

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems

Do Sang Kim (PKNU)

Co-author: Liguo Jiao (Northeast Normal University, China)

July 21, 2023, Dalat University

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

- 周 ト - ヨ ト - ヨ ト

Outline

- 1. SIMOP
- 2. Basic Tools
- 3. Optimality conditions for (SIMOP)
 - 3.1. Fuzzy necessary optimality condition
 - 3.2. Optimality conditions for (SIMOP)
 - 3.3. ε -Wolfe type duality

4. Conclusions

- **B** - **B**

4. Conclusions

Semi-Infinite Multi-objective Optimization Problems

2 Basic Tools

1 SIMOP

•00

- Semi-Infinite Programming (SIP): Optimization problems with an infinite number of constraints (providing that the decision space is finite-dimensional)
- Semi-Infinite Multi-objective Optimization Problems

$$\mathsf{Min}_{\mathbb{R}^m_+}\{f(x) \mid x \in C, \ g_t(x) \le 0, t \in T\}$$
(SIMOP)

- * $\operatorname{Min}_{\mathbb{R}_{+}^{m}}$ in problem (SIMOP) is understood with respect to the ordering cone $\mathbb{R}_{+}^{m} := \{(y_{1}, \ldots, y_{m}) \mid y_{i} \geq 0, i = 1, \ldots, m\};$
- ★ C: the abstract set of problem (SIMOP) is a nonempty closed (not necessarily convex) subset of ℝⁿ;
- * $f : \mathbb{R}^n \to \mathbb{R}^m$ with every component $f_i, i = 1, ..., m$ being locally Lipschitz functions;
- ★ $g_t : \mathbb{R}^n \to \mathbb{R}, t \in T$, are locally Lipschitz with respect to x uniformly in t, and T is an index set (possibly infinite).

Semi-Infinite Multi-objective Optimization Problems

▶ Let *F* be the feasible set of problem (SIMOP), given by

$$F := \{ x \in C \mid g_t(x) \le 0, t \in T \}$$
(1.1)

・ 同 ト ・ 三 ト ・ 三 ト

- Observe that if m = 1, then the problem (SIMOP) is reduced to an SIP.
- It is worth noting that problem SIP with linear and convex inequality constraints have been widely studies and applied, but with Lipschitzian data are not very much in the literature.

Semi-Infinite Multi-objective Optimization Problems

1 SIMOP

000

- If m ≥ 2, for the case of (weakly) efficient solutions and (weakly) approximate efficient solutions to problem (SIMOP) with Lipschitzian data, necessary and sufficient optimality conditions were investigated by several works; e.g., [1,2].
- * Note that, all results [1,2] were obtained in the sense of Clarke subdifferential.
- **[Goal]** In this talk, we will report some results on optimality conditions for approximate solutions of problem (SIMOP), by invoking some advanced tools from generalized differentiation and variational analysis due to Mordukhovich [3].

 $^1\text{D.}$ S. Kim and T. Q. Son, An approach to $\epsilon\text{-duality theorems}$ for nonconvex semi-infinite multiobjective optimization problems, Taiwanese J. Math. 22 (2018), 1261–1287.

 $^2 T.$ Shitkovskaya and D. S. Kim, $\epsilon\text{-solutions}$ in semi-infinite multiobjective optimization, RAIRO Oper. Res. 52 (2018), 1397–1410.

³B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs in Mathematics, XIX+622 pp., Springer, Cham, Switzerland, $2018_{P} + 2 + 4 = 2$

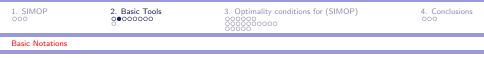
1. SIMOP 000	2. Basic Tools	3. Optimality conditions for (SIMOP)	4. Conclusions
Basic Notations			

2. Basic Tools

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

・ロト ・回ト ・ヨト ・ヨト

э



- Let ℝⁿ denote the Euclidean space equipped with the usual Euclidean norm || · ||.
- * The notation $\langle \cdot, \cdot \rangle$ signifies the inner product in \mathbb{R}^n .
- * The non-negative orthant of \mathbb{R}^n is denoted by \mathbb{R}^n_+ .
- The polar cone of a set $\Omega \subset \mathbb{R}^n$ is defined by

$$\Omega^{\circ} := \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \le 0, \ \forall x \in \Omega \}$$
(2.1)

