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0. Introduction

Roughly speaking, Algebraic Geometry on a field K studies algebraic sets
in K™ i.e. the sets of the form

{r e K": Pi(z) =+ = Py(x) = 0},

where P; are polynomials with coefficients in K.

When K = R.

e One of the difficulties when studying real algebraic sets is that the field
of real numbers R is not algebraically closed. Therefore the number of

real zeros (counted with multiplicity) of a real polynomial can be not
equal to its degree, e.g. the number of real zeros of P(z) = 22+ a

depends on @ < 0,a =0, or a >0 (R is an ordered field!).
e Besides, though the class of real algebraic sets is closed under taking
finite unions and intersections, but not closed under taking complement.

e Moreover, in general, images of algebraic sets by polynomial functions

and their connected components are not algebraic sets.



For example, the equation zy —1 =0 defines a hyperbola in R?
consisting of the connected components:

{(z,y) eR*: 2y —1=0,2 > 0}, {(v,y) ER* 12y — 1 =0,2 < 0}

1<}

>0

Its image under the projection on Oz coordinate is two intervals:
{reR:z<0}, {zreR:z>0}.

These sets are given by equations and inequalities, but they can not be
given by equations only.



This lecture deals with the class of semi-algebraic sets which are those
defined by equalities and inequalities of real polynomials.

e This class is closed under Boolean operators: unions, intersections and
taking complements.

e This class has a very interesting property: it is closed under projection
(Tarski-Seidenberg's Theorem).

e A semi-algebraic set has only finitely many connected components,

and the components are semi-algebraic (Lojasiewicz's Theorem).

These fundamental properties create great conveniences in studying
semi-algebraic sets.

Usually, Real Algebraic Geometry is identified with Semialgebraic
Geometry.



Real Algebraic Geometry = Semialgebraic Geometry

Example. Let f(b,c,x) = 22 + bx + c and A(b,¢) = b? — 4c.

Algebraic Geometry Logic
f=0 Equation Algebraic set Formula
In R Condition of 9 sol. z Projection dx, f=0
0,1,2 sol. A<0,=0,>0 Semialgebraic set | Formula free of 3,V
X
2 :
A Hbxte=0

e

0 V-4c=0



1. Definitions - Examples

Definition. The class of semi-algebraic sets in R™ is the smallest class of
subsets of R"™ satisfying the following properties:
(SA1) It contains all sets of the form

{r eR": P(z) >0}, PeR[Xy, -, X,
(SA2) It is stable under taking finite unions, finite intersections and
complements.

A mapping f: X — R™ is called a semi-algebraic mapping if its graph is
a semi-algebraic set.

It is equivalent to use the following definition for each semialgebraic set:

Proposition.

A subset of R™ is semi-algebraic if and only if it can be represented as
the form:

P q
U ﬂ{(l‘h "r") ERn:Pij(xh'" ,l’n) Sij 0}7

i=1j=1

where p,g € N, P;; € R[Xy, -, X, ] va s;; € {=,>},
0<:<p,0< g <q.




Proof. The class of sets of the above form satisfies (SA1) and (SA2),
and it is contained in the class of semi-algebraic sets. By the condition of
the smallest class the two classes are coincide. 0

Note. On the real fields
Pp=---=P,=0 & P}+.---+P2=0.

Therefore, all semialgebraic sets in R™ if and only if it can be represented
as a finite union of sets of the form

{r eR": P(x) =0,Q1(x) >0, Qr(z) > 0},

where PaQ17"' 7Q7€ GR[XI, 7Xn]



Example.
1) The class of real algebraic sets & the class of semi-algebraic sets.
Moreover, every algebraic subset in R™ is of the form

{z € R" : P(x) = 0}, where P is a polynomial.

2) Polynomial functions are semi-algebraic.
3) A semi-algebraic set in R is a finite union of points and open intervals.



4) Let f(b,e,x) =22 +br +c.

The set of the values of (b, c) in R? such that f has a real solution is the
projection of the set {(x,b,¢): f(b,c,x) = 0} onto the plane (b, c).

It is the semi-algebraic set {(b,c) : b2 — 4c > 0}.

