Lectures On Semialgebraic Geometry

Ta Le Loi

Dalat University - 7/2023

Contents

- Lecture 1: Semi Algebraic sets
- Lecture 2: Cell Decomposition Stratification
- Lecture 3: Curve Selection Lemma Łojasiewicz's inequalities
- Lecture 4: O-minimal Structures

REAL ALGEBRAIC GEOMETRY LECTURE 1: SEMI ALGEBRAIC SETS

Tạ Lê Lợi

Dalat University - 7/2023

Contents

- 0. Introduction.
- 1. Definitions Examples.
- 2. Tarski-Seidenberg's Theorem Łojasiewicz's Theorem.
- 3. Cylindrical decomposition theorem.

0. Introduction

Roughly speaking, Algebraic Geometry on a field $\mathbb K$ studies algebraic sets in $\mathbb K^n$ i.e. the sets of the form

$$\{x \in \mathbb{K}^n : P_1(x) = \dots = P_k(x) = 0\},\$$

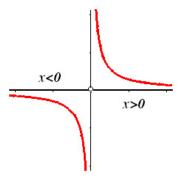
where P_i are polynomials with coefficients in \mathbb{K} .

When $\mathbb{K} = \mathbb{R}$.

- ullet One of the difficulties when studying real algebraic sets is that the field of real numbers ${\mathbb R}$ is not algebraically closed. Therefore the number of real zeros (counted with multiplicity) of a real polynomial can be not equal to its degree, e.g. the number of real zeros of $P(x)=x^2+a$ depends on a<0, a=0, or a>0 (${\mathbb R}$ is an ordered field!).
- Besides, though the class of real algebraic sets is closed under taking finite unions and intersections, but not closed under taking complement.
- Moreover, in general, images of algebraic sets by polynomial functions and their connected components are not algebraic sets.

For example, the equation xy-1=0 defines a hyperbola in \mathbb{R}^2 consisting of the connected components:

$$\{(x,y) \in \mathbb{R}^2 : xy - 1 = 0, x > 0\}, \ \{(x,y) \in \mathbb{R}^2 : xy - 1 = 0, x < 0\}$$



Its image under the projection on Ox coordinate is two intervals:

$${x \in \mathbb{R} : x < 0}, {x \in \mathbb{R} : x > 0}.$$

These sets are given by equations and inequalities, but they can not be given by equations only.

This lecture deals with the class of semi-algebraic sets which are those defined by equalities and inequalities of real polynomials.

- This class is closed under Boolean operators: unions, intersections and taking complements.
- This class has a very interesting property: it is closed under projection (Tarski-Seidenberg's Theorem).
- A semi-algebraic set has only finitely many connected components, and the components are semi-algebraic (Łojasiewicz's Theorem).

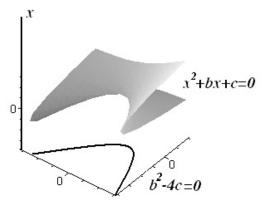
These fundamental properties create great conveniences in studying semi-algebraic sets.

Usually, Real Algebraic Geometry is identified with Semialgebraic Geometry.

Real Algebraic Geometry = Semialgebraic Geometry

Example. Let $f(b,c,x)=x^2+bx+c$ and $\Delta(b,c)=b^2-4c$.

	Algebraic	Geometry	Logic
f = 0	Equation	Algebraic set	Formula
In $\mathbb R$	Condition of \exists sol. x	Projection	$\exists x, f = 0$
$0,1,2 \; sol.$	$\Delta < 0, = 0, > 0$	Semialgebraic set	Formula free of \exists, \forall



1. Definitions - Examples

Definition. The class of semi-algebraic sets in \mathbb{R}^n is the smallest class of subsets of \mathbb{R}^n satisfying the following properties: (SA1) It contains all sets of the form

$$\{x \in \mathbb{R}^n : P(x) > 0\}, P \in \mathbb{R}[X_1, \dots, X_n].$$

(SA2) It is stable under taking finite unions, finite intersections and complements.

A mapping $f:X\to\mathbb{R}^m$ is called a semi-algebraic mapping if its graph is a semi-algebraic set.

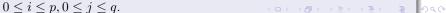
It is equivalent to use the following definition for each semialgebraic set:

Proposition.

A subset of \mathbb{R}^n is semi-algebraic if and only if it can be represented as the form:

$$\bigcup_{i=1}^{p} \bigcap_{j=1}^{q} \{(x_1, \dots, x_n) \in \mathbb{R}^n : P_{ij}(x_1, \dots, x_n) \ s_{ij} \ 0\},\$$

where
$$p, q \in \mathbb{N}$$
, $P_{ij} \in \mathbb{R}[X_1, \cdots, X_n]$ và $s_{ij} \in \{=, >\}$,



Proof. The class of sets of the above form satisfies (SA1) and (SA2), and it is contained in the class of semi-algebraic sets. By the condition of the smallest class the two classes are coincide.