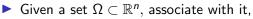
・ 同 ト ・ 三 ト ・ 三 ト

- ▶ Let *h* be a function from \mathbb{R}^n to $\overline{\mathbb{R}}$, where $\overline{\mathbb{R}} := [-\infty, +\infty]$. We say $h : \mathbb{R}^n \to \overline{\mathbb{R}}$ is lower semicontinuous (l.s.c.) at $\overline{x} \in \mathbb{R}^n$ if $\liminf_{x \to \overline{x}} h(x) \ge h(\overline{x})$.
- Consider set-valued mapping (or multifunctions)
 P: ℝⁿ ⇒ ℝ^m, with values P(x) ⊂ ℝ^m in the collection of all the subsets of ℝ^m.
- ★ The limiting construction

$$\begin{aligned} \mathsf{Limsup}_{x \to \bar{x}} \, P(x) &:= \{ y \in \mathbb{R}^m \mid \exists x_k \to \bar{x}, y_k \to y \text{ with} \\ y_k \in P(x_k), \forall k \in \mathbb{N} \} \end{aligned} \tag{2.2}$$

・ 同 ト ・ 三 ト ・ 三 ト

is known as the Painlevé–Kuratowski upper/outer limit of P at \bar{x} , where $\mathbb{N} := \{1, 2, \ldots\}$.



 $\circ~$ the distance function

$$dist(x; \Omega) := \inf_{z \in \Omega} ||x - z||, \ x \in \mathbb{R}^n$$

• the Euclidean projector of $x \in \mathbb{R}^n$ to Ω by

 $\Pi(x;\Omega) := \{w \in \Omega \mid ||x - w|| = \mathsf{dist}(x;\Omega)\}$

< ロ > < 同 > < 三 > < 三 >

Definition (3, Definition 1.1)

Let $\Omega \subset \mathbb{R}^n$ with $\bar{x} \in \Omega$. The (basic) normal cone to Ω at \bar{x} is defined by

$$N_{\Omega}(\bar{x}) := \operatorname{Limsup}_{x \to \bar{x}} [\operatorname{cone}(x - \Pi(x; \Omega))]$$

via the outer limit (2.2).

Each $v \in N_{\Omega}(\bar{x})$ is called a basic or limiting normal to Ω at \bar{x} and is represented as follows: there are sequences $x_k \to \bar{x}$, $w_k \in \Pi(x_k; \Omega)$, and $\alpha_k \ge 0$ such that $\alpha_k (x_k - w_k) \to v$ as $k \to \infty$.

For an extended real-valued function h : ℝⁿ → ℝ its epigraph is denoted by

epi
$$h := \{(x,r) \in \mathbb{R}^n \times \mathbb{R} \mid h(x) \leq r\}$$
.

► The limiting/Mordukhovich subdifferential of *h* at $\bar{x} \in \mathbb{R}^n$ with $|h(\bar{x})| < \infty$ is defined by

$$\partial h(\bar{x}) := \{ y \in \mathbb{R}^n \mid (y, -1) \in N_{\mathrm{epi}h}(\bar{x}, h(\bar{x})) \}$$

If $|h(\bar{x})| = \infty$, one puts $\partial h(\bar{x}) := \emptyset$.

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

A (10) × (10)

Lemma (sum rule, [3, Corollary 2.21]) Let $h_i : \mathbb{R}^n \to \overline{\mathbb{R}}, i = 1, 2, ..., k, k \ge 2$, be lower semicontinuous around $\overline{x} \in \mathbb{R}^n$, and let all these functions except, possibly, one be Lipschitz¹ continuous around \overline{x} . Then one has

$$\partial (h_1 + h_2 + \ldots + h_k)(\bar{x}) \subset \partial h_1(\bar{x}) + \partial h_2(\bar{x}) + \ldots + \partial h_k(\bar{x}).$$
 (2.3)

¹A function $\phi : \mathbb{R}^n \to \mathbb{R}$ is said to be locally Lipschitz, if for any $x \in \mathbb{R}^n$ there exists a positive constant K and a neighborhood N of x such that

$$|\phi(y) - \phi(z)| \leq K ||y - z||, \quad \forall y, z \in N(x).$$

³B. S. Mordukhovich, Variational Analysis and Applications, Springer Monographs in Mathematics, XIX+622 pp., Springer, Cham, Switzerland_P2018

