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Semi-Infinite Multi-objective Optimization Problems

▶ Semi-Infinite Programming (SIP): Optimization problems
with an infinite number of constraints (providing that the
decision space is finite-dimensional)

▶ Semi-Infinite Multi-objective Optimization Problems

MinRm
+
{f (x) | x ∈ C , gt(x) ≤ 0, t ∈ T} (SIMOP)

⋆ MinRm
+
in problem (SIMOP) is understood with respect to the

ordering cone Rm
+ := {(y1, . . . , ym) | yi ≥ 0, i = 1, . . . ,m};

⋆ C : the abstract set of problem (SIMOP) is a nonempty closed (not
necessarily convex) subset of Rn;

⋆ f : Rn → Rm with every component fi , i = 1, . . . ,m being locally
Lipschitz functions;

⋆ gt : Rn → R, t ∈ T , are locally Lipschitz with respect to x uniformly
in t , and T is an index set (possibly infinite).
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Semi-Infinite Multi-objective Optimization Problems

▶ Let F be the feasible set of problem (SIMOP), given by

F := {x ∈ C | gt(x) ≤ 0, t ∈ T} (1.1)

▶ Observe that if m = 1, then the problem (SIMOP) is reduced
to an SIP.

⋆ It is worth noting that problem SIP with linear and convex
inequality constraints have been widely studies and applied,
but with Lipschitzian data are not very much in the literature.
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Semi-Infinite Multi-objective Optimization Problems

▶ If m ≥ 2, for the case of (weakly) efficient solutions and
(weakly) approximate efficient solutions to problem (SIMOP)
with Lipschitzian data, necessary and sufficient optimality
conditions were investigated by several works; e.g., [1,2].

⋆ Note that, all results [1,2] were obtained in the sense of Clarke
subdifferential.

• [Goal] In this talk, we will report some results on optimality
conditions for approximate solutions of problem (SIMOP), by
invoking some advanced tools from generalized differentiation
and variational analysis due to Mordukhovich [3].

1D. S. Kim and T. Q. Son, An approach to ϵ-duality theorems for nonconvex
semi-infinite multiobjective optimization problems, Taiwanese J. Math. 22 (2018),
1261–1287.

2T. Shitkovskaya and D. S. Kim, ϵ-solutions in semi-infinite multiobjective
optimization, RAIRO Oper. Res. 52 (2018), 1397–1410.

3B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs
in Mathematics, XIX+622 pp., Springer, Cham, Switzerland, 2018.
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Basic Notations

2. Basic Tools
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Basic Notations

▶ Let Rn denote the Euclidean space equipped with the usual
Euclidean norm ∥ · ∥ .

⋆ The notation ⟨·, ·⟩ signifies the inner product in Rn.

⋆ The non-negative orthant of Rn is denoted by Rn
+.

▶ The polar cone of a set Ω ⊂ Rn is defined by

Ω◦ := {y ∈ Rn | ⟨y , x⟩ ≤ 0, ∀x ∈ Ω} (2.1)
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Basic Notations

▶ Let h be a function from Rn to R, where R := [−∞,+∞].
We say h : Rn → R is lower semicontinuous (l.s.c.) at x̄ ∈ Rn

if lim infx→x̄ h(x) ≥ h(x̄).

▶ Consider set-valued mapping (or multifunctions)
P : Rn ⇒ Rm, with values P(x) ⊂ Rm in the collection of all
the subsets of Rm.

⋆ The limiting construction

Limsupx→x̄ P(x) := {y ∈ Rm | ∃xk → x̄ , yk → y with

yk ∈ P (xk) , ∀k ∈ N} (2.2)

is known as the Painlevé–Kuratowski upper/outer limit of P
at x̄ , where N := {1, 2, . . .}.
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Basic Notations

▶ Given a set Ω ⊂ Rn, associate with it,

◦ the distance function

dist(x ; Ω) := inf
z∈Ω

∥x − z∥, x ∈ Rn

◦ the Euclidean projector of x ∈ Rn to Ω by

Π(x ; Ω) := {w ∈ Ω | ∥x − w∥ = dist(x ; Ω)}
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Basic Notations

Definition (3, Definition 1.1)

Let Ω ⊂ Rn with x̄ ∈ Ω. The (basic) normal cone to Ω at x̄ is
defined by

NΩ(x̄) := Limsupx→x̄ [cone(x − Π(x ; Ω)]

via the outer limit (2.2).