X

2
Hbxt+ce=0

: ;2 b -4c=0
5) The function

& A{(bye) : b°—4c >0} = R, &(b,c) = b+\/ —4c)

is semi-algebraic because its graph is given by:

=]

b
{(byc,2): b —de> 0,22 +br +c=0,2 > 5}



6) The followmg sets are not semi-algebraic:
{(z,y) e R? : y = [2]},

{(z,y) e R?: y =sinz},

{(z,y) eR?:y=e” }



Exercise. Prove that:

1) (f1,-, fm): X = R™ is semialgebraic if and only if f; is
emialgebraic for all ¢ € {1,--- ,m}.

2) If f: X — R is semialgebraic and f(z) # 0, for all z € X, then 1/f is
semialgebraic.

3) If f: X — R is semialgebraic and f > 0, then \/f is semialgebraic.

4) If f: X — R is semialgebraic, then there is a polynomial

P(X,Y) # 0, such that P(z, f(z)) =0, for all z € X.

5) The class of constructible sets in C™, by definition, is the smallest
Boolean algebra of subsets of C™ which contains all complex algebraic
sets.

Prove that X C C" is constructible if and only if X = |J/_, Vi \ W,
where V;, W; are algebraic sets.

Prove that if we identify C = R2, then every constructible subset of C™ is
semi-algebraic in R?".



2. Tarski-Seidenberg's Theorem - tojasiewicz's Theorem.



Alfred Tarski (1901-1983)




Stanistaw tojasiewicz (1926-2002)




2. Tarski-Seidenberg's Theorem - tojasiewicz's Theorem.

Most of the basic properties of semi-algebraic sets are implied from the
following two theorems:

Theorem (Tarski-Seidenberg).

Let S be a semi-algebraic subset of R™ x R*. Let m: R” x R¥ — R" be
the natural projection. Then 7(S) is a semi-algebraic set.

Theorem (Lojasiewicz).

The number of connected components of a semi-algebraic set is finite,
and each of the components is also semi-algebraic.




Exercise.
The set of the form {(z1, -+ ,2,) € R": P(x1,--- ,2,) > 0} is the
image via the projection of the algebraic set

(@ ont) €R™ 2P, m,) = 1),

From that, we have:

1) Each semialgebraic sets is the image of an algebraic set through a
projection.

From the Tarski-Seidenberg theorem, we have:

2) The class of semialgebraic sets in R”,n € N, is the smallest class of
subsets that contains all algebraic sets and that is closed under Boolean
operators and projections.



Semialgebraic sets and first-order formulas

xn) of n variables with

Definition. A first-order formula ®(x1,- -,
parameters in R (precisely, a first-order formula of the language of

ordered fields with parameters in R) is a finite combination of
e atomic formulas:

(P(xy1,--+ ,2,) > 0), where P is a real polynomial,

joined with each others by logical operators

e V (or), A (and), = (not),
e qualifications 3 (exists), V (for all) with respect to variables.

Let ®(z,y), ¥(x,y) be formulas with variables x = (z1,- -+ , x,,) and
Yy = (ylv"' 7yn)
When (z,y) take values in X x Y, the formulas defines the following sets
S={(z,y) e X xY: ®(z,y) }, ¥={(r,y) e X xY: ¥(z,y) }
Then:  ®(z,y) V ¥(z,y) defines dU T,

O(z,y) A ¥(x,y) defines &N T,

—®(x,y) defines X x Y \ @,

Jy®(x,y) defines 7(P), véi 7(z,y) = z,

Vy®(x,y) = ~(Fy—P(z,y)) defines X \ m(X x Y \ ®).



Therefore, X C R™ is a semialgebraic set if and only if there is a
quantifier-free formula ¥ (xzq,--- ,xz,) of the form

P q
\/ /\ ij xl; ) n) Sij 0),

where p,g € N, P,; e R[Xy, -, X,| va s;; € {=,>},
0<¢<p,0<yj<gq, such that

X ={(x1, - ,2p) ER" : (a1, ,2,) }.



The Tarski-Seidenberg theorem has the following logical formulation:

Theorem (Tarski-Seidenberg).

For every first-order formula ®(z1,--- ,x,), there exists a quantifier-free
formula WU(zq,- - ,x,), such that the following formula is always true in
R:

\V/.’El,"' 7mn(<I>(x1,-~- ,I'n) = \I](xlv"' 7$n))

In particular, the set {z = (z1,--- ,x,) € R" : ®(x) } is semi-algebraic.

