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Introduction

Polynomial system F : R" — R"

map fixed point solves F(x) — x =0

dyn sys fixed point of x = F(x) solves F(x) =0
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Key: compute fixed points by solving polynomial equations
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Numerical Algebraic Geometry

The Numerical Solution

of Systems of Polynomials
Arising in Engineering and Science

Andrew J, Sommese « Charles W, Wampler, Il

Sommese-Wampler (2005)

Daniel |. Bates Andrew |. Sommese
Jonathan D. Hauenstein Charles W. Wampler

Numerically Solving
Polynomial Systems
with Bertini
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Bates-H-Sommese-Wampler (2013)
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Example

Solve

f(x.y) =

Homotopy Continuation

x? 4+ 4xy + 4y —8x — Oy + 8
4x? —12xy +9y° —TIx+ 14y —2 |

=0
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Example Homotopy Continuation

Solve

Too difficult! Solve an easier problem:

g(X-y): __}/2_1

Solutions = {(2,1),(2,—1).(—2.1).(—2.—-1)}
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Example Homotopy Continuation

2 2 _ _ 2 _
f(x.y)[ x“ 4 4xy 4+ 4y° — 8x — Oy + 8 ]0 g(X‘y)_{x 4]0

Ax? —12xy +9y? — Tx + 14y — 2
Deform from simplified (start) system to original (target) system
H(x.t) = (1—t)f(x)+ tg(x) =0

start H(x,1) = g(x) = 0 has known solutions

target H(x.0) = f(x) = 0 is system want to solve

t _ 0 Dynamical systems and Semi-algebraic
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Homotopy Continuation

Paths are defined by H(x, t) = 0: N
—

Hix.t) =0 — Hx.t)=0
dt
L OHdx OH
Ox dt Ot
. dx__(0H\ 7 oH
dt Ox Ot

Davidenko differential equation

» solving polynomial systems = solving initial value problems
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Homotopy Continuation

X(f) correct
predict
fe—— |
0 f 1
| dx OH\ ~ OH , ,
predict Use i (E)x) 5, to estimate x(t + At) given x(t).

correct Use Newton's method applied to H(x,t + At) = 0.
» error control
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Saddle Graphs

|® Minimum ® Saddle point ® Maximum |

Represent landscapes by graphs with |
» vertices: fixed points
» edges: gradient descent paths

Joint work with
» Aravind Baskar (Notre Dame)
» Mark Plecnik (Notre Dame)

A. Baskar, M. Plecnik, and J.D. Hauenstein.
Computing saddle graphs via homotopy continuation for the approximate synthesis of mechanisms. Dynamical systems and Semi-algebraic
Mech. Mach. Theory. 176, 104932, 2022. geometry: interactions with Optimization and

Deep Leaming, Conference 2023



Mechanism Synthesis

Design a mechanism to accomplish specified tasks.

» approximate synthesis: find “best fit" linkage

e Raw data

Quadratic fit

e Design specification

1.25
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v (rad)
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0.25
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Mechanism Synthesis

Function generation using a four-bar linkage:
» Model parameters p = (r, s, t.u, v)

» Output angle W is a function of input angle p
> V= m(u;p)

» Compute four-bar linkage that “best” fits finger motion data

' . 2 - e Raw data 1.25
min (m('u.-, p) — lll) SR
Jl. Jl. ° e Design specification
P : |
'] L]
J
0.75
v (rad)
0.5
0.25
L
P
o e
-1.25 -1 -0.75 -05 -0.25 'S
u (rad)
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Mechanism Synthesis

min Z(m(ﬁj; p) — wj)z

p

Degenerate
global minimum

(0,0) (1,0)
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» [ocal minimum with branch defect

y (unit)

v (unit)

|Four—bar mechanisml
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» Local minimum with legs of quite different lengths : R da 125

- — Quadratic fit

e Design specification

» difficult to package into finger linkage . !
» potential problems with torque required for motion

0.75
TN, v (rad)
0.5
Function desired vs. generated <
Four—bar mechanism e ——— . , 0%
1o . Se .
-125 -1 -075 -05 -025
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Input y (rad)
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Mechanism Synthesis

min Z(m(ﬁj; p) — wj)z

P :
J

Preferred

pivol
. locations '
Mechanica
advantage

Optimization problem does not include all constraints.