Each v ∈ NΩ(x̄) is called a basic or limiting normal to Ω at x̄ and
is represented as follows: there are sequences xk → x̄ ,
wk ∈ Π (xk ; Ω) , and αk ≥ 0 such that αk (xk − wk) → v as
k → ∞.

3B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs
in Mathematics, XIX+622 pp., Springer, Cham, Switzerland, 2018.
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Basic Notations

▶ For an extended real-valued function h : Rn → R its epigraph
is denoted by

epi h := {(x , r) ∈ Rn × R | h(x) ≤ r} .

▶ The limiting/Mordukhovich subdifferential of h at x̄ ∈ Rn

with |h(x̄)| <∞ is defined by

∂h(x̄) := {y ∈ Rn | (y ,−1) ∈ Nepih(x̄ , h(x̄))}

If |h(x̄)| = ∞, one puts ∂h(x̄) := ∅.
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Basic Notations

Lemma (sum rule, [3, Corollary 2.21])
Let hi : Rn → R, i = 1, 2, . . . , k , k ≥ 2, be lower semicontinuous
around x̄ ∈ Rn, and let all these functions except, possibly, one
be Lipschitz1 continuous around x̄ . Then one has

∂ (h1 + h2 + . . .+ hk) (x̄) ⊂ ∂h1(x̄) + ∂h2(x̄) + . . .+ ∂hk(x̄). (2.3)

1A function ϕ : Rn → R is said to be locally Lipschitz, if for any x ∈ Rn

there exists a positive constant K and a neighborhood N of x such that

|ϕ(y)− ϕ(z)| ≦ K∥y − z∥, ∀y , z ∈ N(x).

3B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs
in Mathematics, XIX+622 pp., Springer, Cham, Switzerland, 2018.
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Basic Notations

Theorem (Ekeland Variational Principle)

Let φ : Rn → R be a continuous function bounded from below.
Let ϵ > 0 and x0 ∈ Rn be given such that

inf
x∈Rn

φ(x) ≤ φ (x0) ≤ inf
x∈Rn

φ(x) + ϵ.

Then for any v > 0 there is x̄ ∈ Rn satisfying

(i) φ(x̄) ≤ φ (x0) ;

(ii) ∥x̄ − x0∥ ≤ v ;

(iii) φ(x̄) ≤ φ(x) + ϵ
v ∥x − x̄∥ for all x ∈ Rn.
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Linear Space for Semi-infinite Programming

R|T | :=
{
λ = (λt)t∈T : λt = 0 for all t ∈ T but finitely many λt ̸= 0

}
.

With λ ∈ R|T |, its supporting set T (λ) = {t ∈ T : λt ̸= 0} is a finite subset of T .

◦ The nonnegative cone of R|T | is denoted by:

R|T |
+ =

{
λ = (λt)t∈T ∈ R|T | : λt ≥ 0, t ∈ T

}
.

◦ For gt , t ∈ T

∑
t∈T

λtgt =

{ ∑
t∈T (λ) λtgt if T (λ) ̸= ∅

0 if T (λ) = ∅
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3.1. Fuzzy necessary optimality condition

Definition (solution concepts of the problem (SIMOP))
Let ε := (ϵ1, . . . , ϵm) ∈ Rm

+. A point x̄ ∈ F is said to be

(i) an ε-efficient solution to the problem (SIMOP) iff there is no x ∈ F
such that

fi (x) + ϵi ≦ fi (x̄), i = 1, . . . ,m,

with at least one strict inequality;

(ii) a quasi ε-efficient solution to the problem (SIMOP) iff there is no
x ∈ F such that

fi (x) + ϵi∥x − x̄∥ ≦ fi (x̄), i = 1, . . . ,m,

with at least one strict inequality;

(iii) a weakly quasi ε-efficient solution to the problem (SIMOP) iff there is
no x ∈ F such that

fi (x) + ϵi∥x − x̄∥ < fi (x̄), i = 1, . . . ,m.
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3.1. Fuzzy necessary optimality condition

3.1. Fuzzy necessary optimality condition
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3.1. Fuzzy necessary optimality condition