Note. On the real fields

$$P_1 = \dots = P_k = 0 \iff P_1^2 + \dots + P_k^2 = 0.$$

Therefore, all semialgebraic sets in \mathbb{R}^n if and only if it can be represented as a finite union of sets of the form

$${x \in \mathbb{R}^n : P(x) = 0, Q_1(x) > 0, \dots Q_k(x) > 0},$$

where $P, Q_1, \cdots, Q_k \in \mathbb{R}[X_1, \cdots, X_n]$.

Example.

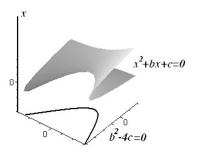
1) The class of real algebraic sets \subsetneq the class of semi-algebraic sets. Moreover, every algebraic subset in \mathbb{R}^n is of the form

$$\{x \in \mathbb{R}^n : P(x) = 0\}$$
, where P is a polynomial.

- 2) Polynomial functions are semi-algebraic.
- 3) A semi-algebraic set in $\mathbb R$ is a finite union of points and open intervals.

4) Let $f(b, c, x) = x^2 + bx + c$.

The set of the values of (b,c) in \mathbb{R}^2 such that f has a real solution is the projection of the set $\{(x,b,c):f(b,c,x)=0\}$ onto the plane (b,c). It is the semi-algebraic set $\{(b,c):b^2-4c\geq 0\}$.



5) The function

$$\xi: \{(b,c): b^2 - 4c > 0\} \to \mathbb{R}, \ \xi(b,c) = \frac{1}{2}(b + \sqrt{b^2 - 4c})$$

is semi-algebraic because its graph is given by:

$$\{(b,c,x): b^2-4c>0, x^2+bx+c=0, x>\frac{b}{2}\}.$$

6) The following sets are not semi-algebraic:

$$\{ (x,y) \in \mathbb{R}^2 : y = [x] \},$$

$$\{ (x,y) \in \mathbb{R}^2 : y = \sin x \},$$

$$\{ (x,y) \in \mathbb{R}^2 : y = e^x \}.$$

Exercise. Prove that:

- 1) $(f_1, \dots, f_m): X \to \mathbb{R}^m$ is semialgebraic if and only if f_i is emialgebraic for all $i \in \{1, \dots, m\}$.
- 2) If $f:X\to\mathbb{R}$ is semialgebraic and $f(x)\neq 0$, for all $x\in X$, then 1/f is semialgebraic.
- 3) If $f:X\to\mathbb{R}$ is semialgebraic and $f\geq 0$, then \sqrt{f} is semialgebraic.
- 4) If $f:X \to \mathbb{R}$ is semialgebraic, then there is a polynomial
- $P(X,Y) \neq 0$, such that P(x,f(x)) = 0, for all $x \in X$.
- 5) The class of constructible sets in \mathbb{C}^n , by definition, is the smallest Boolean algebra of subsets of \mathbb{C}^n which contains all complex algebraic sets.

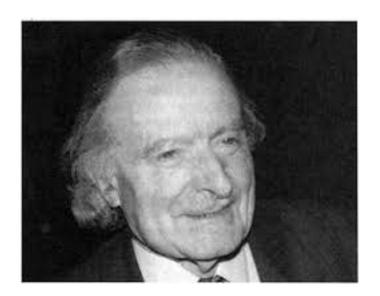
Prove that $X \subset \mathbb{C}^n$ is constructible if and only if $X = \bigcup_{i=1}^p V_i \setminus W_i$, where V_i, W_i are algebraic sets.

Prove that if we identify $\mathbb{C} \equiv \mathbb{R}^2$, then every constructible subset of \mathbb{C}^n is semi-algebraic in \mathbb{R}^{2n} .

2. Tarski-Seidenberg's Theorem - Łojasiewicz's Theorem.

Alfred Tarski (1901-1983)

Stanisław Łojasiewicz (1926-2002)



2. Tarski-Seidenberg's Theorem - Łojasiewicz's Theorem.

Most of the basic properties of semi-algebraic sets are implied from the following two theorems:

Theorem (Tarski-Seidenberg).

Let S be a semi-algebraic subset of $\mathbb{R}^n \times \mathbb{R}^k$. Let $\pi: \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n$ be the natural projection. Then $\pi(S)$ is a semi-algebraic set.

Theorem (Łojasiewicz).

The number of connected components of a semi-algebraic set is finite, and each of the components is also semi-algebraic.

Exercise.

The set of the form $\{(x_1,\cdots,x_n)\in\mathbb{R}^n:P(x_1,\cdots,x_n)>0\}$ is the image via the projection of the algebraic set

$$\{(x_1, \dots, x_n, t) \in \mathbb{R}^{n+1} : t^2 P(x_1, \dots, x_n) = 1\}.$$

From that, we have:

1) Each semialgebraic sets is the image of an algebraic set through a projection.