» Hard to formulate

Baskar-Plecnik-H.: compute a 1-dim’l view of landscape
» gives designer freedom to find their "best fit"

» apply their own constraints a posteriori

More about the journey rather than the destination
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Mechanism Design

local min
(inferior)

global min
(degenerate)
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Explore along
gradient descent
trajectories

Mechanism Design

local min
(inferior)

global min
(degenerate)
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solve Vf(x) =0

track x = —Vf

Homotopy Continuation

Primary Objective

Motion specification |

Inputpg 27

Y

| Objective function|

Gradient Descent Paths

Y

Auxiliary Considerations

Design Inte

Evaluate graph per
auxiliary metrics

|® Minimum @ Saddle point ® Maximum|

Desirable

Undesirable

)

Organize saddle graph |

>1000

motivated by Morse and
Morse-Smale complexes

All the d-cells
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s Rawdata 1.25

S 25 critical points over C

® Design specification

» 7 real with 3 being local minima

v (rad)

» “best” designs: trajectory leading to degenerate global minima
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Mathematica interface using Bertini as back end solver

#1(0)  ObjectiveBasedlndex BranchDefectlndex  TransmissionAnglelndex PolygonDiagonallndex MaximumLengthlndex Sensitivitylndex

- Function desired vs. generated
Four—bar mechanism —_— — I —
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Mechanism Synthesis
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Mechanism Synthesis

Saddle graph provides pictorial representation of relationship

» |acks proximity context
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Mechanism Synthesis

Saddle graph provides pictorial representation of relationship

» |acks proximity context

Project 1-dim'l curves into R? using UMAP
» Uniform Manifold Approximation and Projection

20 »_W T T T 1 T T L] T T T T T ] T T T l#1] TTTTTTT 1
15F .
: ff#s D :

10_—

ynamical systems and Semi-algebraic

5F / ]
10}
-5 0 S 10 15 eometry: interactions with Optimization and

1 .5+ 1 0.0
‘ Lo | | o 0.5 o A 1 1 1 1 1 1 L 1 1 L 1 1 1 1 1 L L 1 1
00 05 1.0
00 05 10 .
I Deep Leaming, Conference 2023




#(1)

#11(0)

£2(1) #13(3)

#7(1)

#18(1)

mf"\o—‘.*

#8(2)

#24(1)

#27(0)

Mechanism Synthesis
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Mechanism Synthesis

Plot in 3D using objective value to “see” landscape.

3.62 | T | T T | T T | 1 | i |

4.60

354

J3.58
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Common approach in presence of noisy data is to regularize

Regularization

» avoid “overfitting’ of data

e Raw data 1.25
— Quadratic fit
e Design specification
1
0.75
vy (rad)
0.5
0.25
L ]
...
- 1.25 -1 -0.75 -05 -0.25 o
p (rad)

Just right!

Quora

overfitting
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Regularization

Common approach in presence of noisy data is to regularize
» avoid “overfitting’ of data

» avoid ill-conditioning in optimization (full rank Hessian)

min (f(x) + A - R(x))

xeRn

» f(x): original objective function
» R(x): regularization function

» \: regularization parameter

Tikhonov regularization (ridge regression): R(x) = HXH%

Dynamical systems and Semi-algebraic
geometry: interactions with Optimization and
Deep Learning, Conference 2023



Regularization

What does regularization due to the energy landscape?
» Deep linear networks: Mehta-Chen-Tang-H. (2021)

= H n+1 WX = Y2+ N RWy, ... W)

» Known data matrices X and Y

3 r

_2 > X-[l 1]
. . . )(1- s s & ){}(

1.5]

1+

Y=|wv - ]
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Regularization

1
L:EHWHH-WH...MX—Y|\2,;+A-R(W1_...,Wn+1)

No regularization: A =0
» Analytic expressions of critical points (Zhou-Liang, 2017)

» “No bad minima” (every local minimum is a global minimum)

» “Lakes” of minima from overparameterization (flat minima)
> replace (Wi, Ws) by (AW;, WoA™1) for any invertible A

Dynamical systems and Semi-algebraic

geometry: interactions with Optimization and
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Regularization

:—H i1 W WX = Y2+ 1 R(W4

With Tikhonov regularization: R(Wh, ..., W, .1

» flat minima can still exist

1 2 3 1
X‘[123} Y{1—32

) =

23}

14v(a, \)

. a a B > l4a
W= [ v(a,A)  y(a, ) } Wa = W[ a  vy(a,\)

= \/V/391/56 — a2 — A/28

|

Dynamic Iytm and Semi-algebra
ge mtry t WthOptm t
Deep Lea gC f e 2023

and



Regularization
:_” i1 W AX = Y2+ X R(WA. . ... Whi1)

Generalized Tikhonov regularization:

R(WA..... Waa1) = X2, [|B « W12

» Weight matrices B;
» x: Hadamard (entrywise) product

Theorem

All critical points where the matrices W, have all nonzero entries
are isolated and nondegenerate (full rank Hessian) for general
weight matrices using a generalized Tikhonov regularization.