For example, the formula
O =3z, 22 +br+c=0)Ay,y? +by+c=0)A=(z =1y)
is equivalent to the qualifier-free formula

U = (b? —4c > 0).



From the definitions and the Tarski-Seidenberg theorem, we get

Proposition (Elementary properties).

(i) The closure, the interior, and the boundary of a semi-algebraic set
are semi-algebraic.

(ii) Images and inverse images of semi-algebraic sets under semi-algebraic
maps are semi-algebraic.

(iii) Compositions of semi-algebraic maps are semi-algebraic.

Proof.
(i) If A is a semi-algebraic subset of R™, then its closure is

A={r eR":Ve,e>0,y(y € A) A (Z(ml —yi)? < )},

i=1

where © = (z1,- -+ ,2,) and y = (y1, - - - yn). By the Tarski-Seidenberg
theorem, A is semi-algebraic.
Soint (A) =R"\R”\ A and bd (A) = ANR"\ A are semi-algebraic.
(i) Let f : X — Y be a semi-algebraic function and A C X, B C Y be
semi-algebraic subsets.
Let mx : X XY — X and 7y : X XY — Y be the natural projections.
Then f(A) =7y (fNAXY)and f~1(B)=nx(fNX x B).
So they are semi-algebraic.




(iii) Let f: X = Y,g:Y — Z be semi-algebraic maps. Then
gof=n(fxZNXxg),wherem: X XY x Z — X x Z defined by
m(x,y,2) = (x,2). So go f is semi-algebraic. O

Exercise. Use Tarski-Seidenberg’'s Theorem to do the following:
1) Letn e Nk <n, and iy, -+ ,ip € {1,--- ,n}. Denote I';,...;, =

{(ag, - ,an) € R" : agp+- - -+a,T™ has k zeros with mutiplicities 41, - ,ig}.

Prove that I';,...;, is a semi-algebraic set..

2) Let f: A — R be a semialgebraic function and p € N. Prove that the
set CP(f) ={z € A: fis of class CP at x} is semialgebraic, and the
partial derivatives Jf/0x; are semialgebraic functions on CP(f).

3) Let f,g: X — R be semialgebraic. Prove that

|f], max(f, g), min(f, g) are semialgebraic.

4) Let f,g: X — R be semialgebraic. Prove that the functions defined by

M(t) = sup{f (@) : g(z) = 1}, m(t) = nf{f(x) : g(2) =}, t € g(X),

are semialgebraic.



3. Cylindrical decomposition theorem.

Tarski (1931, see [T]) stated and proved T-S Theorem in logic form (the
real closed field R admits quantifier elimination).

Later, Seidenberg (1954, see [S]) proved the theorem by using Sturm'’s
sequences, which proved to be of great interest to other mathematicians.
In this lecture, the Tarski-Seidenberg theorem and the tojasiewicz
theorem are proved by tojasiewicz's method (1964, see [L]). The proof is
based on Cylindrical decomposition theorem and hence gives rather
precise information on semi-algebraic sets.



Definition. Let £1,& : C — R, where &) < &. Write
I'(&) ={(z,t) : t =& ()} (the graph),
(£1,&) ={(z,t) 2 € C, &(x) <t < &(x)} (the band).

R

I'&)




Theorem (Cylindrical decomposition - tojasiewicz).

Let f1, -, fp, € RIX][T], X = (X1,---, Xy). Then there exist an
augmentation f1,- -+ fp, fo+1, - s fo+q € R[X][T] and a partition of R™
into finitely many semi-algebraic sets Sy, --- , Sk such that for each
connected component C' of each S; there are continuous functions

—00=¢c0 <&ca < <&orc) <&orE)r1 = T0

on C' satisfying the following two properties:

(i) Each f; (1 <4 <p+q) has a constant sign on each

[(c,) (1< j < r(C)) and on each (o, Ec,41) (0 < j < r(C)).
(ii) Each of the set I'(§cj), (€c.j>&c.j+1) is of the form

{(z,t) e C xR : fi(x,t) s(:) 0, i=1,--- ,p+ q},

for a suitable s : {1,--- ,p+q} — {<,=,>}.




A semialgebraic of the form

p g

U ﬂ{(ml, &) € R™: Pj(z1,--- ,xn) sij 0}, where s;; € {=,>},

i=1j=1
is said to be described by F;;.

The Tarski-Seidenberg theorem and the tojasiewicz theorem come from
Cylindrical decomposition theorem by induction n as follows.