Reformulation

• For fixed x̄ ∈ C and (ϵ1, . . . , ϵm) ∈ Rm
+ \ {0}, we define a

real-valued function ψ on C as follows:

ψ(x) := sup
i=1,...,m,t∈T

{fi (x)− fi (x̄) + ϵi , gt(x)} , x ∈ C . (3.3)

• For simplicity, denote by T̂ := {1, . . . ,m} ∪ T satisfying
{1, . . . ,m} ∩ T = ∅, and

ĝt(x) :=

{
ft(x)− ft(x̄) + ϵt , if t ∈ {1, . . . ,m};
gt(x), if t ∈ T .

(3.4)
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3.1. Fuzzy necessary optimality condition

• Rewrite (3.3) as

ψ(x) := sup
{
ĝt(x) : t ∈ T̂

}
, x ∈ C . (3.5)

• Define the set of α-active indices at y by

T̂α(y) :=
{
t ∈ T̂ : ĝt(y) ≥ ψ(y)− α

}
, α ≥ 0

with T̂ (y) := T̂0(y) and clearly that T̂α(y) ̸= ∅ for α > 0.
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3.1. Fuzzy necessary optimality condition

Lemma (compare [3, Theorem 8.30 (ii)])
Given ĝt as in (3.4) and consider the supremum function ψ as (3.3).
Then there exist

1. τi ≥ 0, i ∈ M(y) := {i ∈ {1, . . . ,m} : ψ(y) = fi (y)− fi (x̄) + ϵi}
and

2. λt ≥ 0, t ∈ T (y) := {t ∈ T : ψ(y) = gt(y)} satisfying∑
i∈M(y) τi +

∑
t∈T (y) λt = 1

such that

∂ψ(y) ⊂
∑

i∈M(y)

τi∂fi (y) +
∑

i∈T (y)

λt∂gt(y). (3.6)

3B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs
in Mathematics, XIX+622 pp., Springer, Cham, Switzerland, 2018.
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3.1. Fuzzy necessary optimality condition

Theorem (Jiao/K. — Fuzzy necessary optimality condition)
Let x̄ be a weak ε-efficient solution to the problem (SIMOP).
For any v > 0 small enough, there exist xv ∈ C and
τi ≥ 0, i ∈ M (xv ) and λt ≥ 0, t ∈ T (xv ) satisfying∑

i∈M(xv )
τi +

∑
t∈T (xv )

λt = 1, such that ∥xv − x̄∥ ≤ v and

0 ∈
∑

i∈M(xv )

τi∂fi (xv ) +
∑

i∈T (xv )

λt∂gt (xv ) + NC (xv ) +
maxi=1,...,m {ϵi}

v
B, (3.7)

where M (xv ) := {i ∈ {1, . . . ,m} : ψ (xv ) = fi (xv )− fi (x̄) + ϵi}
and T (xv ) := {t ∈ T : ψ (xv ) = gt (xv )} .
Proof: by Ekeland Variational Principle!
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3.2. Optimality conditions for (SIMOP)

3.2. Optimality conditions for (SIMOP)
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3.2. Optimality conditions for (SIMOP)

A key finding [4]: the solution relationship between
problem (SIMOP) and the following standard multi-objective
optimization problem:

MinRm
+
{φ(x) | x ∈ F}, (MOP)

where

◦ φ(x) = f (x) + ε∥x − x̄∥
◦ ε∥x − x̄∥ := (ϵ1∥x − x̄∥, . . . , ϵm∥x − x̄∥)
◦ the feasible set F is same as (1.1).

4Liguo Jiao and Do Sang Kim∗, Weakly quasi ϵ-efficiency for semi-infinite
multi-objective optimization problems with locally Lipschitzian data. Applied Analysis
and Optimization, 4 (2020), no. 1, 65–78.
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3.2. Optimality conditions for (SIMOP)

Proposition (Jiao/K. — solution relationship)

If x̄ ∈ F is a weakly quasi ε-efficient solution to the
problem (SIMOP), then it is a weakly efficient solution to the
problem (MOP).