Theorem (Ekeland Variational Principle)

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a continuous function bounded from below. Let $\epsilon > 0$ and $x_0 \in \mathbb{R}^n$ be given such that

$$\inf_{x\in\mathbb{R}^n}\varphi(x)\leq\varphi(x_0)\leq\inf_{x\in\mathbb{R}^n}\varphi(x)+\epsilon.$$

Then for any v>0 there is $\bar{x}\in\mathbb{R}^n$ satisfying

(i)
$$\varphi(\bar{x}) \leq \varphi(x_0)$$
;
(ii) $\|\bar{x} - x_0\| \leq v$;
(iii) $\varphi(\bar{x}) \leq \varphi(x) + \frac{\epsilon}{v} \|x - \bar{x}\|$ for all $x \in \mathbb{R}^n$.

A (10) + (10)

$$\mathbb{R}^{|\mathcal{T}|} := \left\{ \lambda = (\lambda_t)_{t \in \mathcal{T}} : \lambda_t = 0 \text{ for all } t \in \mathcal{T} \text{ but finitely many } \lambda_t \neq 0 \right\}.$$

With $\lambda \in \mathbb{R}^{|\mathcal{T}|}$, its supporting set $\mathcal{T}(\lambda) = \{t \in \mathcal{T} : \lambda_t \neq 0\}$ is a finite subset of \mathcal{T} .

• The nonnegative cone of $\mathbb{R}^{|\mathcal{T}|}$ is denoted by:

$$\mathbb{R}^{|\mathcal{T}|}_+ = \left\{ \lambda = (\lambda_t)_{t \in \mathcal{T}} \in \mathbb{R}^{|\mathcal{T}|} : \lambda_t \ge 0, t \in \mathcal{T}
ight\}.$$

• For $g_t, t \in T$

$$\sum_{t \in T} \lambda_t g_t = \begin{cases} \sum_{t \in T(\lambda)} \lambda_t g_t & \text{if } T(\lambda) \neq \emptyset \\ 0 & \text{if } T(\lambda) = \emptyset \end{cases}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition (solution concepts of the problem (SIMOP)) Let $\varepsilon := (\epsilon_1, \dots, \epsilon_m) \in \mathbb{R}^m_+$. A point $\bar{x} \in F$ is said to be

(i) an ε -efficient solution to the problem (SIMOP) iff there is no $x \in F$ such that

$$f_i(x) + \epsilon_i \leq f_i(\bar{x}), i = 1, \ldots, m,$$

with at least one strict inequality;

(ii) a quasi ε -efficient solution to the problem (SIMOP) iff there is no $x \in F$ such that

$$f_i(x) + \epsilon_i ||x - \bar{x}|| \leq f_i(\bar{x}), i = 1, \ldots, m,$$

with at least one strict inequality;

(iii) a weakly quasi ε -efficient solution to the problem (SIMOP) iff there is no $x \in F$ such that

$$f_i(x) + \epsilon_i ||x - \bar{x}|| < f_i(\bar{x}), i = 1, \ldots, m.$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

-

3.1. Fuzzy necessary optimality condition

3.1. Fuzzy necessary optimality condition

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

3

3.1. Fuzzy necessary optimality condition

Reformulation

For fixed x̄ ∈ C and (ε₁,..., ε_m) ∈ ℝ^m₊ \ {0}, we define a real-valued function ψ on C as follows:

$$\psi(x) := \sup_{i=1,...,m,t\in T} \left\{ f_i(x) - f_i(\bar{x}) + \epsilon_i, g_t(x) \right\}, \quad x \in C.$$
 (3.3)

• For simplicity, denote by $\widehat{T} := \{1, \ldots, m\} \cup T$ satisfying $\{1, \ldots, m\} \cap T = \emptyset$, and

$$\hat{g}_t(x) := \begin{cases} f_t(x) - f_t(\bar{x}) + \epsilon_t, & \text{if } t \in \{1, \dots, m\};\\ g_t(x), & \text{if } t \in T. \end{cases}$$
(3.4)

