Minimum Dispair & Maximum Despair: Minimum Disparity Statistics

Nils Lid Hjort

Department of Mathematics, University of Oslo

Building Bridges at Bislett May 2017, Teknologihuset

Minimum disparity, i.i.d. case

Suppose y_1, \ldots, y_n i.i.d. from g, and we use model $f_{\theta}(\cdot) = f(\cdot, \theta)$. With $B(\cdot)$ convex and smooth on the half-line, and with B(1) = 0,

$$d(g, f_{\theta}) = \int B\left(rac{g}{f_{\theta}}
ight) f_{\theta} \,\mathrm{d}y$$

is a divergence (Johan Jensen inequality, 1906). Note that $\dim \geq 2$ is ok.

Hence it's a good estimation idea to use

 $\widehat{\theta} = \operatorname{argmin} d(\widetilde{g}, f_{\theta}),$

where \widetilde{g} is a 'wider' estimate of g. Can use

- ▶ g̃ nonparametric, like the kernel density estimator [99% of all MinDisp papers use this], or e.g. Hjort–Glad f(y, θ) r̃(y);
- \tilde{g} via Bayesian nonparametrics (e.g. along with prior for θ);

•
$$\widetilde{g}$$
 via $g = (1 - \varepsilon)f_{\theta} + \varepsilon H$ modelling;

• $\widetilde{g}(y) = g(y, \widetilde{\theta}, \widetilde{\gamma})$ from a bigger parametric family.

Minimising $\int B(g/f_{\theta})f_{\theta} \, dy$ corresponds to solving

$$\int A\left(\frac{g}{f_{\theta}}\right)f_{\theta}u_{\theta}\,\mathrm{d}y=0,$$

where $u_{\theta} = \partial \log f_{\theta} / \partial \theta$ is score function and

$$A(
ho) =
ho B'(
ho) - B(
ho)$$

is the Ratio Adjustment Function (RAF). So, $\widehat{\theta}$ solves

$$H_n(\theta) = \int A\Big(rac{\widetilde{g}}{f_{ heta}}\Big) f_{ heta} u_{ heta} \,\mathrm{d} y = 0.$$

We have $A'(\rho) = B''(\rho)$, so $A(\rho)$ is increasing. Properties of $A(\rho)$ drive robustness properties of $\hat{\theta}$.

A few Min Dispair schemes

1. $B(\rho) = \rho \log \rho$: then $d = \operatorname{KL}(g, f_{\theta})$, and $A(\rho) = \rho$. Estimator: solution to $\int \widetilde{g}(y)u(y, \theta) \, \mathrm{d}y = 0$... famous divergence, efficient at model, close to ML (inside and outside model), and not robust.

2. $B(\rho) = -\log \rho$: then $d = \text{KL}(f_{\theta}, g)$, the converse of what we learn in school, and $A(\rho) = \log \rho - 1$. Estimator: solution to

$$H_n(\theta) = \int \log \frac{\widetilde{g}(y)}{f(y,\theta)} f(y,\theta) u(y,\theta) \,\mathrm{d}y = 0.$$

3. $B(\rho) = 1 - \sqrt{\rho}$: then $d = 1 - \int \sqrt{gf_{\theta}} \, dy$, the Hellinger distance; $A(\rho) = \frac{1}{2}\sqrt{\rho} - 1$, and the estimator solves

$$H_n(\theta) = \int (\widetilde{g} f_{\theta})^{1/2} u_{\theta} \,\mathrm{d}y = 0.$$

4. $B(\rho) = 1 - \rho^{1/p}$: then $d = 1 - \int g^{1/p} f_{\theta}^{1/q} dy$, with 1/p + 1/q = 1. Estimator maximises $\int \tilde{g}^{1/p} f_{\theta}^{1/q} dy$.

Issues to pursue

So, $\hat{\theta}$ is the minimiser of $d(\tilde{g}, f_{\theta}) = \int B(\tilde{g}/f_{\theta})f_{\theta} \, \mathrm{d}y$.

- 1 \tilde{g} nonparametric: properties $\hat{\theta}$?
- ▶ 2 And what is really required of \tilde{g} ? Fine-tuning?
- ▶ 3 $\hat{\theta}$ is often efficient at the model, with $\sqrt{n}(\hat{\theta} \hat{\theta}_{ML}) \rightarrow_{pr} 0$; how different is it (then) from ML?
- 4 \tilde{g} bigger-parametric: properties $\hat{\theta}$?
- ▶ 5 Which $B(\rho)$ make the procedures robust?
- 6 Choice of $B(\rho)$ function (in a class of good ones)?
- ▶ 7 Generalising from i.i.d. to regression?
- ▶ 8 Goodness of fit, based on

$$D_n = \min d(\widetilde{g}, f_{\theta}) = d(\widetilde{g}, f(\cdot, \widehat{\theta}))?$$

9 Model selection using Min Dispair? Is there a MDIC, Minimum Divergence Information Criterion?

Example: Speed of light data, n = 66, two outliers to the left.