Dynamical systems and Semi-algebraic
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Regularization

Regularization is a double-edged sword:
+ avoid “overfitting” of data

+ avoid ill-conditioning in optimization (full rank Hessian)

— energy landscape becomes more complicated

» topological trivialization as A — 07
» non-global local minimizers can (and do!) appear

Dynamical systems and Semi-algebraic
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n—I—l

Regularization

W1X YH + A R(Wl ..... Wn—i—l)

» homotopy of critical points as A — 0™
» “topological trivialization” as A — 0™

Dynamical systems and Semi-algebraic
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Witness Set

How to represent a positive-dimensional variety on a computer?

» algebraic: basis for defining ideal

» geometric: witness set

A
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Witness Set

How to represent a positive-dimensional variety on a computer?

» algebraic: basis for defining ideal A

» geometric: witness set

Defining ideal: I(A) ={g : g(a) =0 for all a € A}

» Hilbert Basis Theorem (1890): there exists fi,.... f, such that

Dynamical systems and Semi-algebraic
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b

Witness Set

How to represent a positive-dimensional variety on a computer?

» algebraic: basis for defining ideal A

» geometric: witness set

Intersect with complimentary dimensional linear space

A
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b

Witness Set

Intersect with complimentary dimensional linear space

A

L

» geometric: witness set {f, L, W} where

» f is polynomial system where A is component of variety of f

» L is a general linear space with codim £ = dim A
» W = AN L is witness point set with # W = deg A

Dynamical systems and Semi-algebraic
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Witness Set

Witness sets “localize” computations to component.

Some applications of witness sets:

vvvyyvyy

vy

A

compute sample points on A by moving £
monodromy to compute W = AN L given one w €¢ W

membership testing in A

compute images 7(A)
compute intersections AN B

» regeneration

determine arithmetically Cohen-Macaulayness of A
compute all irreducible components of a variety

» numerical irreducible decomposition

Dynamical systems and Semi-algebraic
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Fixed Points

Analyze fixed points of a map using numerical algebraic geometry

X2
Fo---oF(x)=x F(xi,....xa) = X4 5
— X1 — X1X
N-times 1 172
| —X3 + X1X2X4 |

Joint work with
» Cinzia Bisi (University of Ferrara, ltaly)
» Tuyen Trung Truong (University of Oslo, Norway)

_m Dynamical systems and Semi-algebraic
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Fixed Points

X2
Fo---oF(x)=x —X4
—— F(xi,.... X4) = 5
k-times X1 — X1X5
| —X3 1+ X1X2X4 |

Gy ={(x.y1... .. ) | F(x)=wv1.F(y1) = ya2..... F(yn—1) = yn}

> Gyi1 = (Gy x CH) N {(x.y1..... yn:Yn+1) | F(yn) = ynaa )

Fl)

_m Dynamical systems and Semi-algebraic
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Fixed Points

N fixed points on general fiber HIsoF iz (f.)]" N
1 4 4

2 C' (occurring with multiplicity 1) 0

3 10 2.15443469003
4 Dy (multiplicity 1) & Do (multiplicity 2) 0

5) 44 2.13152551327
6 C' (multiplicity 1) AND 12 points 1.51308574942
7 186 2.10967780991
8 | Di (multiplicity 1) & Dy (multiplicity 2) AND 128 points 1.83400808641
9 820 2.10744910267
10 C' (multiplicity 1) AND 1440 points 2.06936094886
11 3634 2.10703309279
12 | D; (multiplicity 1) & Dy (multiplicity 2) AND 6908 points | 2.08903649661

C C Z,: the curve defined by the ideal < z9 — 2229 — 3, 21 + T4, T124 — T2XT3 — C >
1

Dy C Z.: the curve with 2 components defined by the ideals < x9 — :E%:l:g — X3, X1 + Tyq,T1T4 —

Toxrg —c > and < —x9 + .T%JZQ —I3,T1] — T4,T1T4 — T2X3 — C >,

Dy C Z.: the curve with 2 components defined by the ideals < x9,x3, x124 — zox3 — ¢ > and

< T1,%4,T1L4 — T2X3 — C >.

Dynamical systems and Semi-algebraic
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Conclusion

Solve polynomial systems using numerical algebraic geometry:

» analyze landscapes in optimization and machine learning
» saddle graphs connect fixed points via gradient descent paths

e

__L_I_J._L_._J_J J
10
20

» analyze maps

» compute fixed points
BB b- Com U te d n a m i Ca | d e re es Dynamical systems and Semi-algebraic
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