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Minimum disparity, i.i.d. case

Suppose y1, . . . , yn i.i.d. from g , and we use model fθ(·) = f (·, θ).
With B(·) convex and smooth on the half-line, and with B(1) = 0,

d(g , fθ) =

∫
B
( g
fθ

)
fθ dy

is a divergence (Johan Jensen inequality, 1906). Note that
dim ≥ 2 is ok.

Hence it’s a good estimation idea to use

θ̂ = argmin d(g̃ , fθ),

where g̃ is a ‘wider’ estimate of g . Can use

I g̃ nonparametric, like the kernel density estimator [99% of all
MinDisp papers use this], or e.g. Hjort–Glad f (y , θ̃)r̃(y);

I g̃ via Bayesian nonparametrics (e.g. along with prior for θ);
I g̃ via g = (1− ε)fθ + εH modelling;
I g̃(y) = g(y , θ̃, γ̃) from a bigger parametric family.
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Minimising
∫
B(g/fθ)fθ dy corresponds to solving∫

A
( g
fθ

)
fθuθ dy = 0,

where uθ = ∂ log fθ/∂θ is score function and

A(ρ) = ρB ′(ρ)− B(ρ)

is the Ratio Adjustment Function (RAF). So, θ̂ solves

Hn(θ) =

∫
A
( g̃
fθ

)
fθuθ dy = 0.

We have A′(ρ) = B ′′(ρ), so A(ρ) is increasing.

Properties of A(ρ) drive robustness properties of θ̂.
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A few Min Dispair schemes

1. B(ρ) = ρ log ρ: then d = KL(g , fθ), and A(ρ) = ρ. Estimator:
solution to

∫
g̃(y)u(y , θ)dy = 0 ... famous divergence, efficient at

model, close to ML (inside and outside model), and not robust.

2. B(ρ) = − log ρ: then d = KL(fθ, g), the converse of what we
learn in school, and A(ρ) = log ρ− 1. Estimator: solution to

Hn(θ) =

∫
log

g̃(y)

f (y , θ)
f (y , θ)u(y , θ) dy = 0.

3. B(ρ) = 1−√ρ: then d = 1−
∫ √

gfθ dy , the Hellinger
distance; A(ρ) = 1

2

√
ρ− 1, and the estimator solves

Hn(θ) =

∫
(g̃ fθ)1/2uθ dy = 0.

4. B(ρ) = 1− ρ1/p: then d = 1−
∫
g1/pf

1/q
θ dy , with

1/p + 1/q = 1. Estimator maximises
∫
g̃1/pf

1/q
θ dy .
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Issues to pursue

So, θ̂ is the minimiser of d(g̃ , fθ) =
∫
B(g̃/fθ)fθ dy .

I 1 g̃ nonparametric: properties θ̂?

I 2 And what is really required of g̃? Fine-tuning?

I 3 θ̂ is often efficient at the model, with
√
n(θ̂ − θ̂ML)→pr 0;

how different is it (then) from ML?

I 4 g̃ bigger-parametric: properties θ̂?

I 5 Which B(ρ) make the procedures robust?

I 6 Choice of B(ρ) function (in a class of good ones)?

I 7 Generalising from i.i.d. to regression?

I 8 Goodness of fit, based on

Dn = min d(g̃ , fθ) = d(g̃ , f (·, θ̂))?

I 9 Model selection using Min Dispair? Is there a MDIC,
Minimum Divergence Information Criterion?
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Example: Speed of light data, n = 66, two outliers to the left.
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Minimising 1−
∫
g̃1/pf

1/q
θ dy , for different p, where 1/p + 1/q = 1:
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Minimising d(nonparametric, parametric)

Starting with a B(ρ), use A(ρ) = ρB ′(ρ)− B(ρ), to define the
least false θ0 as solution to∫

A
( g
fθ

)
fθuθ dy = 0

and the MinDisp estimator θ̂ as solution to

Un(θ) =

∫
A
( g̃
fθ

)
fθuθ dy = 0.

Under some conditions,

√
nUn(θ0) =

√
n

∫ {
A
( g̃

fθ0

)
−A
( g

fθ0

)}
fθ0uθ0 dy →d U ∼ Np(0,K ).

Along with 2nd order derivative matrix to a J, and other technical
details, we’re led to

√
n(θ̂ − θ0)→d J−1U ∼ Np(0, J−1KJ−1).
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The conditions for convergence of

√
nUn(θ0) =

√
n

∫ {
A
( g̃

fθ0

)
− A

( g

fθ0

)}
fθ0uθ0 dy

basically amount to

√
n

∫
A′
( g

fθ0

)
(g̃ − g)uθ0 dy →d U [think

√
nh2 → 0]

and

√
n

∫
A′′
( g

fθ0

)(g̃ − g)2

fθ0
uθ0 dy →pr 0 [think

√
nh→∞].

