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1. Cell decomposition

From Cylindrical decomposition theorem, a semialgebraic subset of R"
has an especially simple form - it splits into finitely many cells.
Each cell is similar to a curving box.
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Moreover, each semialgebraic function is ‘cellwise’ analytic.
In this lecture we show these results and their consequences.



Definition. The semialgebraic cells in R™ are defined by induction on n
as follows:

- A semialgebraic cell in R is a point or an open interval.

-IfC cR"™isacell and f,g: C'— R are continuous semialgebraic
functions such that f < g, then the sets:

D(f)={(z,t): t = f(x)}, (fr9) ={(2,8): f(z) <t <g(x)}
C xR, (=00, f) ={(z,t) : t < f(x)} and (f, +00) = {(z,1) : f(z) < t}.
are semialgebraic cells in R*+1.

Let k € NU{w}. A C* cell is a cell with the basis set C' being a
C*-manifold and the functions f, g being of class C*.

Exercise. Prove that each cell is homeomorphic to a box (0,1).



A CP cell decomposition of R™ is defined by induction on n:
- A C? decomposition of R is a finite collection of intervals and points

{(—OO, al)? T (Cbp, +OO), {al}v e 7{ap}}’

where a; < --- < ap, p € N.

- A CP decomposition of R™*! is a finite partition of R"*! into CP cells
C, such that the collection of all the projections 7(C) is a C?
decomposition of R™, where 7 : R**1 — R™ is the projection on the first
n coordinates.

We say that a decomposition compatible with a class A of subsets of R",
if each S € A is a union of some cells of the decomposition.



Theorem (C“ semialgebraic cell decomposition).

Let Ay,---, A, be semialgebraic subsets of R™. Then there exists a C*
semialgebraic cell decomposition of R™ compatible with {4;,---,A4,}.

Proof. Induction on n and basing on Cylindrical decomposition theorem.
For n = 1: Let G be the family of polynomials which describes

Ay, A,

Augment G to F by all non null partial derivatives of all degree of
polynomials in G.

Then, by Thom's Lemma, F defines a cell decomposition of R such that
each A; is a union of cells defined by sign conditions of polynomials in F.



Forn > 1: Foreach k=1,--- ,n, let 7 : R® — R* denote the
projection the first k coordinates. From Cylindrical decomposition
theorem and induction, we can construct a family of polynomials
F = F, U---UFy, which satisfies the following properties for each

ke{l,---,n}
-Fr={fr;j:j=1,---1;} CR[Xy,---, X is constructed from the
polynomials describing 7, (A1), -+, mx(A,), then augmented to be

closed under derivative operator %k.

- The family Fj_; U---U F; defines decomposition C;,_; of RF~!
consisting of cells, each of the cells is given by the sign condition of the
polynomial in the family.

- For each C € Cj_; there exists semialgebraic functions

§o1 < <&crc): C— R, such that each z € C,

{€ca(@), -+ . &cr(c) ()} is the zeros of fi1(z, Xk), -, fr, (2, Xk),
and

- Each of mi (A1), -+, mk(Ap) is an union of cells such that each of the
cells has the form I'({c.i), (§c.i,€ciiv1), (—00,€c,1) or (Ecr(c), +00),
where C' € C,_1, and the polynomials in Fj do not change sign on that
cell.



Therefore, to prove the cells are submanifolds of class C“, we need to
prove {¢ = Ec,i : C — R is of class C¥, for each cell C € C—;.

By induction, C'is a cell of class C¥. Let f € F}, be the polynomial in
X, of smallest degree (wrt. Xj) and f(z,éc(x)) =0, for all z € C.

By the closeness under the derivative operator aaixk of the family F and
by the unchange sign of % on I'(¢c), we get %(m,ﬁc(z)) %0, for all
zeC.

By the Implicit function theorem, &¢ is an analytic function. O



From the above theorem, we have the following basic properties:

Theorem (The piecewise analytic property).