Proposition.

(T-S), If S € R™ x R is semialgebraic, then 7(S) is semialgebraic.

(b)n If S CR™ xR is semialgebraic, then the number of the connected
components of S'is finite, and each of the components is also
semi-algebraic

Proof. By induction on n.

It is trivial when n = 0.

Suppose (T-S),—1 and (L),—1. Let S C R™ x R be a semi-algebraic
described by fi,---, f, € R[X1, -, X;,][Xpnq1].

By Cylindrical decomposition theorem, there exist an augmentation of
this family and a partition R" = J; S; = U, U, Cij, where S; is
semi-algebraic and C}; is a connected component of S;.

By (L)n—1, the number of the szjs is finite and C;; is semi-algebraic.
Therefore, R™ x R is partitioned into graphs and bands of continuous
functions on the Cj;s, which are connected semi-algebraic sets.

Since S is a union of these sets, S satisfies (L), and

w(S) =U{C;; : C;; x RN S # 0} is semi-algebraic, i.e. (T-S),. O



The proof of Cylindrical decomposition theorem.

Lemma 1 (Thom’s Lemma).

Let f1,---, fx € R[T] be a finite family of polynomials which is stable
under differentiation, i.e. if f/ # 0 then f/ € {f1, -, fx}
For s:{1,--- ,k} = {<,=,>}, put

Ay ={teR: fi(t)s(4) 0, i=1,--- ,k}.

Then A is connected, i.e. empty, a point, or an interval.

Proof. By induction on k. It is trivial for k = 0.

Suppose the lemma is true for k — 1 (k > 0). Order fy,---, fi such that
deg(fx) = max{deg(f;):i=1,--- ,k}.

Let A" ={t: fi(t) s(i) 0,i =1,--- ,k — 1}. By the inductive hypothesis
A’ is empty, a point, or an interval.

If A’ is empty or a point, so is A, = A’ N {t: fi(t) s(k) 0}.

If A" is an interval, then f; has a constant sign on A’ and hence fj, is
either strictly monotone or constant on A’. In each case one can easily
check that A, is connected. O
Exercise. Find f € R[T], such that {t € R: f(¢) > 0} is not
connected.



Example. Consider the general polynomial og degree 2

G(ao, ai, ag, T) =ag + (llT + a2T2.

Then the necessary and sufficient condition for:

G has 0 complex solution is a; = a7 = 0,a¢ # 0,

G has 1 complex solutions is (az # 0, a2 — 4agaz = 0) V (ag = 0,a1 # 0),
G has 2 distinct complex solutions is az(a? — 4agaz) # 0,

G has oo complex solutions is ag = a3 = as = 0.

In general, to count the number of distinct complex zeros of a
polynomial, we have:

Lemma 2.

Let G(A,T) = Ag+ AyT+ -+ AgT? € Z|A, T), A = (Ag,--- , Ag), be
a general polynomial of degree d, and e € {0,--- ,d,o0}. Then the set

{a € R4 . G(a,T) has exactly e distinct complex zeros }
is a finite union of sets of the form

{a € Ca+t :p1(a) = =prla) =0, q(a) # 0},

where p;, q € Z[A].




Corollary.
As a consequence, for every f € R[Xy, -+, X, T] = R[X]|[T],

f(Xla"' aX'rMT) = a’O(X) —|—0,1(X)T—|— +ad(X)Td7
the set

{z e R": f(z,T) has exactly e distinct complex zeros}

is a semi-algebraic subset of R™.




The cases d = 0 or e € {0,000} are trivial.
Let d > 0,e € {1,--- ,d}, and a = (ag,--- ,aq) € CH ag #0.
oG
Let g = degree of GCD(G(a,T), 8—T(a,T)) in C[T).
Then the number of distinct complex zeros of G(a,T) is d — g, and the
degree of LCM(G(a, T), g—g(a,T)) is2d—g—1.
Hence the condition is that G(a,T’) has at most e distinct zeros,
which is equivalent to d — g < e, thatis,to 2d—g—1<d+4+e—1.
The last condition is equivalent to the condition:
(%) There exist q(x,T) =xo+ 21T + -+ + 2 1T¢ ! and
r(@,T) =2c + Tep1T + -+ + 22,1, with
x = (20, ,T2.) € C*T1\ 0, such that
oG
G(a’a T)q(l?, T) = aiT(aﬁ T)T(%, T)
This equality can be rewritten as
of

G(CL, T)Q(x7 T)_aiT(a’a T)T(xa T) = ﬁo(av x)+61 (CL, Z‘)T+ ' '+ﬂd+€—1(a7 x)Td_H

where 3= (Bo, ", Bare_1) : CH1 x C?¢+1 — C4*e~1 is a bilinear
function.