The proof is just by definition! This result is easy to understand,
but also pretty powerful!
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3.2. Optimality conditions for (SIMOP)

The set of active constraint multipliers at x̄ ∈ C :

A(x̄) :=
{
λ ∈ R|T |

+ | λtgt(x̄) = 0 for all t ∈ T
}

(3.1)

Definition (LCQ)

Let x̄ ∈ F . We say that the following limiting constraint
qualification (LCQ) is satisfied at x̄ iff

NF (x̄) ⊆
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+ NC (x̄).
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3.2. Optimality conditions for (SIMOP)

Theorem (Jiao/K. — exact necessity)

Let (LCQ) be satisfied at x̄ ∈ F . If x̄ is a weakly quasi
ε-efficient solution to the problem (SIMOP), then there exist
τ := (τ1, . . . , τm) ∈ Rm

+ with τT e = 1 and λ ∈ A(x̄) defined in
(3.1) such that

0 ∈
m∑
i=1

τi∂fi (x̄) +
∑
t∈T

λt∂gt(x̄) + NC (x̄) +
m∑
i=1

τiϵiB (3.2)

The proof is mainly based on

• extreme principle — variational counterpart of the separation
theorem in nonconvex settings,

• variational analysis and generalized differentiation (like Fermat
theorem, sum rule etc).
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3.2. Optimality conditions for (SIMOP)

Example (the importance of (LCQ))

• Consider the problem (SIMOP) with C = R, and let f : R → R2

be defined by f1(x) = f2(x) := x , and let gt : R → R be given by
gt(x) := tx4 for x ∈ R and for t ∈ T := [1, 2].

• Let ε = (ϵ1, ϵ2) =
(
1
2 ,

1
2

)
be given.

• Clearly, the feasible set F = {0} and thus, x̄ := 0 is the unique
efficient solution [thus a quasi ε-efficient solution] of this problem.

• Since ∂gt(x̄) = 2tx̄ = 0 at x̄ = 0 for all t ∈ T ,

⋃
λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+ NC (x̄) = {0}.

• On the other hand, NF (x̄) = R. Therefore, the (LCQ) fails to
hold at x̄ , and the above theorem does not hold.
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3.2. Optimality conditions for (SIMOP)

Definition (generalized convexity)

Let f := (f1, . . . , fm) and gT := (gt)t∈T . We say that (f , gT ) is
generalized convex on C at x̄ ∈ C iff, for any
x ∈ C , ξi ∈ ∂fi (x̄), i = 1, . . . ,m, and ηt ∈ ∂gt(x̄), t ∈ T , there
exists ω ∈ NC (x̄)

◦ satisfying

⟨ξi , ω⟩≤ fi (x)− fi (x̄), i = 1, . . . ,m,
⟨ηt , ω⟩ ≤ gt(x)− gt(x̄), t ∈ T ,

and
⟨b, ω⟩ ≤ ∥x − x̄∥, ∀b ∈ B.
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3.2. Optimality conditions for (SIMOP)

Definition (strictly generalized convexity)

Let f := (f1, . . . , fm) and gT := (gt)t∈T . We say that (f , gT ) is
strictly generalized convex on C at x̄ ∈ C iff, for any
x ∈ C , ξi ∈ ∂fi (x̄), i = 1, . . . ,m, and ηt ∈ ∂gt(x̄), t ∈ T , there
exists ω ∈ NC (x̄)

◦ satisfying

⟨ξi , ω⟩< fi (x)− fi (x̄), i = 1, . . . ,m,
⟨ηt , ω⟩ ≤ gt(x)− gt(x̄), t ∈ T ,

and
⟨b, ω⟩ ≤ ∥x − x̄∥, ∀b ∈ B.
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3.2. Optimality conditions for (SIMOP)

Theorem (Jiao/K. — sufficiency)

Let x̄ ∈ F satisfy (3.2).

(i) If (f , gT ) is generalized convex on C at x̄ , then x̄ is a
weakly quasi ε- efficient solution to problem (SIMOP).

(ii) If (f , gT ) is strictly generalized convex on C at x̄ , then x̄ is
a quasi ε-efficient solution to problem (SIMOP).
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3.2. Optimality conditions for (SIMOP)

Example (the importance of generalized convexity)

• Let f : R → R be given by f (x) = x3, let gt : R → R be
given by gt(x) := tx2, x ∈ R, t ∈ T := [−2,−1], and let
C = R.