Let A C R™ be a semialgebraic subset and f : A — R be a semialgebraic
function. Then there exists a C* semialgebraic decomposition C of R,
compatible with A, such that f|¢ is of class C%, for all C' € C and

C C A

Proof. Applying the cell decomposition theorem to A; = I'(f) C R*H1,
we get the result. O



Proposition (Monotonnicity theorem).

Let f: R — R be a semialgebraic function. Then there exist points
—00=ag < ay < -+ <ayny = —+oo such that on each interval (a;,a;11)
the function is either constant, or strictly monotone and analytic.

As a consequence, for all a € R U {%o00}, the limits

lim f(z), lim f(z) exist (in RU {£oo}).

z—at z—a—

Proof. From the above theorem, there exists a decomposition of R into
finite points or intervals on which f is analytic.

Each of the intervals can be decomposed into finte points or intervals
compatible with the conditions f/ =0, f/ > 0, f' < 0.

The result follows.



Proposition (Uniformly finiteness).

Let A C R™ be a semialgebraic set. Let 7 : R® — R™"~! be the natural
projection. Suppose that #A4 N7~ !(z) < +oo, Vo € R* 1.
Then there exists N € N, such that #4A N7 1(x) < N, Vo € R*~L.

Proof. Decompose R" into cells compatible with A.

Since#Aﬂwil(m) < 400, for all z € R"~1, A is a finite union of sets of
the graph form I'(é¢), for C C m(A) being cells in R" 1.

Therefore, N = maximum of the numbers of graphs over C, for

C C w(A), is the desired uniform bound. O



2. Dimension.

Dimension is a basic notion of topology and geometry.
Since semialgebraic sets are finite union of manifolds, the following
definition of dimension of semialgebraic sets is suitabe.

Definition. The dimension of a semialgebraic subset X C R" is defined
by

dim X =sup{dimIT': T' C X, T'is a analytic submanifold of R"}.
Note. If X = U;c;C; is a finite union of analytic cells, then
dim X = max{dim C; : ¢ € I}.

In fact, let I' € X be a submanifold such that dimI" = dim X. Since
I' = U;eI' N G, by Baire's property of manifolds, there exists ig € 1
such that I' N C;, has nonempty interior in I'. So dim C;, > dim I'.
From this we get the conclusion of the note.



Basing on results of dimension of manifolds, the dimension of
semialgebraic has following natural properties:

Proposition

(i) Let X,Y C R™ be semialgebraic subsets. Then

dmX <n & X =0.
XCY = dimX <dimY.
i) If X =UY_, X;, where X; are semialgebraic, then
=1

dim X = max dim X;.

1<i<p

(iii) Let X C R™ x R™ be semialgebraic. Let 7 : R™ x R™ — R™ be
the natural projection. Suppose dim 7~ 1(z) N X < k, Vo € n(X). Then

dim7(X) < dim X < dim7(X) + k.

(iv) Let f: M — N be a semialgebraic mapping, and X C M be a
semialgebraic subset. Then dim f(X) < dim X.




Proof. (i) is clear.

(ii) Let I' C X be a submanifolsd such that dimI" = dim X . Represent
X; = U,;I'; ; as a finite union of manifolds. Arguing as in the above note
for ' = UM(I‘ NT; ;). we get i, jo such that the interior of T';, j, trong
T is not empty. From that we have (ii).

(iii) By Cell decomposition theorem, X = U,T; is a finite union of
analytic cells such that 71, is of constant rank and 7(T';) is an analytic
cell.

Then 7(X) = U;n(T';) and dimT'; > rankap,. Therfore,

dim X = maxdimI'; > maxrank 7p, = max dim 7(T';) = dim 7(X).

Besides, let I' C X be an analytic cell in the above decomposition with
dimension dim X. Then each fiber 7' (z) = 7= '(z) NT, z € 7(T) is a
submanifold of dimension dim I'— rankz. From the supposition, we have
dim X = dim T < dim#7(X) + k.

(iv) is followed from (iii) with the note that

X =m(fx), f(X)=ma(fx), where fx = fNX X N and 71,72 are
the projections from M x N to M, N respectively. 0



Exercise. Learn the construction of Peano’s curves, which are
continuous maps f : [0,1] — [0,1]%, with image f([0,1]) = [0, 1]2..
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(c) (d)

Therefore, in general, continuous mappings do not have the property (iv)
of the above proposition.