From the Tarski-Seidenberg theorem, we have:

2) The class of semialgebraic sets in $\mathbb{R}^n, n \in \mathbb{N}$, is the smallest class of subsets that contains all algebraic sets and that is closed under Boolean operators and projections.

Semialgebraic sets and first-order formulas

Definition. A first-order formula $\Phi(x_1, \dots, x_n)$ of n variables with parameters in \mathbb{R} (precisely, a first-order formula of the language of ordered fields with parameters in \mathbb{R}) is a finite combination of

atomic formulas:

$$(P(x_1, \dots, x_n) > 0)$$
, where P is a real polynomial,

joined with each others by logical operators

- ∨ (or), ∧ (and), ¬ (not),
- qualifications \exists (exists), \forall (for all) with respect to variables.

```
Let \Phi(x,y), \Psi(x,y) be formulas with variables x=(x_1,\cdots,x_m) and y=(y_1,\cdots,y_n). When (x,y) take values in X\times Y, the formulas defines the following sets \Phi=\{(x,y)\in X\times Y: \Phi(x,y)\}, \quad \Psi=\{(x,y)\in X\times Y: \Psi(x,y)\}. Then: \Phi(x,y)\vee \Psi(x,y) defines \Phi\cup \Psi, \Phi(x,y)\wedge \Psi(x,y) defines \Phi\cap \Psi, \neg \Phi(x,y) defines X\times Y\setminus \Phi, \exists y\Phi(x,y) defines \pi(\Phi), vói \pi(x,y)=x, \forall y\Phi(x,y)\equiv \neg(\exists y\neg \Phi(x,y)) defines X\setminus \pi(X\times Y\setminus \Phi).
```

Therefore, $X\subset\mathbb{R}^n$ is a semialgebraic set if and only if there is a quantifier-free formula $\Psi(x_1,\cdots,x_n)$ of the form

$$\bigvee_{i=1}^{p} \bigwedge_{j=1}^{q} (P_{ij}(x_1, \dots, x_n) \ s_{ij} \ 0),$$

where
$$p,q \in \mathbb{N}$$
, $P_{ij} \in \mathbb{R}[X_1, \cdots, X_n]$ và $s_{ij} \in \{=, >\}$, $0 \le i \le p, 0 \le j \le q$, such that

$$X = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : \Psi(x_1, \cdots, x_n) \}.$$

The Tarski-Seidenberg theorem has the following logical formulation:

Theorem (Tarski-Seidenberg).

For every first-order formula $\Phi(x_1,\cdots,x_n)$, there exists a quantifier-free formula $\Psi(x_1,\cdots,x_n)$, such that the following formula is always true in \mathbb{R} :

$$\forall x_1, \cdots, x_n (\Phi(x_1, \cdots, x_n) \Leftrightarrow \Psi(x_1, \cdots, x_n)).$$

In particular, the set $\{x=(x_1,\cdots,x_n)\in\mathbb{R}^n:\Phi(x)\}$ is semi-algebraic.

For example, the formula

$$\Phi = (\exists x, x^2 + bx + c = 0) \land (\exists y, y^2 + by + c = 0) \land \neg (x = y)$$

is equivalent to the qualifier-free formula

$$\Psi = (b^2 - 4c > 0).$$

From the definitions and the Tarski-Seidenberg theorem, we get

Proposition (Elementary properties).

- (i) The closure, the interior, and the boundary of a semi-algebraic set are semi-algebraic.
- $\rm (ii)$ Images and inverse images of semi-algebraic sets under semi-algebraic maps are semi-algebraic.
- (iii) Compositions of semi-algebraic maps are semi-algebraic.

Proof.

(i) If A is a semi-algebraic subset of \mathbb{R}^n , then its closure is

$$\overline{A} = \{ x \in \mathbb{R}^n : \forall \epsilon, \epsilon > 0, \exists y (y \in A) \land (\sum_{i=1}^n (x_i - y_i)^2 < \epsilon^2) \},$$

where $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots y_n)$. By the Tarski-Seidenberg theorem, \overline{A} is semi-algebraic.

So int $(A) = \mathbb{R}^n \setminus \overline{\mathbb{R}^n \setminus A}$ and $\operatorname{bd}(A) = \overline{A} \cap \overline{\mathbb{R}^n \setminus A}$ are semi-algebraic.

(ii) Let $f:X\to Y$ be a semi-algebraic function and $A\subset X, B\subset Y$ be semi-algebraic subsets.

Let $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ be the natural projections.

Then
$$f(A) = \pi_Y(f \cap A \times Y)$$
 and $f^{-1}(B) = \pi_X(f \cap X \times B)$.

So they are semi-algebraic.

(iii) Let $f: X \to Y, g: Y \to Z$ be semi-algebraic maps. Then $g \circ f = \pi(f \times Z \cap X \times g)$, where $\pi: X \times Y \times Z \to X \times Z$ defined by $\pi(x,y,z) = (x,z)$. So $g \circ f$ is semi-algebraic.

