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Once upon a time.......
My undergraduate thesis was in computational optimization

Advised by Professor Fei Pusheng (trained in Hamburg
University, Germany) at Wuhan University, China.

4 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Optimization was NOT a popular subject .....
Most students were studying finite element method,
operator-splitting method, and numerical ODEs (stiff ODEs,
A-stability, Runge-Kutta scheme).....

My path drifts to dynamical systems, especially stochastic
dynamical systems.

Now, Convex Analysis and Computational Optimization are at
the heart of the current AI revolution......

My presentations at Dalat:
The most probable transition pathway in Transition Dynamics is
an optimization problem!

So my path reconnects to my old path in Dalat.....

...... We all will live happily ever after Dalat conference!
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Lecture 1: Introduction to Stochastic Dynamics

What Are Stochastic Dynamical Systems?
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Lecture 1:
Introduction to Stochastic Dynamical Systems

Recall:
Deterministic Dynamical Systems

ẋ = f (x)

Examples:
Newton’s sceond law
Hodgkin-Huxley system
Michaelis–Menten kinetics
SIR Model for Spread of Disease
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What to Do with Dynamical Systems?

Recall: Solving Algebraic Equations —
New ideas and new math branches —
Complex numbers, algebraic geometry, Fermat’s last theorem,
Newton’s method, optimization....

Structures and properties of “solutions"!

Solving Differential Equations —
New ideas and new math branches —
Qualitative theory, geometric methods, topological indexes,
invariant sets and chaos, time-discretization/Poincare map

Structures and properties of “trajectories"!
"Dynamical Systems": Prediction
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What are Stochastic Dynamical Systems?

Stochastic Differential Equations:

ẋ = f (x ,noise)

Examples:

Dynamical systems under noisy fuctuations!
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Stochastic Dynamical Systems: Pre-History

• Statistical mechanics (Maxwell, Boltzmann, density,
distribution, ergodicity )

• Math theory of Brownian motion
Einstein 1905
Smoluchowski 1906
Wiener 1920s
Lévy 1930s

• Langevin Equation 1908

• Fokker-Planck equation 1914 & 1917

• Kolmogrov equations for stochastic processes, 1930s
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Stochastic Dynamical Systems: History

1940-60s: Stochastic calculus
Itô, Doeblin, Gikhman-Skorohod
1970s: Stochastic differential equations (SDEs)
Ikeda-Watanabe, L. Arnold, Friedman

1976: Klaus Hasselmann (Nobel in Physics 2021)
Climate system: Stochastic slow-fast dynamics

1980s: Stochastic flows, cocycles
Elworthy, Baxendale, Bismut, Ikeda, Kunita, Xue-Mei Li,...

1980s—: Non-equilibrium statistic mechanics
1980s: Nelson stochastic mechanics
Recent advances: Jean-Claude Zambrini & Qiao Huang 2022
1985–: Oksendal - Stochastic Differential Equations

1990s: Dynamical systems approaches for SDEs
L. Arnold and Bremen School
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Statistical features of noisy fluctuations:

Stochastic Differential Equations:

ẋ = f (x ,noise)

Noise: A special stochastic process
Heavy tail or light tail probability densities

Non-Gaussian distribution or Gaussian distribution

Question:

What does a stochastic diffential equation look like?
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How to take noise into account in math modeling?

How to describe noise?

• Math theory of Brownian motion
Einstein 1905
Smoluchowski 1906
Wiener 1923
Lévy 1937

Noisy process ξt(ω):
Independent increments & stationary increments

(Note: We deal with increments everyday in math and science!)

What could be a probability distribution for the "random
increments"?
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Central Limit Theorem:
Independent measurements and then “averaging"

X1,X2, · · · ,Xn are independent, identically distributed (iid)
random variables (i.e., ‘measurements’)

Central Limit Theorem
A stable random variable X comes from “averaging the
measurements": limn→∞

X1+···+Xn−bn
an

= X in distribution for
some constants an,bn (an ̸= 0)

Notation: X ∼ Sα, 0 < α ≤ 2

α−stable random variable
α: Non-Gaussianity index
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A special case: α = 2

Well-known normal random variable emerges when α = 2
EXi = µ, Var(Xi) = σ2

Central limit theorem: A normal random variable comes from
“averaging the measurements"
limn→∞

