Z(y)dy,
fao

which leads to a MDIC = D, + (nh)~1/23 (it's messy, though).
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D. Some of the schemes working well in dim = 1 have trouble in
dim > 2 (other biases klick in). Can these matters be ameliorated?

E. Can MinDisp estimators take the place of ML estimators in FIC
(the Gerda-Nils Focused Information Criterion)? | believe yes — and
Sam-Erik is working on this. The root of the matter for ML is this:
If data stem from f,(y) = f(y,60){1+ r(y)/+/n}, then

V(O —00) =4 Np(J~ b, J71), bZ/f(yaeo)f(Y)U(%@o)dy.

Task: Demonstrate that this holds (along with a certain list of
other technical things) for classes of MinDisp.

F. Regression setting, model f(y;| x;,6): choose 0 to minimise
‘IZ/ y‘ ) ) F(y | xi,0)dy.

G. MinDisp needs to be shown at work in clear well-motivated

application stories.
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