Exercise. Use Tarski-Seidenberg's Theorem to do the following:

1) Let $n\in\mathbb{N}, k\leq n$, and $i_1,\cdots,i_k\in\{1,\cdots,n\}$. Denote $\Gamma_{i_1\cdots i_k}=$

 $\{(a_0,\cdots,a_n)\in\mathbb{R}^n:a_0+\cdots+a_nT^n\text{ has }k\text{ zeros with mutiplicities }i_1,\cdots,i_k\}.$

Prove that $\Gamma_{i_1\cdots i_k}$ is a semi-algebraic set..

- 2) Let $f:A\to\mathbb{R}$ be a semialgebraic function and $p\in\mathbb{N}$. Prove that the set $C^p(f)=\{x\in A: f \text{ is of class } C^p \text{ at } x\}$ is semialgebraic, and the partial derivatives $\partial f/\partial x_i$ are semialgebraic functions on $C^p(f)$.
- 3) Let $f,g:X\to\mathbb{R}$ be semialgebraic. Prove that
- $|f|, \max(f, g), \min(f, g)$ are semialgebraic.
- 4) Let $f,g:X\to\mathbb{R}$ be semialgebraic. Prove that the functions defined by

$$M(t) = \sup\{f(x): g(x) = t\}, \ m(t) = \inf\{f(x): g(x) = t\}, \ t \in g(X),$$

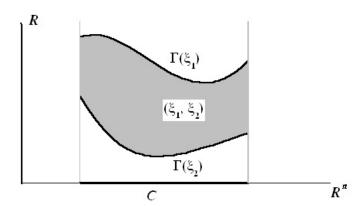
are semialgebraic.

3. Cylindrical decomposition theorem.

Tarski (1931, see [T]) stated and proved T-S Theorem in logic form (the real closed field $\mathbb R$ admits quantifier elimination). Later, Seidenberg (1954, see [S]) proved the theorem by using Sturm's sequences, which proved to be of great interest to other mathematicians. In this lecture, the Tarski-Seidenberg theorem and the Łojasiewicz theorem are proved by Łojasiewicz's method (1964, see [Ł]). The proof is based on Cylindrical decomposition theorem and hence gives rather precise information on semi-algebraic sets.

Definition. Let $\xi_1, \xi_2 : C \longrightarrow \overline{\mathbb{R}}$, where $\xi_1 < \xi_2$. Write

$$\begin{split} &\Gamma(\xi_1) = \{(x,t): t = \xi_1(x)\} \quad \text{(the graph)}, \\ &(\xi_1,\xi_2) = \{(x,t): x \in C, \ \xi_1(x) < t < \xi_2(x)\} \quad \text{(the band)}. \end{split}$$



Theorem (Cylindrical decomposition - Łojasiewicz).

Let $f_1,\cdots,f_p\in\mathbb{R}[X][T],\ X=(X_1,\cdots,X_n).$ Then there exist an augmentation $f_1,\cdots f_p,f_{p+1},\cdots,f_{p+q}\in\mathbb{R}[X][T]$ and a partition of \mathbb{R}^n into finitely many semi-algebraic sets S_1,\cdots,S_k such that for each connected component C of each S_i there are continuous functions

$$-\infty = \xi_{C,0} < \xi_{C,1} < \dots < \xi_{C,r(C)} < \xi_{C,r(C)+1} = +\infty$$

on C satisfying the following two properties:

- (i) Each f_i $(1 \le i \le p+q)$ has a constant sign on each $\Gamma(\xi_{C,j})$ $(1 \le j \le r(C))$ and on each $(\xi_{C,j},\xi_{C,j+1})$ $(0 \le j \le r(C))$.
- (ii) Each of the set $\Gamma(\xi_{C,j})$, $(\xi_{C,j},\xi_{C,j+1})$ is of the form

$$\{(x,t) \in C \times \mathbb{R} : f_i(x,t) \ s(i) \ 0, \ i=1,\cdots,p+q\},\$$

for a suitable $s: \{1, \cdots, p+q\} \longrightarrow \{<, =, >\}.$

A semialgebraic of the form

$$\bigcup_{i=1}^{p} \bigcap_{j=1}^{q} \{(x_1, \dots, x_n) \in \mathbb{R}^n : P_{ij}(x_1, \dots, x_n) \ s_{ij} \ 0\}, \text{ where } s_{ij} \in \{=, >\},$$

is said to be described by P_{ij} .

The Tarski-Seidenberg theorem and the Łojasiewicz theorem come from Cylindrical decomposition theorem by induction n as follows.

Proposition.

 $(\mathsf{T-S})_n$ If $S \subset \mathbb{R}^n \times \mathbb{R}$ is semialgebraic, then $\pi(S)$ is semialgebraic. $(\mathsf{L})_n$ If $S \subset \mathbb{R}^n \times \mathbb{R}$ is semialgebraic, then the number of the connected components of S is finite, and each of the components is also semi-algebraic

Proof. By induction on n.

It is trivial when n = 0.