・ 同 ト ・ 三 ト ・ 三 ト

3.1. Fuzzy necessary optimality condition

Rewrite (3.3) as

$$\psi(x) := \sup\left\{\hat{g}_t(x) : t \in \widehat{T}\right\}, \quad x \in C.$$
(3.5)

-

• Define the set of α -active indices at y by

$$\widehat{T}_{\alpha}(y) := \left\{ t \in \widehat{T} : \widehat{g}_t(y) \ge \psi(y) - \alpha \right\}, \quad \alpha \ge 0$$

with $\widehat{T}(y) := \widehat{T}_0(y)$ and clearly that $\widehat{T}_{\alpha}(y) \neq \varnothing$ for $\alpha > 0$.

Lemma (compare [3, Theorem 8.30 (ii)])

Given \hat{g}_t as in (3.4) and consider the supremum function ψ as (3.3). Then there exist

1.
$$\tau_i \ge 0, i \in M(y) := \{i \in \{1, ..., m\} : \psi(y) = f_i(y) - f_i(\bar{x}) + \epsilon_i\}$$

and

2.
$$\lambda_t \ge 0, t \in T(y) := \{t \in T : \psi(y) = g_t(y)\}$$
 satisfying
 $\sum_{i \in M(y)} \tau_i + \sum_{t \in T(y)} \lambda_t = 1$

such that

$$\partial \psi(y) \subset \sum_{i \in M(y)} \tau_i \partial f_i(y) + \sum_{i \in T(y)} \lambda_t \partial g_t(y).$$
 (3.6)

 1. SIMOP
 2. Basic Tools
 3. Optimality conditions for (SIMOP)
 4. Conclusions

 000
 000000
 000000
 000

 000000
 000000
 000

3.1. Fuzzy necessary optimality condition

Theorem (Jiao/K. — Fuzzy necessary optimality condition) Let \bar{x} be a weak ε -efficient solution to the problem (SIMOP). For any v > 0 small enough, there exist $x_v \in C$ and $\tau_i \ge 0, i \in M(x_v)$ and $\lambda_t \ge 0, t \in T(x_v)$ satisfying $\sum_{i \in M(x_v)} \tau_i + \sum_{t \in T(x_v)} \lambda_t = 1$, such that $||x_v - \bar{x}|| \le v$ and

$$0 \in \sum_{i \in M(x_{\nu})} \tau_i \partial f_i(x_{\nu}) + \sum_{i \in T(x_{\nu})} \lambda_t \partial g_t(x_{\nu}) + N_C(x_{\nu}) + \frac{\max_{i=1,\dots,m} \{\epsilon_i\}}{\nu} \mathbb{B}, \quad (3.7)$$

where $M(x_{v}) := \{i \in \{1, ..., m\} : \psi(x_{v}) = f_{i}(x_{v}) - f_{i}(\bar{x}) + \epsilon_{i}\}$ and $T(x_{v}) := \{t \in T : \psi(x_{v}) = g_{t}(x_{v})\}.$

Proof: by Ekeland Variational Principle!

- 周 ト - ヨ ト - ヨ ト

3.2. Optimality conditions for (SIMOP)

3.2. Optimality conditions for (SIMOP)

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

< 日 > < 同 > < 回 > < 回 > < 回 > <

A key finding [4]: the solution relationship between problem (SIMOP) and the following standard multi-objective optimization problem:

$$\operatorname{Min}_{\mathbb{R}^m_+}\{\varphi(x) \mid x \in F\},$$
 (MOP)

where

$$\circ \varphi(x) = f(x) + \varepsilon ||x - \bar{x}||$$

$$\circ \varepsilon ||x - \bar{x}|| := (\epsilon_1 ||x - \bar{x}||, \dots, \epsilon_m ||x - \bar{x}||)$$

• the feasible set F is same as (1.1).

⁴Liguo Jiao and **Do Sang Kim**^{*}, Weakly quasi ϵ -efficiency for semi-infinite multi-objective optimization problems with locally Lipschitzian data. *Applied Analysis and Optimization*, **4** (2020), no. 1, 65–78.

・ 同 ト ・ ヨ ト ・ ヨ ト

3.2. Optimality conditions for (SIMOP)

Proposition (Jiao/K. — solution relationship)

If $\bar{x} \in F$ is a weakly quasi ε -efficient solution to the problem (SIMOP), then it is a weakly efficient solution to the problem (MOP).