X1+···+Xn−nµ
σ
√

n = X ∼ N (0,1) in distribution Namely,

limn→∞ P(X1+···+Xn−nµ
σ
√

n ≤ x) = 1√
2π

∫ x
−∞ e−x2/2dx
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Gaussian vs. Non-Gaussian random variables

Gaussian: Normal random variable X ∼ N (0,1)
Probability density function f (x) = 1√

2π
e−x2/2

P(X ≤ x) =
∫ x
−∞

1√
2π

e−x2/2 dx

Non-Gaussian: α−stable random variable X ∼ Sα, 0 < α < 2
Probability density function fα(x)

P(X ≤ x) =
∫ x
−∞ fα(x) dx
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Prob density function for a Gaussian random variable

X ∼ N (0,1)
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Figure: “Bell shape": Exponential decay, light tail
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Prob density function for a non-Gaussian, α−stable random
variable

X ∼ Sα
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Figure: Polynomial decay, heavy tail
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Lévy Motion Lα
t

Definition: Lévy motion Lα
t with 0 < α < 2:

(1) Lα
0 = 0, a.s.

(2) Stationary increments Lα
t − Lα

s ∼ Sα(|t − s|
1
α ,0,0)

(3) Lα
t has independent increments

Note: Paths are stochastically continuous (i.e., right
continuous with left limit; countable jumps): Lα

t → Lα
s in

probability as t → s
Jump measure: να(dy) = Cα

dy
|y |1+α

Lévy-Khintchine Theorem

A special case α = 2: Brownian motion Bt

D. Applebaum: Lévy Processes and Stochastic Calculus
J. Duan: An Intro to Stochastic Dynamics
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A special case: Brownian motion Bt

Independent increments: Bt2 − Bt1 and Bt3 − Bt2
independent
Stationary increments with Bt − Bs ∼ N (0, t − s)
Continuous sample paths, but nowhere differentiable

I. Karatzas and S. E. Shreve:
Brownian Motion and Stochastic Calculus
J.-F. Le Gall:
Brownian Motion, Martingales, and Stochastic Calculus
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A large class of Stochastic Differential Equations (SDEs)

Lévy-Itô Decomposition Theorem:
‘A stochastic process with independent and stationary
increments is the sum of a Brownian motion Bt and a Lévy
motion Lt ’

White noise:
‘Derivative’ of a stochastic process with independent and
stationary increments

dXt = f (Xt)dt + c dBt + σ dLt

‘General’ form of stochastic governing laws
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Recall:

General form of Newton’s second law:
ẍ = F (x)

General form of dynamical systems/governing laws:
ẋ = f (x)
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Goals of Random Dynamical Systems

Subjects: Structures and Properties of “trajectories or orbits"

Methods: Geometric, analytical, probabilistic or computational

Phenomena:
Transition, transport, diffusion, critical dynamics, control,
peculiar

Applications:
Microscopic mechanisms
Unresolved scales
Random algorithms (stochastic gradient descent)
Open quantum dynamics
Stochastic biodynamics
Climate dynamics
Stochastic Dynamics+Data Science
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Stochastic Dynamical Systems: Some current activities

SDEs and SPDEs with Lévy Noise
Gaussian vs Non-Gaussian Noise
Local vs Non-local Generators/Partial Diff Eqns
Markov vs Non-Markov Approaches
Hamiltonian vs Dissipative Dynamics

Interactions with:
Non-equilibrium statistical mechanics
Open quantum dynamics
Geophysical systems
Biophysical dynamics
Interface with:
Data science
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Lecture 2:
Transition Phenomena

What Are Transition Phenomena ?
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Motivation: Climate transitions in Greenland Ice-Core data

Dansgaard-Oeschger events: Abrupt shifts in temperature

δ18O record between 10000 and 90,000 years before present.
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Measured temperature for the past 100000 years

Niels Bohr Institute: Ditlevsen 1999

Metastable patterns & Transitions between patterns
Stochastic differential equation model:
ẋ(t) = vector field + Lévy noise

28 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Motivation: Transcription in gene expression

Gene expression = Transcription + Translation
Gene (DNA segment) → mRNA → Protein
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Transcription

Transcription: Gene → mRNA

Transcription factor:
A protein activating or repressing transcription
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Measurement data: Concentration of a transcription factor

Transcription factor (‘a protein’):
High concentration means active transcription
So its concentration evolution matters

Absorbance or Fluorescence intensity:
Correspond to concentration of a transcription factor

31 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Data: Evolution of concentration of a transcription factor

Stefan et al.: PLOS Compu. Biology, 2015

Metastable patterns & Transitions between patterns
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Noisy gene expression: From experts in domain science

Raser-O’Shea: Science, 2010
Noise in Gene Expression: Origins, Consequences,
and Control
Sources of Randomness: fluctuating biochemical
reactions, variation in cell division, random mutation

Elowitz: Nature 2011, Science 2007
Stochastic differential equations for evolution of
concentration of transcription factors
Differential equation model: ẋ(t) = · · ·
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What are transition phenomena?