1. The literature is far too dominated by ‘always’ using the kernel
density estimator (granted, even there it’s ‘technical’).

2. At the model, with g = fθ0 , matters simply, both J and K are
proportional to Jfish, and sandwich becomes J−1fish: the MinDisp is
as efficient as ML.

3. Sam-Erik needs within-reach generalisations of these matters to
O(1/

√
n) neighbourhoods around given models.
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Minimum Dispair with Bigger-Parametric Start

Suppose y1, . . . , yn are i.i.d. from some g . We fit data to
g(y , θ, γ), which contains f (y , θ) as a special case:

f (y , θ) = g(y , θ, γ0) for a known γ0.

With (θ̃, γ̃) the ML in bigger model, the minimum dispair
estimator for θ is θ̂, the minimiser of

d(g̃ , fθ) =

∫
B
(g(y , θ̃, γ̃)

f (y , θ)

)
f (y , θ) dy .

We have θ̂ →pr θ0, the least false value minimising∫
B
(g(y , θ1, γ1)

f (y , θ)

)
f (y , θ) dy ,

where (θ1, γ1) are KL minimisers in the bigger model. If small
model is correct, θ̂ is consistent for the right θ0.
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Assume smaller model correct, g(y , θ0, γ0) = f (y , θ0).

Theorem A: MinDisp is efficient at the model:

√
n(θ̂ − θ0)→d Np(0, J(θ0)−1).

Theorem B: Can use

Dn = min
θ

d(g̃ , f (·, θ)) =

∫
B
(g(y , θ̃, γ̃)

f (y , θ̂)

)
f (y , θ̂)dy

as a goodness-of-fit test statistic:

nDn →d
1
2B
′′(1)χ2

q

under model, where q = dim(γ).

Theorem C: Can work out
√
n(θ̂ − θ1) outside model conditions.
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Remarks & questions re subset of Sam-Erik’s PhD

A. Why isn’t everyone using Minimum Dispair? Why don’t we
teach minimum disparity estimators in our courses?

We can choose B and g̃ , and compute

θ̂ = argmin

∫
B
( g̃
fθ

)
fθ dy .

It is efficient at the model (close enough to the ML then) and
robust.

I slim following (Basu et collegae; students of Lindsay; Hooker;
a few other mild epicentres – though we’ve invented MWL
and WIC).

I technicalities, fine-tuning choices, theorems are still lacking,
and they’re nitty-gritty demanding?

I statisticians are happy with ML and closer cousins?
I robustness isn’t judged an important issue (despite

propaganda in the 70ies and 80ies)?
I doesn’t easily generalise to regression?
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B. We need clearer conditions on g̃ (and I’m bored by the default
kernel method).

C. We should work out a suitable MDIC, a Minimum Disparity
Information Criterion (non-trivial task).

The distance from truth to fitted model is
∫
B(g/f

θ̂
)f
θ̂
dy . What

we directly observe is Dn =
∫
B(g̃/f

θ̂
)f
θ̂
dy . Need analysis of

∆n =

∫
B
( g̃
f
θ̂

)
f
θ̂
dy −

∫
B
( g
f
θ̂

)
f
θ̂
dy

.
=

∫
B ′
( g
f
θ̂

)
(g̃ − g)dy + 1

2

∫
B ′′
( g
f
θ̂

)(g̃ − g)2

f
θ̂

dy .

For some g̃ , may show

(nh)1/2∆n →d

∫
B ′
( g

fθ0

)
Z (y) dy ,

which leads to a MDIC = Dn + (nh)−1/2q̂ (it’s messy, though).
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D. Some of the schemes working well in dim = 1 have trouble in
dim ≥ 2 (other biases klick in). Can these matters be ameliorated?

E. Can MinDisp estimators take the place of ML estimators in FIC
(the Gerda-Nils Focused Information Criterion)? I believe yes – and
Sam-Erik is working on this. The root of the matter for ML is this:
If data stem from fn(y) = f (y , θ0){1 + r(y)/

√
n}, then

√
n(θ̂ML−θ0)→d Np(J−1b, J−1), b =

∫
f (y , θ0)r(y)u(y , θ0)dy .

Task: Demonstrate that this holds (along with a certain list of
other technical things) for classes of MinDisp.

F. Regression setting, model f (yi | xi , θ): choose θ̂ to minimise

n−1
n∑

i=1

∫
B
( g̃(y | xi )
f (y | xi , θ)

)
f (y | xi , θ) dy .

G. MinDisp needs to be shown at work in clear well-motivated
application stories.
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