The proof is just by definition! This result is easy to understand, but also pretty powerful!

The set of active constraint multipliers at $\bar{x} \in C$:

$$\mathcal{A}(\bar{x}) := \left\{ \lambda \in \mathbb{R}_{+}^{|\mathcal{T}|} \mid \lambda_t g_t(\bar{x}) = 0 \text{ for all } t \in \mathcal{T} \right\}$$
(3.1)

Definition (LCQ)

Let $\bar{x} \in F$. We say that the following limiting constraint qualification (LCQ) is satisfied at \bar{x} iff

$$N_F(\bar{x}) \subseteq \bigcup_{\lambda \in A(\bar{x})} \left[\sum_{t \in T} \lambda_t \partial g_t(\bar{x}) \right] + N_C(\bar{x}).$$

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

・ 同 ト ・ 三 ト ・ 三 ト

Theorem (Jiao/K. — exact necessity) Let (LCQ) be satisfied at $\bar{x} \in F$. If \bar{x} is a weakly quasi ε -efficient solution to the problem (SIMOP), then there exist $\tau := (\tau_1, \ldots, \tau_m) \in \mathbb{R}^m_+$ with $\tau^T e = 1$ and $\lambda \in A(\bar{x})$ defined in (3.1) such that

$$0 \in \sum_{i=1}^{m} \tau_i \partial f_i(\bar{x}) + \sum_{t \in T} \lambda_t \partial g_t(\bar{x}) + N_C(\bar{x}) + \sum_{i=1}^{m} \tau_i \epsilon_i \mathbb{B}$$
(3.2)

The proof is mainly based on

- extreme principle variational counterpart of the separation theorem in nonconvex settings,
- variational analysis and generalized differentiation (like Fermat theorem, sum rule etc).

3.2. Optimality conditions for (SIMOP)

1. SIMOP

Example (the importance of (LCQ))

• Consider the problem (SIMOP) with $C = \mathbb{R}$, and let $f : \mathbb{R} \to \mathbb{R}^2$ be defined by $f_1(x) = f_2(x) := x$, and let $g_t : \mathbb{R} \to \mathbb{R}$ be given by $g_t(x) := tx^4$ for $x \in \mathbb{R}$ and for $t \in T := [1, 2]$.

• Let
$$\varepsilon = (\epsilon_1, \epsilon_2) = (\frac{1}{2}, \frac{1}{2})$$
 be given.

- Clearly, the feasible set $F = \{0\}$ and thus, $\bar{x} := 0$ is the unique efficient solution [thus a quasi ε -efficient solution] of this problem.
- Since $\partial g_t(\bar{x}) = 2t\bar{x} = 0$ at $\bar{x} = 0$ for all $t \in T$,

$$\bigcup_{\lambda \in \mathcal{A}(\bar{x})} \left[\sum_{t \in T} \lambda_t \partial g_t(\bar{x}) \right] + N_C(\bar{x}) = \{\mathbf{0}\}.$$

• On the other hand, $N_F(\bar{x}) = \mathbb{R}$. Therefore, the (LCQ) fails to hold at \bar{x} , and the above theorem does not hold.

Definition (generalized convexity)

Let $f := (f_1, \ldots, f_m)$ and $g_T := (g_t)_{t \in T}$. We say that (f, g_T) is generalized convex on C at $\bar{x} \in C$ iff, for any $x \in C, \xi_i \in \partial f_i(\bar{x}), i = 1, \ldots, m$, and $\eta_t \in \partial g_t(\bar{x}), t \in T$, there exists $\omega \in N_C(\bar{x})^\circ$ satisfying

$$\begin{aligned} \langle \xi_i, \omega \rangle &\leq f_i(x) - f_i(\bar{x}), \quad i = 1, \dots, m, \\ \langle \eta_t, \omega \rangle &\leq g_t(x) - g_t(\bar{x}), \quad t \in T, \end{aligned}$$

and

$$\langle b, \omega \rangle \leq \|x - \bar{x}\|, \quad \forall b \in \mathbb{B}.$$

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

< 回 > < 回 > < 回 >

Definition (strictly generalized convexity)