State transitions from one ‘regime’ to another regime:
Climate change: Temperature shifts between metastable
states

Transitions in gene regulation: Transcription is a
transition —- from low concentration to high concentration
in proteins

Many others—
Contaminant transport to reach a specific region
Tumor cell density decreases zero (cancer-free)
Abrupt changes in physics and chemistry
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No transition between stable equilibrium states
in deterministic dynamical systems

A dynamical system:
dx
dt

= f (x)

Dynamical patterns: Stable or unstable equilibrium points, ......

J. Guckenheimer and P. J. Holmes
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields., 1983.
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Transition in stochastic dynamical systems?

Mechanism: Interaction between nonlinearity & uncertainty

dXt

dt
= f (Xt) + Noise

Metastable stable states: Stable equilibrium states of ẋ = f (x)

Trajectories may ‘connect’ metastable states.
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Mean exit time of solution orbit from a domain

dXt = f (Xt−)dt + σ(Xt−)dBt + dLt , X0 = x ,

where Bt is a Brownian motion, Lt is a Lévy motion with
generating triplet (0,0, ν).
Mean exit time from a domain D:

x

D
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First exit time τx of a solution path (i.e., a ‘particle’) starting at x
from a bounded domain D as

τx(ω) ≜ inf{t ≥ 0,Xt(ω, x) /∈ D}.

The mean exit time is then denoted by

u(x) = Exτx(ω),

for x ∈ D.
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Theorem
Mean exit time u(x), for a solution path starting at x ∈ D,
satisfies the following nonlocal partial differential equation

Au = −1, u|Dc = 0, (1)

where A is the generator

Au = f · ∇u +
1
2

Tr [σσT H(u)] (2)

+

∫
Rn\{0}

[u(x + y)− u(x)− I{∥y∥<1} y · ∇u(x)] ν(dy), (3)

and Dc is the complement of the bounded domain D in Rn.
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Escape probability

Likelihood for a system transition from one regime to another
Contaminant transport: likelihood for contaminant to
reach a specific region

Climate: likelihood for temperature to be within a range

Tumor cell density: likelihood for tumor density to
decrease (becoming cancer-free)

How to quantify escape probability?
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Question:

Can we use the nonlocal operator or related PDE to investigate
stochastic dynamics?

dXt = f (Xt)dt + dLα
t

• Examine quantities that carry dynamical information:

Escape probability
Likelihood of transition between different dynamical regimes!
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Escape probability from a domain D

Consider a SDE

dXt = f (Xt)dt + dLα
t , X0 = x ∈ D

Escape probability p(x) :
Likelihood that a “particle x" first escapes D and lands in U

Figure: Domain D, with a target domain U in Dc
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A surprising connection between escape probability and
harmonic functions!

What is a harmonic function?
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Recall: What is a harmonic function?

It is a solution of the Laplace equation:

∆h(x) = 0

But ∆ is the generator of Brownian motion Bt

So we say:
h(x) is a harmonic function with respect to Brownian motion
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An analogy:

Harmonic function with respect to Lévy motion Lα
t :

(−∆)
α
2 h(x) = 0

where (−∆)
α
2 is the generator of Lα

t

Note: Feedback of Probability Theory to Analysis!
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A further analogy:

Consider a stochastic system

dXt = f (Xt)dt + dLα
t

Generator for solution process Xt :

Aαh(x) = f T (x)∇h(x)− Kα (−∆)
α
2 h(x)

Harmonic function with respect to Xt : Aαh(x) = 0

Nonlocal deterministic partial differential equation
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What is the connection between escape probability &
harmonic functions?
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Escape probability from a domain D

Escape probability p(x) :
Likelihood that a ”particle x" first escapes D and lands in U