Minimising $1 - \int \widetilde{g}^{1/p} f_{\theta}^{1/q} dy$, for different *p*, where 1/p + 1/q = 1:

Minimising d(nonparametric, parametric)

Starting with a $B(\rho)$, use $A(\rho) = \rho B'(\rho) - B(\rho)$, to define the least false θ_0 as solution to

$$\int A\left(\frac{g}{f_{\theta}}\right) f_{\theta} u_{\theta} \,\mathrm{d} y = 0$$

and the MinDisp estimator $\widehat{\theta}$ as solution to

$$U_n(\theta) = \int A\Big(rac{\widetilde{g}}{f_{ heta}}\Big) f_{ heta} u_{ heta} \,\mathrm{d} y = 0.$$

Under some conditions,

$$\sqrt{n}U_n(\theta_0) = \sqrt{n}\int \left\{A\left(\frac{\widetilde{g}}{f_{\theta_0}}\right) - A\left(\frac{g}{f_{\theta_0}}\right)\right\} f_{\theta_0}u_{\theta_0} \,\mathrm{d} y \to_d U \sim \mathrm{N}_p(0, K).$$

Along with 2nd order derivative matrix to a J, and other technical details, we're led to

$$\sqrt{n}(\widehat{\theta}-\theta_0) \rightarrow_d J^{-1}U \sim \mathrm{N}_p(0, J^{-1}KJ^{-1}).$$

The conditions for convergence of

$$\sqrt{n}U_n(\theta_0) = \sqrt{n}\int \left\{A\left(\frac{\widetilde{g}}{f_{\theta_0}}\right) - A\left(\frac{g}{f_{\theta_0}}\right)\right\}f_{\theta_0}u_{\theta_0}\,\mathrm{d}y$$

basically amount to

$$\sqrt{n}\int A'\Big(rac{g}{f_{\theta_0}}\Big)(\widetilde{g}-g)u_{\theta_0}\,\mathrm{d}y \to_d U \qquad [\mathrm{think}\,\sqrt{n}h^2 \to 0]$$

and

$$\sqrt{n}\int A''\Big(rac{g}{f_{ heta_0}}\Big)rac{(\widetilde{g}-g)^2}{f_{ heta_0}}u_{ heta_0}\,\mathrm{d} y o_{\mathrm{pr}}0\qquad [\mathrm{think}\,\,\sqrt{n}h o\infty].$$

1. The literature is far too dominated by 'always' using the kernel density estimator (granted, even there it's 'technical').

2. At the model, with $g = f_{\theta_0}$, matters simply, both J and K are proportional to J_{fish} , and sandwich becomes J_{fish}^{-1} : the MinDisp is as efficient as ML.

3. Sam-Erik needs within-reach generalisations of these matters to $O(1/\sqrt{n})$ neighbourhoods around given models.

Minimum Dispair with Bigger-Parametric Start

Suppose y_1, \ldots, y_n are i.i.d. from some g. We fit data to $g(y, \theta, \gamma)$, which contains $f(y, \theta)$ as a special case:

 $f(y, \theta) = g(y, \theta, \gamma_0)$ for a known γ_0 .

With $(\tilde{\theta}, \tilde{\gamma})$ the ML in bigger model, the minimum dispair estimator for θ is $\hat{\theta}$, the minimiser of

$$d(\widetilde{g}, f_{\theta}) = \int B\Big(rac{g(y, \widetilde{ heta}, \widetilde{\gamma})}{f(y, heta)}\Big)f(y, heta) \,\mathrm{d}y.$$

We have $\widehat{ heta}
ightarrow_{\mathrm{pr}} heta_{0}$, the least false value minimising

٠

$$\int B\left(\frac{g(y,\theta_1,\gamma_1)}{f(y,\theta)}\right)f(y,\theta)\,\mathrm{d} y,$$

where (θ_1, γ_1) are KL minimisers in the bigger model. If small model is correct, $\hat{\theta}$ is consistent for the right θ_0 .

Assume smaller model correct, $g(y, \theta_0, \gamma_0) = f(y, \theta_0)$.