3. Stratification.
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3. Stratification.

Stratification theory was initialled by Whitney. In 1957 Whitney showed
that every algebraic set in R™ can be partitioned into finitely many
connected semialgebraic submanifolds, which are fitted to each other
along their boundaries and satisfy some certain ‘good’ condition (called
Whitney regular conditions). Such a partition is called stratification.
Many problems, in many different fields, were solved by basing on the
property that the involved sets are stratified.

For example, equi-singularity problems proposed by Thom (see [GWPL]
and the examples below).

Another example: To solved the Schwartz's division problem, Lojasiewicz
(1959) (see [L]), constructed the stratification of semi-analytic sets and
certain metric properties (called Lojasiewicz's inequalities). From that he
obtained the solution for the problem.

In this part, we present a result of tojasiewicz that any semialgebraic set
can be stratified.



Definition. A stratification of R™ is a partition {I', }oca of R™ into
finitely many subsets, called strata, such that:

(S1) Each stratum T, is a connected submanifold of R".

(S2) Boundary condition:

if fa NIg # (), then I's C fa and dimI's < dimT',.

ie. Ty, \ Ty is a union of some of the strata with dimI's < dimT',.

A strafication is called compatible with a subset X C R™ iff ', N X # 0,
then T', C X, i.e. X is a union of some I',.

A strafication is called semialgebraic iff each stratum is semialgebraic.



Example.
In R3, let V be a subset defined by 2% — zy? = 0 (Whitney's umbrela).

Partition 1: R3\ V,V \ Oz, Oz,

is not a stratification because it does not satisfy (52).

Partition 2: R*\ V, V' \ Oz, {(0.0,2) : z > 0}, {(0,0,2) : z < 0}, 0,

is a stratification compatible with V.

Note. For Partition 2, the topo types of V N B,, where B, is a ball
with center a of sufficiently small radius, are the same when a ranges in a
stratum (the topological equisingularity).



Exercise.

1) Find a stratification compatible with X given by the following
equation:

a) ¥ +z22—y?=0 b) 2*+y?—2%?=0.

Find a stratification which satisfies the topological equisingularity for X.

e
(’\/__F N
=

2) Prove that R™"! is stratified by the family
lezk = {((l()7 .o ,an) S RTLJFI :

agtayT+- - -+a,T" has exactly k complex zeros with multiplicities i1, - - -

where k € N, (iy,- -+ ,ix) € {0,--- ,n}*.
Concretize when n = 2.



Theorem (Semi-algebraic stratification).

Let X1, , X be semialgebraic subsets of R™. Then there exists a
stratification of R™, compatible with each X}, and the strata are
semialgebraic.

To prove the theorem we prepare some tools and lemmas.



To generalize Thom’s Lemma to polynomial of several variables we have
the following notion:

Definition. A family of polynomial functions f1,---, fy : R®” = R is
called separating iff for any s: {1,--- , N} = {<,=,>}, the
semialgebraic subset of the form

As={zeR": fi(z)s(#)0,i=1,--- N},

satisfies:
(i) As is either empty or connected.
(ii) If A5 #£ 0, then the closure of A has the algebraic description

As={zeR": fi(z)s(i)0,i=1,---,N}
where s(i) is < ,= or > according as s(i) is < ,= or >.

(i.e. the closure is obtained by relaxing all strict inequalities to weak
inequalities).



To construct a separating family from a finite set of polynomial
functions, we need to pay attention to the boundedness of the roots of a
polynomial with respect to its coefficient of the highest degree.

Put g(t) = aqt? + ag—1t%~1 + - -+ + ag € C[t], where a4 # 0. Then if
1

£e€C, g(&) =0, then |{] < max (dw>d_k.

0<k<d—1

Proof. When |t| > M, we have
l9(t)] > laa|M? — (Jag—1|M*~" + -+ |ao]).