Suppose $(T-S)_{n-1}$ and $(E)_{n-1}$. Let $S \subset \mathbb{R}^n \times \mathbb{R}$ be a semi-algebraic described by $f_1, \dots, f_p \in \mathbb{R}[X_1, \dots, X_n][X_{n+1}]$.

By Cylindrical decomposition theorem, there exist an augmentation of this family and a partition $\mathbb{R}^n = \bigcup_i S_i = \bigcup_i \bigcup_j C_{ij}$, where S_i is semi-algebraic and C_{ij} is a connected component of S_i .

By $(\mathfrak{t})_{n-1}$, the number of the $C'_{ij}s$ is finite and C_{ij} is semi-algebraic. Therefore, $\mathbb{R}^n \times \mathbb{R}$ is partitioned into graphs and bands of continuous functions on the $C'_{ij}s$, which are connected semi-algebraic sets.

Since S is a union of these sets, S satisfies $(\mathbf{L})_n$ and

 $\pi(S) = \bigcup \{C_{ij} : C_{ij} \times \mathbb{R} \cap S \neq \emptyset\}$ is semi-algebraic, i.e. $(\mathsf{T-S})_n$.

The proof of Cylindrical decomposition theorem.

Lemma 1 (Thom's Lemma).

Let $f_1,\cdots,f_k\in\mathbb{R}[T]$ be a finite family of polynomials which is stable under differentiation, i.e. if $f_i'\neq 0$ then $f_i'\in\{f_1,\cdots,f_k\}$.

For $s: \{1, \dots, k\} \to \{<, =, >\}$, put

$$A_s = \{t \in \mathbb{R} : f_i(t) \ s(i) \ 0, \ i = 1, \dots, k\}.$$

Then A_s is connected, i.e. empty, a point, or an interval.

Proof. By induction on k. It is trivial for k = 0.

Suppose the lemma is true for k-1 (k>0). Order f_1, \dots, f_k such that $\deg(f_k) = \max\{\deg(f_i): i=1,\dots,k\}$.

Let $A' = \{t : f_i(t) \ s(i) \ 0, i = 1, \dots, k-1\}$. By the inductive hypothesis A' is empty, a point, or an interval.

If A' is empty or a point, so is $A_s = A' \cap \{t : f_k(t) \ s(k) \ 0\}.$

If A' is an interval, then f'_k has a constant sign on A' and hence f_k is either strictly monotone or constant on A'. In each case one can easily check that A_s is connected.

Exercise. Find $f \in \mathbb{R}[T]$, such that $\{t \in \mathbb{R} : f(t) > 0\}$ is not connected.

Example. Consider the general polynomial og degree 2

$$G(a_0, a_1, a_2, T) = a_0 + a_1 T + a_2 T^2.$$

Then the necessary and sufficient condition for:

G has 0 complex solution is $a_2=a_1=0, a_0\neq 0$,

G has 1 complex solutions is $(a_2 \neq 0, a_1^2 - 4a_0a_2 = 0) \lor (a_2 = 0, a_1 \neq 0)$,

G has 2 distinct complex solutions is $a_2(a_1^2 - 4a_0a_2) \neq 0$,

G has ∞ complex solutions is $a_0 = a_1 = a_2 = 0$.

In general, to count the number of distinct complex zeros of a polynomial, we have:

Lemma 2.

Let $G(A,T)=A_0+A_1T+\cdots+A_dT^d\in\mathbb{Z}[A,T], A=(A_0,\cdots,A_d)$, be a general polynomial of degree d, and $e\in\{0,\cdots,d,\infty\}$. Then the set

$$\{a \in \mathbb{R}^{d+1}: G(a,T) \text{ has exactly } e \text{ distinct complex zeros } \}$$

is a finite union of sets of the form

$${a \in \mathbb{C}^{d+1} : p_1(a) = \dots = p_k(a) = 0, \ q(a) \neq 0},$$

where $p_i, q \in \mathbb{Z}[A]$.

Corollary.

As a consequence, for every $f \in \mathbb{R}[X_1,\cdots,X_n,T]=\mathbb{R}[X][T]$,

$$f(X_1, \dots, X_n, T) = a_0(X) + a_1(X)T + \dots + a_d(X)T^d,$$

the set

 $\{x \in \mathbb{R}^n : f(x,T) \text{ has exactly } e \text{ distinct complex zeros}\}$

is a semi-algebraic subset of \mathbb{R}^n .

The cases d=0 or $e\in\{0,\infty\}$ are trivial.

Let $d > 0, e \in \{1, \dots, d\}$, and $a = (a_0, \dots, a_d) \in \mathbb{C}^{d+1}, a_d \neq 0$.

Let $g = \text{degree of GCD}(G(a,T),\frac{\partial G}{\partial T}(a,T))$ in $\mathbb{C}[T]$.

Then the number of distinct complex zeros of G(a,T) is d-g, and the degree of $\mathrm{LCM}(G(a,T),\frac{\partial G}{\partial T}(a,T))$ is 2d-g-1.