Exit time: τDc (x) is the first time for Xt to escape D

Figure: Domain D, with a target domain U in Dc
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Connection: Escape probability & harmonic function

dXt = f (Xt)dt + dLα
t , X0 = x ∈ D

For

φ(x) =
{

1, x ∈ U,
0, x ∈ Dc \ U,

E[φ(XτDc (x))] =

∫
{ω:XτDc ∈U}

φ(XτDc )dP(ω)

+

∫
{ω:XτDc ∈Dc\U}

φ(XτDc )dP(ω)

= P{ω : XτDc ∈ U}
= p(x)

But, left hand side is a harmonic function with respect to Xt
Liao 1989
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Escape probability from a domain D

dXt = f (Xt)dt + dLα
t , X0 = x ∈ D

Escape probability p(x) : Likelihood that a ”particle x" first
escapes D and lands in U

Theorem
Escape probability p is solution of Balayage-Dirichlet problem

Aαp = 0,
p|U = 1,
p|Dc\U = 0,

(4)

where Aα is the generator for Xt .

Qiao, Kan & Duan, 2013
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Einstein theory for Brownian motion

Einstein: 1905
Macroscopic theory for particles following Brownian motion
(liquid is motionless)

dXt

dt
= 0 +

dBt

dt
, X0 = ξ

Xt = ξ + Bt ∼ N (ξ, t) Probability density: p(x , t) = 1√
2πt

e− (x−ξ)2

2t

pt =
1
2

pxx (=
1
2
∆p)

Fokker-Planck eqn

Fokker, 1914; Planck, 1917

L. C. Evans: Introduction to Stochastic Differential Equations
2014

51 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Fokker-Planck equation

For a system described by a scalar stochastic differential
equation with Brownian motion (a Gaussian process),

dXt = b(Xt)dt + dBt , X0 = ξ

b(x) : Vector field (or drift term)
p(x , t): Probability density function for the solution Xt
Fokker-Planck equation contains the usual Laplacian operator
∆,

pt =
1
2
∆p − (b(x)p)x .

Fokker-Planck eqn = Laplace + Liouville

Nonlocal Laplace operator ?
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Nonlocal operators & nonlocal partial differential equations

Main Ideas:

(i) Solution process of a stochastic system is a Markov process

(ii) Markov process → Semigroups

(iii) Generator A for solution process:

Nonlocal operators!
Pseudo-partial differential operators

Partial differential equations
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Generator of a Markov stochastic process Xt : X0 = x

Semigroup: For observable φ

Ptφ(x) ≜ Eφ(Xt)
Pt+s = PtPs

Generator: Derivative of semigroup Pt at time 0

Aφ(x) ≜ d
dt |t=0Ptφ(x)

Generator A carries info about stochastic process Xt
Fokker-Planck equation for probability density evolution:
∂tp(x , t) = A∗p(x , t)

Adjoint operator in L2: A∗
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Example: Generator of Bt

Generator for Brownian motion Xt = x + Bt is Laplacian: 1
2∆

Ef (Xt) =
1√
2πt

∫
f (y) e− (y−x)2

2t dy

Ef (Xt)− f (x)
t

=
1√
2π

∫
z
√

t f ′(x) + 1
2z2tf ′′(x + θz

√
t)

t
e− z2

2 dz

=
1
2

1√
2π

∫
z2f ′′(x + θz

√
t) e− z2

2 dz.

Af (x) =
d
dt

|t=0Ef (Xt) =
1
2

f ′′(x)

A =
1
2
∆
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Example: Generator of Lα
t

Generator for α−stable Lévy motion is:
Nonlocal operator

Aαφ =

∫
R1\{0}

[φ(x + y)− φ(x)] να(dy)

να(dy) = Cα
dy

|y |d+α : Jump measure for Lα
t

Cα,Kα: Constants depending on α

Applebaum 2009
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Fourier analysis for generator of Lα
t

Aαφ =

∫
R1\{0}

[φ(x + y)− φ(x)] να(dy)

F(Aαu(x)) = F
∫
R1\{0}

[φ(x + y)− φ(x)] να(dy)

=
1√
2π

∫
R1

e−ikx
∫
R1\{0}

[φ(x + y)− φ(x)] να(dy) dx

= cα
∫

y

1
|y |1+α

dy · 1√
2π

∫
x

e−ikx [φ(x + y)− φ(x)]dx

= cα
∫

y

1
|y |1+α

[eiky − 1]dy · F(u) = −γα|k |αF(u)

Recall: F(−∆u(x)) = ∥k∥2F(u)(k)
Hence: Generator Aα ∼ −(−∆)

α
2
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Eigenvalues for generator of Lα
t

Aαφ =

∫
R1\{0}

[φ(x + y)− φ(x)] να(dy) ∼ −(−∆)
α
2

Nonlocal Laplace operator:
Looking like an integral operator!
But behaving like a differential operator!