Let $f := (f_1, \ldots, f_m)$ and $g_T := (g_t)_{t \in T}$. We say that (f, g_T) is strictly generalized convex on C at $\bar{x} \in C$ iff, for any $x \in C, \xi_i \in \partial f_i(\bar{x}), i = 1, \ldots, m$, and $\eta_t \in \partial g_t(\bar{x}), t \in T$, there exists $\omega \in N_C(\bar{x})^\circ$ satisfying

$$\begin{aligned} \langle \xi_i, \omega \rangle &< f_i(x) - f_i(\bar{x}), \quad i = 1, \dots, m, \\ \langle \eta_t, \omega \rangle &\leq g_t(x) - g_t(\bar{x}), \quad t \in T, \end{aligned}$$

and

$$\langle b, \omega \rangle \leq \|x - \bar{x}\|, \quad \forall b \in \mathbb{B}.$$

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

< 回 > < 回 > < 回 >

1. SIMOP 000

・ 同 ト ・ 三 ト ・ 三 ト

3.2. Optimality conditions for (SIMOP)

Theorem (Jiao/K. — sufficiency)

Let $\bar{x} \in F$ satisfy (3.2).

- (i) If (f, g_T) is generalized convex on C at \bar{x} , then \bar{x} is a weakly quasi ε efficient solution to problem (SIMOP).
- (ii) If (f, g_T) is strictly generalized convex on C at \bar{x} , then \bar{x} is a quasi ε -efficient solution to problem (SIMOP).

Example (the importance of generalized convexity)

- Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3$, let $g_t : \mathbb{R} \to \mathbb{R}$ be given by $g_t(x) := tx^2, x \in \mathbb{R}, t \in T := [-2, -1]$, and let $C = \mathbb{R}$.
- Observe that the feasible set $F = \mathbb{R}$.
- Take $\bar{x} = 0 \in F$, clearly $\bar{x} = 0$ satisfies condition (3.2) in the above theorem.
- However, $\bar{x} = 0$ is not a quasi ϵ -solution to the problem (SIMOP) with m = 1.
- The reason is that the generalized convexity of (f, g_T) on C at \bar{x} was not satisfied.

・ コ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

-

1. SIMOP 000	2. Basic Tools 00000000 0	3. Optimality conditions for (SIMOP)	4. Conclusions
3.3 E-Wolfe type	duality		

3.3. ε -Wolfe type duality

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

A D > A B > A B > A B >

3.3. ε -Wolfe type duality

• For
$$y \in \mathbb{R}^n, \tau := (\tau_1, \dots, \tau_m) \in \mathbb{R}^m_+$$
 with $\tau^T e = 1$ and $\lambda \in \mathbb{R}^{|T|}_+$, here $e := (1, \dots, 1) \in \mathbb{R}^m$, put
 $\mathcal{L}(y, \tau, \lambda) := f(y) + \sum_{t \in T} \lambda_t g_t(y) e.$

• Consider the Wolfe (in approximate form) dual problem of the problem (SIMOP) as follows:

$$\operatorname{Max}_{\mathbb{R}^m_+} \left\{ \mathcal{L}(y, \tau, \lambda) \mid (y, \tau, \lambda) \in F_W \right\},$$
 (D_W)

ヘロマ 人間マ ヘヨマ ヘロマ

where the feasible set F_W is given by

$$\begin{split} F_W &:= \{ (y, \tau, \lambda) \in \mathcal{C} \times (\mathbb{R}^m_+ \setminus \{0\}) \times \mathbb{R}^{|\mathcal{T}|}_+ \mid 0 \in \sum_{i=1}^m \tau_i \partial f_i(\bar{x}) + \sum_{t \in \mathcal{T}} \lambda_t \partial g_t(\bar{x}) \\ &+ \mathcal{N}_{\mathcal{C}}(\bar{x}) + \sum_{i=1}^m \tau_i \epsilon_i \mathbb{B}, \ \sum_{i=1}^m \tau_i = 1 \}. \end{split}$$

Definition (solution for dual problem)

Let $\mathcal{L} := (\mathcal{L}_1, \ldots, \mathcal{L}_m)$, and let $\varepsilon := (\epsilon_1, \ldots, \epsilon_m) \in \mathbb{R}^m_+ \setminus \{0\}$.