Therefore, when we choose M such that %|aq|M? > |ax|M*, for all
k=0,---d 5 |g(t)| > 0. From that we get the estimate. O




For several-variable polynomials, the following notion gives the
boundedness of the zeros.

Definition. A polynomial f € R[X, -, X}] is called quasi-monic with
respect to Xy, iff

f=aaXi+ag (X0, X)X+ ao(Xa, -, Xia),
where the leading coefficient is a constant a4 # 0.
Example. f(z,y) =2y — 1.

1
The equation f(z,y) = 0 has the root z = — — oo, when y — 0.

Y
Change the coordinates: x = X + AY,y = X — AY, where A # 0.
Then f = X2 — A2Y2 — 1 is monic with respect to X
and f = 0 has the root X = £AV/Y2 + 1 which is locally bounded.



Let g1, -+, gp be real polynomials of k variables. Then there exists a
linear change of coordinates ¢ : R¥ — R*, such that g 0 ¢, -+ ,g, 0 ¢
are monic with respect to Xj.

d

Proof. Represent a polynomial in the form g = ij, where p; is the

j=0
homogenous of degree j and pg # 0.
Then the set of directions Q, = {e € S*~! : py(e) # 0} is open and
dense subset of the unit sphere S*—1.
For pa(e) # 0, let ¢ be a linear transfomation of R* such that p(e) = e,
where e, = (0,---,1). Then

d d d

gop(Xrer) = > pi(p(Xrer)) = Y pi(Xie) =Y pj(e) X} = pa(e) Xji+- -+
j=0 J=0 J=0

Hence, g o ¢ is quasi-monic wrt. Xj.

By the densense and open property, there exists e € @y, N---NQy,, and
hence there exists a linear change of coordinates ¢ which satisfies the
demand of the lemma. O



Theorem (Separating family).

Any finite set of polynomials on R™ can be augmented to a separating
family.

Proof. Induction on n. Let fi,---, f, : R® — R be polynomial
functions.

By the above lemma, after changing of coordinates, we get
fi(x,t) € R[z][t], where (z,t) e R xR, i=1,---,p, are
quasi-monic wrt. t.

For n = 1, by Thom’s lemma, augmenting all derivatives of the
polynomials we get the separating family.



For n > 1, we add all non null derivatives of all orders wrt. ¢ of

oo fptoget fi, o fs fprts s fora:

By Cylindrical decomposition theorem, R”~! can be partitioned to
semialgebraic sets Sy, - -, Sk, which are described by a finite set of
polynomial on R"~ 1

By the induction, that set can be added to get a separating family on
R, say forqits oy fpratr

We prove that fi,-, fptq+r is a separating family on R"~! x RR.
Consider A = {(z,t) : fi(z,t) s(2) 0, i=1,--- ,p+q+r}.

By Cylindrical decomposition theorem, A is either §) or of the forms I'(¢;)
or (&5,€41), where &;,€;11 : C — R are continuous semialgebraic
functions on the set

C=A{z: fi(x)s(i) 0, i=p+qg+1,---,p+q+r}.

By the induction, C' is connected, and hence A is connected.

When A # 0, put A" = {(z,t): fi(z,t) s(i) 0, i=1,--- ,p+q+r}
Clearly, A C A’.

We need to prove that A’ C A. By induction,

C={r: fi(x)s(i)0, i=p+q+1,--- ,p+qg+r}

Let 29 € C. Since f;(x,t), i =1,---,p+ q, are monic wrt. ¢, by
Lemma 1, their zeros £; are locally bounded at g on C.



Therefore, AN7~1(z0) # 0. By Thom's lemma, there are two posibilities
for the fiber A’ N 7w~ (z0):

(1) A point: that fiber coincides with the fiber AN 7= (zp).

(2) A closed interval J: When (zg,t) € J, we have

fi(xo,t) s(i) 0, i =1,--- ,p+q. This implies (zo,t) € A. Thus J C A.
In the two cases AN 7 1(zg) D A’ N7 1(xg) . Therefore, A/ C A. O



Let X C R™ be a semialgebraic subset. Then dim(X \ X) < dim X.