Hence the condition is that G(a,T) has at most e distinct zeros, which is equivalent to $d-g\leq e$, that is, to $2d-g-1\leq d+e-1$.

The last condition is equivalent to the condition:

(*) There exist $q(x,T) = x_0 + x_1T + \cdots + x_{e-1}T^{e-1}$ and $r(x,T) = x_e + x_{e+1}T + \cdots + x_{2e}T^e$, with

 $x=(x_0,\cdots,x_{2e})\in\mathbb{C}^{2e+1}\setminus 0$, such that

$$G(a,T)q(x,T) = \frac{\partial G}{\partial T}(a,T)r(x,T)$$

This equality can be rewritten as

$$G(a,T)q(x,T) - \frac{\partial f}{\partial T}(a,T)r(x,T) = \beta_0(a,x) + \beta_1(a,x)T + \dots + \beta_{d+e-1}(a,x)T^{d+e-1}(a,x)$$

where $\beta=(\beta_0,\cdots,\beta_{d+e-1}):\mathbb{C}^{d+1}\times\mathbb{C}^{2e+1}\to\mathbb{C}^{d+e-1}$ is a bilinear function.

So (*) is equivalent to the condition $\beta_0(a,x) = \cdots = \beta_{d+e-1}(a,x) = 0$ has nonzero solution $x \in \mathbb{C}^{2e+1}$.

The last condition is equivalent to the vanishing of all (2e+1)-minor of the matrix of the linear map $\beta(a, \cdot)$.

Note that each of the minors is a polynomial in a_0, \dots, a_d with coefficients in \mathbb{Z} .

Therefore, for each $d' \leq d$, the set $M_c^{d'} =$

$$\{a \in \mathbb{R}^{d+1}: G(a,T) \text{ is of degree } d' \text{ and has at most } e \text{ distinct complex zeros}\}$$

is the intersection of the set $\{a \in \mathbb{R}^{d+1} : a_d = \cdots = a_{d'+1} = 0, a_{d'} \neq 0\}$ with the zero set of certain polynomials in $\mathbb{Z}[A]$.

So
$$\{a=(a_0,\cdots,a_d)\in\mathbb{R}^{d+1}:G(a,T) \text{ has exactly } e \text{ complex zeros}\}=0$$

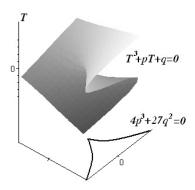
$$\bigcup_{e} M_e^{d'} \setminus M_{e-1}^{d'}$$
 a semi-algebraic set.

$$d'=0$$
Since $f(x,T) = C(a_x(x), a_x(x), T)$ the

Since
$$f(x,T) = G(a_0(x), \dots, a_d(x), T)$$
, the corrolary follows.

Exercise. Use the method of proving the lemma to check:

- 1) The condition that $f(T) = T^2 + bT + c$ has ≤ 1 zero is $b^2 4c = 0$.
- 2)The condition that $f(T) = T^3 + pT + q$ has ≤ 2 zeros is $4p^3 + 27q^2 = 0$.



When the number of complex zeros is constant, the following connectedness ensures the number of real zeros is also constant.

Lemma 3.

Let $f=a_0+\cdots+a_dT^d\in\mathbb{R}[X_1,\cdots,X_n][T]$ and $e\leq d$. Let C be a connected subset of \mathbb{R}^n . Suppose that $f(x,T)\in\mathbb{R}[T]$ has exactly e distinct complex zeros for each $x\in C$. Then the number of distinct real zeros of f(x,T) is also constant as x ranges over C. If these zeros are ordered by $\xi_1(x)<\cdots<\xi_r(x)$, then the functions $\xi_j:X\longrightarrow\mathbb{R}$ are continuous.

Proof. Let $x_0 \in C$, and let z_1, \cdots, z_e be the distinct zeros of $f(x_0, T)$. Take closed balls B_i centered at z_i in \mathbb{C} , such that $B_i \cap B_j = \emptyset$ for $i \neq j$ and $B_i \cap \mathbb{R} = \emptyset$ if $z_i \notin R$. By continuity of roots (Rouché's theorem), there exists a neighborhood U of x_0 in C such that for each $x \in U$ the ball B_i contains at least one zero $\zeta_i(x)$ of f(x,T). By the supposition, $\zeta_i(x)$ is the only zero of f(x,T) in B_i .

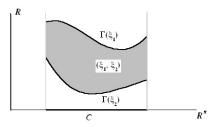
The graph of ζ_i on U is $\{(x,t)\in U\times B_i: f(x,t)=0\}$, hence this graph is closed in $U\times B_i$, in combination with the compactness of B_i which implies that ζ_i is continuous on U. Since the coefficients of f(x,T) are real, the set $\{\zeta_1(x),\cdots,\zeta_e(x)\}$ is closed under complex conjugation. Hence if $\zeta_i(x_0)\in\mathbb{R}$ then $\zeta_i(x)\in\mathbb{R}$ for all $x\in U$. This shows that the number of real zeros is locally constant. Since C is connected, this number is constant and the real zeros must keep their order as x runs through C.