So (*) is equivalent to the condition fy(a,z) =+ = Bate—1(a,z) =0
has nonzero solution x € C?¢*1.

The last condition is equivalent to the vanishing of all (2e + 1)-minor of
the matrix of the linear map 5(a, )

Note that each of the minors is a polynomial in ag, - - - ,aq with
coefficients in Z.

Therefore, for each d’ < d, the set M4 =

{a € R™ : G(a,T) is of degree d’ and has at most e distinct complex zeros}

is the intersection of the set {a € Rl . qg=--- = ag+1 =0,aq0 # 0}

with the zero set of certain polynomials in Z[A].

So {a = (ag,--- ,aq) € R : G(a,T) has exactly e complex zeros} =
d

U MY\ M% | a semi-algebraic set.

d'=0

Since f(z,T) = G(ap(z),- - ,aq(x),T), the corrolary follows. O



Exercise. Use the method of proving the lemma to check:

1) The condition that f(T) =T?+bT +c has <1 zerois b*>—4c=0.
2)The condition that f(T) = T3+ pT + ¢ has < 2 zeros is

4p® +27¢% = 0.

T




When the number of complex zeros is constant, the following
connectedness ensures the number of real zeros is also constant.

Lemma 3.

Let f=ag+---+aqT? € R[Xy, -, X,][T] and e < d. Let C be a
connected subset of R™. Suppose that f(z,T) € R[T] has exactly e
distinct complex zeros for each & € C. Then the number of distinct real
zeros of f(xz,T) is also constant as x ranges over C. If these zeros are
ordered by & (z) < --- < &-(z), then the functions §; : X — R are
continuous.

Proof. Let 2o € C, and let zj,--- ,z. be the distinct zeros of f(xo,T).
Take closed balls B; centered at z; in C, such that B; N B; = () for

i# jand B;NR = if z; € R. By continuity of roots (Rouché'’s
theorem), there exists a neighborhood U of xg in C such that for each
x € U the ball B; contains at least one zero (;(z) of f(z,T). By the
supposition, ¢;(z) is the only zero of f(z,T) in B;.



The graph of ; on U is {(z,t) € U x B; : f(z,t) = 0}, hence this graph
is closed in U x B;, in combination with the compactness of B; which
implies that ¢; is continuous on U. Since the coefficients of f(z,T) are
real, the set {(i(x), - ,(.(x)} is closed under complex conjugation.
Hence if (;(zg) € R then (;(z) € R for all x € U. This shows that the
number of real zeros is locally constant. Since C' is connected, this
number is constant and the real zeros must keep their order as x runs
through C. g

Exercise. Examine the lemma when f(T)=T?+bT +c,
(b,c) € X =R2



Definition. Let &1,& : C — R, v6i & < &. Write
I'(&) ={(z,t) : t =&(x)} (the graph),
(£1,&) ={(z,t) :x € C, &(x) <t <&(x)} (the band).




Theorem (Cylindrical decomposition - tojasiewicz).

Let f1, -, fp, € RIX][T], X = (X1,---, Xy). Then there exist an
augmentation f1,- -+ fp, fo+1, - s fo+q € R[X][T] and a partition of R™
into finitely many semi-algebraic sets Sy, --- , Sk such that for each
connected component C' of each S; there are continuous functions

—00=¢c0 <&ca < <&orc) <&orE)r1 = T0

on C' satisfying the following two properties:

(i) Each f; (1 <4 <p+q) has a constant sign on each

[(éc,) (1< j < r(C)) and on each (o, Ecs1) (0 < j < r(C)).
(ii) Each of the sets T'(c ), (§c.j,6c,j+1) is of the form

{(z,t) e C xR : fi(x,t) s(:) 0, i=1,--- ,p+ q},

for a suitable s : {1,--- ,p+q} — {<,=,>}.




Proof. Let d = max{deg,(f;),i=1,---,p}.