• Observe that the feasible set F = R.
• Take x̄ = 0 ∈ F , clearly x̄ = 0 satisfies condition (3.2) in

the above theorem.

• However, x̄ = 0 is not a quasi ϵ-solution to the problem
(SIMOP) with m = 1.

• The reason is that the generalized convexity of (f , gT ) on C
at x̄ was not satisfied.
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3.3. ε-Wolfe type duality

3.3. ε-Wolfe type duality
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3.3. ε-Wolfe type duality

• For y ∈ Rn, τ := (τ1, . . . , τm) ∈ Rm
+ with τT e = 1 and

λ ∈ R|T |
+ , here e := (1, . . . , 1) ∈ Rm, put

L(y , τ, λ) := f (y) +
∑
t∈T

λtgt(y)e.

• Consider the Wolfe (in approximate form) dual problem of the
problem (SIMOP) as follows:

MaxRm
+
{L(y , τ, λ) | (y , τ, λ) ∈ FW } , (DW )

where the feasible set FW is given by

FW :={(y , τ, λ) ∈ C × (Rm
+\{0})× R|T |

+ | 0 ∈
m∑
i=1

τi∂fi (x̄) +
∑
t∈T

λt∂gt(x̄)

+ NC (x̄) +
m∑
i=1

τiϵiB,
m∑
i=1

τi = 1}.
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3.3. ε-Wolfe type duality

Definition (solution for dual problem)

Let L := (L1, . . . ,Lm) , and let ε := (ϵ1, . . . , ϵm) ∈ Rm
+\{0}.

1. We say (ȳ , τ̄ , λ̄) ∈ FW is a quasi ε-efficient solution to
problem (DW ) iff there is no (y , τ, λ) ∈ FW such that

Li (y , τ, λ) ≥ Li (ȳ , τ̄ , λ̄) + ϵi∥ȳ − y∥, i = 1, . . . ,m,

with at least one strict inequality.

2. We say (ȳ , τ̄ , λ̄) ∈ FW is a weakly quasi ε-efficient solution
to problem (DW ) iff there is no (y , τ, λ) ∈ FW such that

Li (y , τ, λ) > Li (ȳ , τ̄ , λ̄) + ϵi∥ȳ − y∥, i = 1, . . . ,m.
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3.3. ε-Wolfe type duality

In what follows, we use the following notation for convenience.
u ≺ v ⇔ u − v ∈ − intRm

+, u ⊀ v is the negation of u ≺ v ;
u ⪯ v ⇔ u − v ∈ −Rm

+\{0}, u ⪯̸ v is the negation of u ⪯ v .

Theorem (ε-Weak Duality)

Let x ∈ F and let (y , τ, λ) ∈ FW

(i) If (f , gT ) is generalized convex on C at y , then

f (x) ⊀ L(y , τ, λ)− ε∥x − y∥.

(ii) If (f , gT ) is strictly generalized convex on C at y , the

f (x) ⪯̸ L(y , τ, λ)− ε∥x − y∥.
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3.3. ε-Wolfe type duality

Theorem (ε-Strong Duality)

Let x̄ be a weakly quasi ε-efficient solution to the primal
problem (SIMOP) such that the (LCQ) is satisfied at this point.

Then there exists (τ̄ , λ̄) ∈ Rm
+ × R|T |

+ such that (x̄ , τ̄ , λ̄) ∈ FW
and f (x̄) = L(x̄ , τ̄ , λ̄). If in addition,

(i) (f , gT ) is generalized convex on C at any y ∈ C , then
(x̄ , τ̄ , λ̄) is a weakly quasi ε-efficient solution to problem
(DW ) ;

(ii) (f , gT ) is strictly generalized convex on C at any y ∈ C ,
then (x̄ , τ̄ , λ̄) is a quasi ε-efficient solution to problem
(DW ) .
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Conclusions:

• Working under the framework of vector optimization;

• Invoking locally Lipschitz data to this framework:

◦ Basic Tools: variational analysis and generalized differentiation.
◦ Main Tool: extreme principle — variational counterpart of the

separation theorem in nonconvex settings.
◦ Focus on: optimality conditions (fuzzy and exact forms) / duality

for approximate solutions.
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Thank you for your attention!
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