Proof. By Cylindrical theorem and the separating family theorem, change
the coordinates if needed, X is a finite of sets of the form I'(§) or
(&1,&2), where C C R™~! is semialgebraic and &,£1,& : C — R are
continuous semialgebraic and zeros of a quasi-monic wrt. ¢

fx,t) = ao(x) 4+ -+ ag_1 ()t + aqt? € R[z][t].
Moreover, the above set is of the form
A={(z,t): fi(z,t)e(@)0,i=1,--- ,N}

where f1,---, fny is a separating family containing f.



Since the coefficient of tis not 0, ¢ is locally bounded at each
y € C\ C (see Lemma 1). Therefore, there exist [ = liminf {(x) and

T—y
L =limsup &(z).
Ty

Since (z,&(x)) € A, B
(yal)a (va) € {(l‘,t) : fl(l',t) 57(1) 0) i = 1a T 7k} = A
By Thom's lemma y x [I, L] C A. Hence, f(y,t) =0, for all t € [, L].
Since f(y,t) is a polynomial not zero (wrt. t), | = L. Therefore, there

exists lim £(z), forall y € C\ C. Soy x RNT(£) is a point.
From this, by induction and dimension property (iii), we get

dim(T(€) \ T(€)) < dim((C \ €) x RNT(€)) < dimT(C) = dim T'(€).

The above arguments give

dim((€1,82) \ (€1,62)) < dim(&1,&2).



1
Exercise. Let X = {(z,y) € R? : y = sin —, z # 0}.
_ T
Prove that dim(X \ X) = dim X.
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Let X C R™ be a semialgebraic subset of dim X = k. Then there exists a
closed semialgebraic subset £ C R™ with dim F' < k such that X \ F'is a
submanifold of dimension k.

Proof. By Cell decomposition theorem, X is a finite union of analytic
cells. Let F' be the union of the cells of dimension < k — 1. By the above
lemma, dim F < k and X \ F is empty or a analytic submanifold of
dimension k. O



Theorem (Semi-algebraic stratification).

Let X1, , X be semialgebraic subsets of R™. Then there exists a
stratification of R™, compatible with each X}, and the strata are
semialgebraic.

Proof. For A,IW C R", let b(A, W) denote the (relative) boundary of A
in W. We will construct a sequence of semialgebraic subsets:

RnZZn:)anlD"'DZODZ,1:®

such that dim Z; < j, Z; \ Z;_; is either empty or a connected
semialgebraic submanifold of dimension j.

Suppose Z, D --+ D Zj are constructed. By Lemma 4, there exists a
closed semialgebraic subset Fj, C Zj of dimension < k such that

Wi = Zi \ Fy, is either empty or a submanifold of dimension k.

Let {T'.} be the family of connected components of Z; \ Z;_;. Put

Zy1=F | J | Jo( ™ W) Ub X, Wy,
ji>k o

Then Zj,_; is semialgebraic. By Lemma 3, dim Z;_; < k. Clearly,
Zy. \ Zi—1 is either empty or a k-dimensional submanifold.

Exercise. Check that the family {2}, , is a desired stratification. [



Exercise.

Use the above theorem to prove Sard’'s Theorem for semialgebraic
functions:

1) Let M C R™ be a semialgebraic submanifold and f: M — R be a
differentiable semialgebrac function. Put C' = {z : Df(z) = 0}. Prove
that f(C) is a finite set.

2) Let M, N be semialgebraic submanifolds and f : M — N be a
differentiable semialgebraic map. Put C' = {z : rank , f < dimN}. Prove
that The critical values set f(C') is semialgebraic and dimf(C) < dim V.
3) Let X be a semialgebraic subset of R™. Leti (X)) be the set of points
where X is not a submanifold. Suppose a € X is either a smooth point
of X or a isolated point of X(X). Use the sard theorem for the function
f(x) = ||z — al|? restricted to a neighborhood of X \ {a}, to prove the
existence of €9 > 0 such that every sphere S, of center a and radius

€ < g9, we have X NS, is a submanifold.



Further Reading: Stratification Theory - Regular conditions of Whitney.
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