Eigenvalues on D = (−π, π): 0 < α < 2

λn =
(n

2
− (2 − α)

8

)α
+ o(

1
n
).

0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · ·, for n = 1,2, · · · .

Eigenfunctions φn form a complete orthonormal basis in L2(D).

The larger the α value, the stronger the dissipation!
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Generator for solution process Xt

Stochastic Differential Equation (SDE):

dXt = f (Xt)dt + dLα
t

Generator for solution process Xt :

Aαh(x) ≜ f T (x)∇h(x)− Kα (−∆)
α
2 h(x)

Fokker-Planck operator
= Liouville operator + Nonlocal Laplace operator
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Nonlocal Fokker-Planck equation

For a system described by a scalar stochastic differential
equation with α−stable Lévy motion Lα

t (a non-Gaussian
process), α ∈ (0,2)

dXt = b(Xt)dt + dLα
t , X0 = ξ

p(x , t): probability density function for the solution Xt
Nonlocal Fokker-Planck equation contains the nonlocal
Laplacian operator Aα,

pt =
1
2

Aαp − (b(x)p)x

Aαf (x) ≜ −(−∆)α/2f (x) = cα
∫
R1\{0}

f (x + y)− f (x)
|y |1+α

dy , 0 < α < 2,

When the vector field b(·) depends on the distribution of Xt :
The divergence term (bp)x becomes nonlinear!
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Lecture 3:
Variational Methods for the Most Probable Transition Pathways

The Most Probable Transition Pathways
via Onsager-Machlup Least Action Principle

Euler-Lagrange equations
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Transition phenomena in stochastic dynamical systems

A "rare" but dynamically important shift event between two
metastable states

Definition:
A metastable state is an unperturbed equilibrium stable state.

Most probable transition pathway —

A ‘reference trajectory’ from one metastable state to another
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Small tube around the most probable transition pathway

Idea —
Probability estimate for solution paths to stay inside a tube
Onsager-Machlup: 1953
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Onsager-Machlup action functional

Asymptotic probabilistic estimate for solu paths X (t) lying in a
small tube surrounding a ‘reference trajectory z(t)’

Definition
Consider a tube (of sufficiently small diameter δ) surrounding a
reference trajectory z(t). If the probability of the solution paths
Xt lying in this tube is estimated by

P({∥X − z∥ ≤ δ}) ∝ C(δ) exp{−1
2

∫ T

0
OM(ż, z)dt},

then integrand OM(ż, z) is called Onsager-Machulup function.

∝: denotes the equivalence relation for δ small enough.
Max P({∥X − z∥ ≤ δ}) or Min

∫ T
0 OM dt : Most probable

transition pathway
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How to get the most probable transition pathway?

minz
∫ T

0 OM(ż(t), z(t))dt :

Minimizer zm(t): Most probable transition pathway

zm(0) = x0, zm(T ) = x1

Two metastable states: x0, x1
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Most probable transition pathways:
Need to derive Onsager-Machlup action functional

Small tube around the most probable transition path:
Probability estimate for solu paths to stay inside this tube via
Onsager-Machlup action functional

1953: SDEs with (Gaussian) Brownian noise;
Onsager-Machlup, Physical Reviews, 1953
Dürr-Bach, Comm. Math. Phys., 1978

dXt = f (Xt)dt + c dBt

2019: SDEs with (non-Gaussian) Lévy noise

dXt = f (Xt)dt + c dBt + σ dLt

Chao & Duan, Nonlinearity, June 2019
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Onsager-Machlup action functional

Asymptotic probabilistic estimate for solu paths X (t) lying in a
small tube surrounding a ‘reference trajectory z(t)’

Definition
Consider a tube (of sufficiently small diameter δ) surrounding a
reference trajectory z(t). If the probability of the solution paths
Xt lying in this tube is estimated by

P({∥X − z∥ ≤ δ}) ∝ C(δ) exp{−1
2

∫ T

0
OM(ż, z)dt},

then integrand OM(ż, z) is called Onsager-Machulup function.