1. We say $(\bar{y}, \bar{\tau}, \bar{\lambda}) \in F_W$ is a quasi ε -efficient solution to problem (D_W) iff there is no $(y, \tau, \lambda) \in F_W$ such that

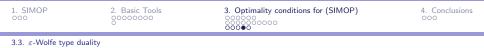
$$\mathcal{L}_i(y,\tau,\lambda) \geq \mathcal{L}_i(\bar{y},\bar{\tau},\bar{\lambda}) + \epsilon_i \|\bar{y}-y\|, i=1,\ldots,m,$$

with at least one strict inequality.

2. We say $(\bar{y}, \bar{\tau}, \bar{\lambda}) \in F_W$ is a weakly quasi ε -efficient solution to problem (D_W) iff there is no $(y, \tau, \lambda) \in F_W$ such that

$$\mathcal{L}_i(y,\tau,\lambda) > \mathcal{L}_i(\bar{y},\bar{\tau},\bar{\lambda}) + \epsilon_i \|\bar{y}-y\|, i=1,\ldots,m.$$

A (10) × (10)



In what follows, we use the following notation for convenience. $u \prec v \Leftrightarrow u - v \in -\operatorname{int} \mathbb{R}^m_+, \quad u \not\prec v$ is the negation of $u \prec v$; $u \preceq v \Leftrightarrow u - v \in -\mathbb{R}^m_+ \setminus \{0\}, \quad u \not\preceq v$ is the negation of $u \preceq v$. Theorem (ε -Weak Duality) Let $x \in F$ and let $(y, \tau, \lambda) \in F_W$ (i) If (f, g_T) is generalized convex on C at y, then

$$f(x) \not\prec \mathcal{L}(y, \tau, \lambda) - \varepsilon ||x - y||.$$

(ii) If (f, g_T) is strictly generalized convex on C at y, the

$$f(x) \not\preceq \mathcal{L}(y, \tau, \lambda) - \varepsilon ||x - y||.$$

< 同 > < 三 > < 三 > .

3.3. ε -Wolfe type duality

Theorem (ε -Strong Duality)

Let \bar{x} be a weakly quasi ε -efficient solution to the primal problem (SIMOP) such that the (LCQ) is satisfied at this point. Then there exists $(\bar{\tau}, \bar{\lambda}) \in \mathbb{R}^m_+ \times \mathbb{R}^{|\mathcal{T}|}_+$ such that $(\bar{x}, \bar{\tau}, \bar{\lambda}) \in F_W$ and $f(\bar{x}) = \mathcal{L}(\bar{x}, \bar{\tau}, \bar{\lambda})$. If in addition,

- (i) (f, g_T) is generalized convex on C at any y ∈ C, then
 (x̄, τ̄, λ̄) is a weakly quasi ε-efficient solution to problem
 (D_W);
- (ii) (f, g_T) is strictly generalized convex on C at any $y \in C$, then $(\bar{x}, \bar{\tau}, \bar{\lambda})$ is a quasi ε -efficient solution to problem (D_W) .

- 御下 - 三下 - 三下

4. Conclusions

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU

・ロト ・四ト ・ヨト ・ヨト

э

Conclusions:

- Working under the framework of vector optimization;
- Invoking locally Lipschitz data to this framework:
 - Basic Tools: variational analysis and generalized differentiation.
 - Main Tool: extreme principle variational counterpart of the separation theorem in nonconvex settings.
 - Focus on: optimality conditions (fuzzy and exact forms) / duality for approximate solutions.

Main Reference:

 Liguo Jiao and Do Sang Kim*, Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems. In Anurag Jayswal and Tadeusz Antczak (editors), Continuous Optimization and Variational Inequalities, pages 39–53. CRC Press Taylor & Francis Group, 2022. [invited paper]

コト イポト イラト イラト

* Liguo Jiao and Do Sang Kim^{*}, Weakly quasi ε-efficiency for semi-infinite multi-objective optimization problems with locally Lipschitzian data. Applied Analysis and Optimization, 4 (2020), no. 1, 65–78. [invited paper]

Thank you for your attention!

Optimality conditions for approximate solutions of nonsmooth semi-infinite vector optimization problems Do Sang Kim, PKNU