Augment fy,--- ,fp to

{fiso s forgd = { :1<i<p,0<wv<d}

For each A C {1,--- 7p} {0,---,d}, and e € {0,--- ,pd*} U {c}, put

fa(T) = H g;flj € R[X][T], and

(i,v)EA

Apr e ={x € R": fa(z,T) has exactly e complex zeros}.

By Lemma 2, A, is a semi-algebraic set.

For a given A the family {Aa . : € varies } forms a partition of R™. Since
the class of semi-algebraic sets is a boolean algebra we can find a
partition (the intersection of the partitions) R™ = .53 U--- U S, where
each S; is semi-algebraic such that each set Aa . is a union of the S!s.
We will prove that fi, -+, fp4+q and Si,---, Sk satisfy the conclusion
of the theorem.



For each connected component C of S; put

0" fi

A(C) = {(i,v) s

#£0 on C x R}.

By Lemma 3, there exist continuous functions ¢, <--- < {c(c) on C
such that {(z,t) € C X R: fac) =0} =T({c,1) U--- UT(Ecrey)-

0" fi . .
Check (i): If (i,v) & A(C) then 8T{’ = 0 on the sets given in (i).

If (4,v) € A(C), then C' C Ay(i )y, for certain e € {0,--- ,d} U {oo}

i

and the number of real zeros of (z,T) is independent of z € C.

oTv
Since ng; is a factor of fa(c), by Lemma 3, the zeros of 0 f;(x,T),

for x € C', must be among the ¢ ;(z)’s . Since C'is connected, (i) is
checked.



Check (ii): Let B be one of the sets in (i). By (i), ¢(i,v) =

sign(a .

TV |5) is well-defined. Put

B ={(z,t) e C xR: sign(gT{f(x,t) =e¢(i,v), 1 <i<p,0<wv<d}.
Clearly B C B’. If B # B’ then exist (z,t') € B’ \ B, (z,t) € B (say
t <t'). Thom's lemma implies that {r € R: (z,r) € B’} is connected,
so {x} x [t,t'] C B'. Since (z,t) € B, (x,t') € B, fa(c) must change

sign on {z} x [t,t']. But fa(cy is a product of GT”Z so fa(c) cannot

change sign on B’, contradiction. Therefore B = B’. O



Exercise.

1) Contruct the augment family of polynomials and the partition of
R? = {(b,c)} satisfying the theorem for f(b,c,T) =T? +bT + c.
2) Contruct the augment family of polynomials and the partition of
R? = {(p, q)} satisfying the theorem for f(p,q,T) = T3 + pT + q.



Exercise.

1) Suppose X C R" is a semialgebraic set describled by polynomial
fi,-++, fp of degree < d. Find an upper bound for the connected
components of X as a function of n, p, d.

The following exercises are related to resultants (ref. [BR]).

Let A be a factorial commutative ring. Let

P(T)=ao+--+apI? € AlT], a, #0,

QT)=0bo+---+b,T7 € AT], by #0.

For 0 < k < min(p, q), the k-nd Sylvester's matrix of P, @ is defined by:

a -+ 0 by -+ 0
ag bo
Mp(P,Q) = . . pra—Fk
ap D by :
0 a, 0 by
q—k p—k

2) Prove that the following conditions are equivalent:
(a) The degree of GCD(P,Q) is > k + 1.
(b) P.O have > k + 1 common zeros (counted with multiplicity) in the



3) From the above exercise, prove that the condition is that P, @ have k
distinct zeros in A, which is the condition given by equalities and
inequalities of certain polynomials in Z[ag, - - , ap, bo, - -+ , by

4) When A = C, prove that P has exactly k zeros if and only if the
degree of GCD(P, P’) is p — k.

This implies Lemma 1.9.

5) The resultant of P,Q is defined by Res(P, Q) = det(My(P,Q)).
Therefore,

Res(P,Q) =0 < P,Q having GCD of degree > 0.
6) The discriminant of P is defined by
Disc(P)=Res(P, P') = det(My (P, Q)).
When A = C, we have

Disc(P) =0 < P having zeros of multiplicity > 0

7) Compute the discriminants of polynomials of degree 2, 3.



Further reading: Sturm's Theorem and Tarski-Seidenberg’s Theorem
(Ref. [BCR], [C]).

Further reading: Semialgebraic sets in general real closed fields (Ref.
[BCR)]).
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End of Lecture 1