∝: denotes the equivalence relation for δ small enough Min∫ T
0 OM dt : Most probable transition pathway zm(t)
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Derivation of Onsager-Machlup action functional
One dimensional case

Consider the following scalar stochastic differential equation,
for t ∈ [0,T ]

dXt = f (Xt)dt + c dBt + dLt ,

X0 = x0.
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Onsager-Machlup action functional

Theorem

For a class of stochastic systems in the form of with the jump
measure satisfying

∫
|ξ|<1 ξν(dξ) < ∞, the Onsager-Machlup

function is given, up to an additive constant, by:

OM(ż, z) = (
ż − f (z)

c
)2 + f ′(z) + 2

ż − f (z)
c2

∫
|ξ|<1

ξν(dξ), (5)

where z(t) is a reference trajectory.

Contribution of Lévy noise: Third term
When jump measure is absent: Recover the OM function for
the Gaussian case
Chao & Duan, Nonlinearity, June 2019.
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How to determine the transition time T ?

1. Mean exit time

2. Estimate from observation data

2. Theoretical estimation:
minT minz

∫ T
0 OM(ż(t), z(t))dt

Huang-Chao-Wei-Duan– Estimating the Most Probable
Transition Time for Stochastic Dynamical Systems.
Nonlinearity, 2021, vol. 34, 4543

70 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Most probable path zm(t) via Euler-Lagrange equation

The most probable path zm(t) :
Minimizer for Onsager-Machlup functional

∫ T
0 OM(ż(t), z(t))dt :

Corresponding Euler-Lagrange equation:

d
dt

∂OM(ż, z)
∂ż

=
∂OM(ż, z)

∂z

That is:

z̈m(t) =
c2

2
f ′′(zm) + f ′(zm)f (zm)− f ′(zm)

∫
|ξ|<1

ξ ν(dξ)

with initial and final conditions: zm(0) = x0, zm(T ) = x1.
Shooting method

71 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

Most probable transition pathway: Theoretical results

Theorem
Assume that the solution z of Euler-Lagrange equation is
smooth.

(i) This solution is indeed a local minimizer of OM functional, if
OM(ż, z) is convex in the variable ż.

(ii) This solution is a global minimizer, if OM(ż, z) is convex in
both variables (ż, z).
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Derivation of Onsager-Machlup action functional
High dimensional case

Consider the following stochastic differential equation system,
for t ∈ [0,T ]

dX (t) = f (X (t))dt + BdW (t) + dL(t), t ∈ [0,1],

with initial data X (0) = x0 ∈ Rd , where B is a nondegenerate
d × d matrix.
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Derivation of Onsager-Machlup action functional
High dimensional case

Assumption on the vector field:
Let F be a mapping from Rd to Rd . For each x ∈ Rd , assume
that DF (x) is a symmetric matrix from Rd to Rd . Then, there
exists a smooth function V : Rd → R, such that for all x ∈ Rd ,
DV(x)=F(x).
Explanation:
The dual space of Rd is itself. Also, the tangent bundle and
cotangent bundle are both R2d . So for each x ∈ Rd , F (x) can
be regard as a 1-form. Then it is a closed 1-form due to the
symmetry of DF (x). Thus by the Poincaré lemma, it is an exact
form, i.e. there exists a smooth function V : Rd → R, such that
for all x ∈ Rd , DV (x) = F (x).
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Derivation of Onsager-Machlup action functional
High dimensional case

Theorem
Assume that the diffusion matrix B is nondegenarate such that
B−1f is C2

b in x, φh , and the Lévy jump measure ν satisfies that∫
|x |<1 |x |ν(dx) < ∞. Let g(x) = (B−1)∗(B−1f (x)). If the

gradient ∇xg(x) is symmetric, then the Onsager-Machlup
action functional is

∫ 1
0 L(φh, φ̇h)ds, with Lagrangian

L(φh, φ̇h) =
1
2
|B−1[f (φh(t))− φ̇h(t)− η]|2 + 1

2
Tr[∇x f (φh(s))],

(6)

with η =
∫
|ξ|<1 ξν(dξ).

Jianyu Chen and Jianyu Hu:
Transition pathways for a class of high dimensional stochastic
dynamical systems with Lévy noise. Chaos. 2021. 75 / 83
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Remarks

1. We see that, the quadratic term is the main term, while the
divergence term comes from the Itô correction of Brownian
motion. Moreover, only small jumps contribute to the
Onsager-Machlup action functional and the effect is similar to
adding the mean value of small jumps to the drift.