Exercise. Examine the lemma when $f(T) = T^2 + bT + c$, $(b,c) \in X = \mathbb{R}^2$.

Definition. Let $\xi_1, \xi_2 : C \longrightarrow \overline{\mathbb{R}}$, với $\xi_1 < \xi_2$. Write

$$\Gamma(\xi_1) = \{(x,t) : t = \xi_1(x)\}$$
 (the graph),

$$(\xi_1,\xi_2) = \{(x,t): x \in C, \ \xi_1(x) < t < \xi_2(x)\} \quad \text{(the band)}.$$



Theorem (Cylindrical decomposition - Łojasiewicz).

Let $f_1,\cdots,f_p\in\mathbb{R}[X][T],\ X=(X_1,\cdots,X_n).$ Then there exist an augmentation $f_1,\cdots f_p,f_{p+1},\cdots,f_{p+q}\in\mathbb{R}[X][T]$ and a partition of \mathbb{R}^n into finitely many semi-algebraic sets S_1,\cdots,S_k such that for each connected component C of each S_i there are continuous functions

$$-\infty = \xi_{C,0} < \xi_{C,1} < \dots < \xi_{C,r(C)} < \xi_{C,r(C)+1} = +\infty$$

on C satisfying the following two properties:

- (i) Each f_i $(1 \le i \le p+q)$ has a constant sign on each $\Gamma(\xi_{C,j})$ $(1 \le j \le r(C))$ and on each $(\xi_{C,j},\xi_{C,j+1})$ $(0 \le j \le r(C))$.
- (ii) Each of the sets $\Gamma(\xi_{C,j})$, $(\xi_{C,j}, \xi_{C,j+1})$ is of the form

$$\{(x,t) \in C \times \mathbb{R} : f_i(x,t) \ s(i) \ 0, \ i=1,\cdots,p+q\},\$$

for a suitable $s: \{1, \cdots, p+q\} \longrightarrow \{<, =, >\}.$

Proof. Let $d=\max\{\deg_T(f_i), i=1,\cdots,p\}$. Augment f_1,\cdots,f_p to $\{f_1,\cdots,f_{p+q}\}=\{\frac{\partial^\nu f_i}{\partial T^\nu}: 1\leq i\leq p, 0\leq \nu\leq d\}.$ For each $\Delta\subset\{1,\cdots,p\}\times\{0,\cdots,d\}$, and $e\in\{0,\cdots,pd^2\}\cup\{\infty\}$, put

$$f_{\Delta}(T) = \prod_{(i,\nu) \in \Delta} \frac{\partial^{\nu} f_i}{\partial T^{\nu}} \quad \in \mathbb{R}[X][T], \text{ and }$$

 $A_{\Delta,e} = \{x \in \mathbb{R}^n : f_{\Delta}(x,T) \text{ has exactly } e \text{ complex zeros}\}.$

By Lemma 2, $A_{\Delta,e}$ is a semi-algebraic set.

For a given Δ the family $\{A_{\Delta,e}: e \text{ varies }\}$ forms a partition of \mathbb{R}^n . Since the class of semi-algebraic sets is a boolean algebra we can find a partition (the intersection of the partitions) $\mathbb{R}^n = S_1 \cup \cdots \cup S_k$, where each S_i is semi-algebraic such that each set $A_{\Delta,e}$ is a union of the $S_i's$. We will prove that f_1, \cdots, f_{p+q} and S_1, \cdots, S_k satisfy the conclusion of the theorem.

For each connected component C of S_i put

$$\Delta(C) = \{(i, \nu) : \frac{\partial^{\nu} f_i}{\partial T^{\nu}} \not\equiv 0 \text{ on } C \times \mathbb{R}\}.$$

By Lemma 3, there exist continuous functions $\xi_{C,1}<\cdots<\xi_{C,r(C)}$ on C such that $\{(x,t)\in C\times\mathbb{R}: f_{\Delta(C)}=0\}=\Gamma(\xi_{C,1})\cup\cdots\cup\Gamma(\xi_{C,r(C)}).$ Check (i): If $(i,\nu)\not\in\Delta(C)$ then $\frac{\partial^{\nu}f_i}{\partial T^{\nu}}\equiv 0$ on the sets given in (i). If $(i,\nu)\in\Delta(C)$, then $C\subset A_{\{(i,\nu)\},e}$, for certain $e\in\{0,\cdots,d\}\cup\{\infty\}$ and the number of real zeros of $\frac{\partial^{\nu}f_i}{\partial T^{\nu}}(x,T)$ is independent of $x\in C$. Since $\frac{\partial^{\nu}f_i}{\partial T^{\nu}}$ is a factor of $f_{\Delta(C)}$, by Lemma 3, the zeros of $\frac{\partial^{\nu}f_i}{\partial T^{\nu}}(x,T)$, for $x\in C$, must be among the $\xi_{C,j}(x)'s$. Since C is connected, (i) is checked.