Theorem A: MinDisp is efficient at the model:

$$\sqrt{n}(\widehat{\theta}-\theta_0) \rightarrow_d N_p(0, J(\theta_0)^{-1}).$$

Theorem B: Can use

$$D_n = \min_{\theta} d(\widetilde{g}, f(\cdot, \theta)) = \int B\Big(\frac{g(y, \widetilde{\theta}, \widetilde{\gamma})}{f(y, \widehat{\theta})}\Big) f(y, \widehat{\theta}) \, \mathrm{d}y$$

as a goodness-of-fit test statistic:

$$nD_n \rightarrow_d \frac{1}{2}B''(1)\chi_q^2$$

under model, where $q = \dim(\gamma)$.

Theorem C: Can work out $\sqrt{n}(\hat{\theta} - \theta_1)$ outside model conditions.

Remarks & questions re subset of Sam-Erik's PhD

A. Why isn't everyone using Minimum Dispair? Why don't we teach minimum disparity estimators in our courses?

We can choose B and \tilde{g} , and compute

$$\widehat{\theta} = \operatorname{argmin} \int B\Big(\frac{\widetilde{g}}{f_{\theta}}\Big) f_{\theta} \, \mathrm{d} y.$$

It is efficient at the model (close enough to the ML then) and robust.

- slim following (Basu et collegae; students of Lindsay; Hooker; a few other mild epicentres – though we've invented MWL and WIC).
- technicalities, fine-tuning choices, theorems are still lacking, and they're nitty-gritty demanding?
- statisticians are happy with ML and closer cousins?
- robustness isn't judged an important issue (despite propaganda in the 70ies and 80ies)?
- doesn't easily generalise to regression?

B. We need clearer conditions on \tilde{g} (and I'm bored by the default kernel method).

C. We should work out a suitable MDIC, a Minimum Disparity Information Criterion (non-trivial task).

The distance from truth to fitted model is $\int B(g/f_{\hat{\theta}})f_{\hat{\theta}} \, \mathrm{d}y$. What we directly observe is $D_n = \int B(\tilde{g}/f_{\hat{\theta}})f_{\hat{\theta}} \, \mathrm{d}y$. Need analysis of

$$\begin{split} \Delta_n &= \int B\Big(\frac{\widetilde{g}}{f_{\widehat{\theta}}}\Big) f_{\widehat{\theta}} \,\mathrm{d}y - \int B\Big(\frac{g}{f_{\widehat{\theta}}}\Big) f_{\widehat{\theta}} \,\mathrm{d}y \\ &\doteq \int B'\Big(\frac{g}{f_{\widehat{\theta}}}\Big) (\widetilde{g} - g) \,\mathrm{d}y + \frac{1}{2} \int B''\Big(\frac{g}{f_{\widehat{\theta}}}\Big) \frac{(\widetilde{g} - g)^2}{f_{\widehat{\theta}}} \,\mathrm{d}y. \end{split}$$

For some \widetilde{g} , may show

$$(nh)^{1/2}\Delta_n \to_d \int B'\Big(rac{g}{f_{\theta_0}}\Big)Z(y)\,\mathrm{d}y,$$

which leads to a $MDIC = D_n + (nh)^{-1/2}\hat{q}$ (it's messy, though).

D. Some of the schemes working well in dim = 1 have trouble in dim \geq 2 (other biases klick in). Can these matters be ameliorated?

E. Can MinDisp estimators take the place of ML estimators in FIC (the Gerda-Nils Focused Information Criterion)? I believe yes – and Sam-Erik is working on this. The root of the matter for ML is this: If data stem from $f_n(y) = f(y, \theta_0)\{1 + r(y)/\sqrt{n}\}$, then

$$\sqrt{n}(\widehat{\theta}_{\mathrm{ML}}-\theta_0) \rightarrow_d \mathrm{N}_p(J^{-1}b, J^{-1}), \quad b = \int f(y, \theta_0) r(y) u(y, \theta_0) \,\mathrm{d}y.$$

Task: Demonstrate that this holds (along with a certain list of other technical things) for classes of MinDisp.

F. Regression setting, model $f(y_i | x_i, \theta)$: choose $\hat{\theta}$ to minimise

$$n^{-1}\sum_{i=1}^n\int B\Big(\frac{\widetilde{g}(y\,|\,x_i)}{f(y\,|\,x_i,\theta)}\Big)f(y\,|\,x_i,\theta)\,\mathrm{d}y.$$

G. MinDisp needs to be shown at work in clear well-motivated application stories.