2. We require the symmetry of the gradient ∇xg(x). We apply
the Poincaré lemma which requires the symmetry condition to
obtain the original function.
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Open problems in deriving Onsager-Machlup action functionals

For SDEs with non-Gaussian noise:

1. Remove the gradient structure for the vector fields

2. Include multiplicative noise
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Example: A stochastic genetic regulatory system

Genetic regulatory system (Smolen et al. Amer. J. Physiol. 1998):

Ẋt =
kf X 2

t

X 2
t + Kd

− kd Xt + Rbas, X0 = x0,

Xt : Concentration of a transcription factor activator (’protein’)
Vector field (’drift’): f (x) = kf X2

t
X2

t +Kd
− kd Xt + Rbas.

Figure: Genetic regulatory model

78 / 83



Lecture 1:, Stochastic Dynamics Lecture 2:, Transition Phenomena Lecture 3:, Transition Pathways Conclusion

0 1 2 3 4 5 6
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 x (nM)

P
o

te
n

ti
a

l 
 U

(x
)

 

 

     Low
concentration

Transition
     High
concentration

x
+

x
u

x
−

Figure: The bistable potential U for the TF-A monomer concentration model.
kf = 6 min−1, Kd = 10, kd = 1 min−1, and Rbas = 0.4 min−1.

The potential function U(x) is given by f (x) = −U ′(x).
Two stable states: x− ≈ 0.62685 nM, x+ ≈ 4.28343 nM;
The unstable state (a saddle point): xu ≈ 1.48971 nM.
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The stochastic genetic regulation system:

Ẋt =
kf X 2

t

X 2
t + Kd

− kdXt + (Rbas + ϵḂt), X0 = x0,

Noise intensity: ϵ Standard Gaussian noise: Bt
Noise sources on basal synthesis rate Rbas:

External noisy environment;
Inherent uncertainty: such as the biochemical reactions,
the concentrations of other proteins, and gene mutations.

Raj & Oudenaarden: Ann. Rev. Biophys. 2009.
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The most probable pathways: Brownian noise
Noise intensity: ϵ = 0.25, 0.5, 0.75, 1

Euler-Lagrange eqn:

z̈m(t) =
ϵ2

2
f ′′(zm) + f ′(zm)f (zm), t ∈ (0,T ),

zm(0) = x− ≈ 0.62685 , zm(T ) = x+ ≈ 4.28343.
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The most probable pathways: Computing

Low dimensions: Shooting method

High dimensions:
Yang Li, Jinqiao Duan and Xianbin Liu:
A Machine Learning Framework for Computing the Most
Probable Paths of Stochastic Dynamical Systems
Phys. Review E. 2021.

Jianyu Chen and Jianyu Hu:
Transition pathways for a class of high dimensional stochastic
dynamical systems with Lévy noise
Chaos. 2021.

Data-driven method to learn the most probable transition
pathway and stochastic differential equation X Chen, J Duan, J
Hu, D Li Physica D: Nonlinear Phenomena 443, 133559, 2023

An optimal control method to compute the most likely transition
path for stochastic dynamical systems with jumps. W Wei, T
Gao, X Chen, J Duan. Chaos: An Interdisciplinary Journal of
Nonlinear Science 32 (5), 2022

An Onsager–Machlup approach to the most probable transition
pathway for a genetic regulatory network. J Hu, X Chen, J
Duan Chaos: An Interdisciplinary Journal of Nonlinear Science
32 (4), 2022

Deep Reinforcement Learning in Finite-Horizon to Explore the
Most Probable Transition Pathway. J Guo, T Gao, P Zhang, J
Duan. arXiv:2304.12994, 2023

Detecting the Most Probable High Dimensional Transition
Pathway Based on Optimal Control Theory. J Chen, T Gao, Y
Li, J Duan, arXiv:2303.00385, 2023
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Conclusion

Introducing Stochastic Dynamical Systems

Examining Transition Phenomena via Onsager-Machlup Action
Functionals

Analyzing the Most Probable Transition Pathways

83 / 83


	Lecture 1:  Stochastic Dynamics
	Lecture 2:  Transition Phenomena
	Mean Exit Time
	Escape probability 
	Fokker-Planck equations 

	Lecture 3:  Transition Pathways
	Conclusion