Check (ii): Let B be one of the sets in (i). By (i), $\epsilon(i,\nu)= {\rm sign}(\frac{\partial^{\nu}f_i}{\partial T^{\nu}}\mid_B)$ is well-defined. Put

$$B' = \{(x,t) \in C \times \mathbb{R} : \operatorname{sign}(\frac{\partial^{\nu} f_i}{\partial T^{\nu}}(x,t) = \epsilon(i,\nu), \ 1 \le i \le p, 0 \le \nu \le d\}.$$

Clearly $B\subset B'.$ If $B\neq B'$ then exist $(x,t')\in B'\setminus B,\ (x,t)\in B$ (say t< t'). Thom's lemma implies that $\{r\in \mathbb{R}: (x,r)\in B'\}$ is connected, so $\{x\}\times [t,t']\subset B'.$ Since $(x,t)\in B,\ (x,t')\not\in B,\ f_{\Delta(C)}$ must change sign on $\{x\}\times [t,t'].$ But $f_{\Delta(C)}$ is a product of $\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}$, so $f_{\Delta(C)}$ cannot change sign on B', contradiction. Therefore B=B'.

Exercise.

- 1) Contruct the augment family of polynomials and the partition of
- $\mathbb{R}^2 = \{(b,c)\} \text{ satisfying the theorem for } f(b,c,T) = T^2 + bT + c.$
- 2) Contruct the augment family of polynomials and the partition of
- $\mathbb{R}^2 = \{(p,q)\} \text{ satisfying the theorem for } f(p,q,T) = T^3 + pT + q.$

Exercise.

1) Suppose $X \subset \mathbb{R}^n$ is a semialgebraic set describled by polynomial f_1, \dots, f_p of degree $\leq d$. Find an upper bound for the connected components of X as a function of n, p, d.

The following exercises are related to resultants (ref. [BR]).

Let A be a factorial commutative ring. Let

$$P(T) = a_0 + \dots + a_p T^p \in A[T], \ a_p \neq 0,$$

 $Q(T) = b_0 + \dots + b_a T^q \in A[T], \ b_a \neq 0.$

For $0 \le k \le \min(p, q)$, the k-nd Sylvester's matrix of P, Q is defined by:

$$M_{k}(P,Q) = \begin{pmatrix} a_{0} & \cdots & 0 & b_{0} & \cdots & 0 \\ \vdots & \ddots & & \vdots & \ddots & \\ & & a_{0} & & & b_{0} \\ a_{p} & & \vdots & b_{q} & & \vdots \\ & \ddots & & & \ddots & \\ 0 & & a_{p} & 0 & & b_{q} \end{pmatrix} \right\}_{p+q-k}$$

- 2) Prove that the following conditions are equivalent:
- (a) The degree of GCD(P,Q) is > k+1.
- (b) P,Q have > k+1 common zeros (counted with multiplicity) in the \bigcirc

- 3) From the above exercise, prove that the condition is that P,Q have k distinct zeros in \overline{A} , which is the condition given by equalities and inequalities of certain polynomials in $\mathbb{Z}[a_0, \cdots, a_p, b_0, \cdots, b_q]$.
- 4) When $A=\mathbb{C}$, prove that P has exactly k zeros if and only if the degree of $\mathrm{GCD}(P,P')$ is p-k. This implies Lemma 1.9.
- 5) The resultant of P,Q is defined by $\operatorname{Res}(P,Q) = \det(M_0(P,Q))$. Therefore,

$$Res(P,Q) = 0 \Leftrightarrow P,Q$$
 having GCD of degree > 0 .

6) The discriminant of P is defined by $\mathrm{Disc}(P){=}\mathrm{Res}(P,P')=\det(M_0(P,Q)).$ When $A=\mathbb{C}$, we have

$$Disc(P) = 0 \Leftrightarrow P$$
 having zeros of multiplicity > 0

7) Compute the discriminants of polynomials of degree 2, 3.

Further reading: Sturm's Theorem and Tarski-Seidenberg's Theorem (Ref. [BCR], [C]).

Further reading: Semialgebraic sets in general real closed fields (Ref. [BCR]).

References

J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réel. Springer-Verlarg, Berlin, 1987.

M. Coste, An introduction to semialgebraic geometry, Universita di Pisa, Dottorato di recerca in Matematica, Instituti editoriali e poligrafigi internazionali, Pisa-Roma, 2000.

S. Łojasiewicz, Ensembles Semi-Analytiques, IHES, Bures-sur-Yvette, 1965.

S. Seidenberg, A new decision method for elementary algebra, Ann. of Math. 60(1954), 365-374.

A. Tarski A decision method for elementary algebra and geometry, 2nd ed. University of California Press, 1951.

End of Lecture 1