LECTURE 2: Cell Decomposition - Stratification

Tạ Lê Lợi

Dalat University - 7/2023

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents

• 1. Cell decomposition.

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注…

- 2. Dimension.
- 3. Stratification.

From Cylindrical decomposition theorem, a semialgebraic subset of \mathbb{R}^n has an especially simple form - it splits into finitely many cells. Each cell is similar to a curving box.

◆□▶ ◆□▶ ◆□▶ ◆□▶

Moreover, each semialgebraic function is 'cellwise' analytic. In this lecture we show these results and their consequences.

Definition. The semialgebraic cells in \mathbb{R}^n are defined by induction on n as follows:

- A semialgebraic cell in \mathbb{R} is a point or an open interval.

- If $C \subset \mathbb{R}^n$ is a cell and $f, g : C \to \mathbb{R}$ are continuous semialgebraic functions such that f < g, then the sets:

 $\Gamma(f) = \{(x,t): t = f(x)\}, \ (f,g) = \{(x,t): f(x) < t < g(x)\},$

 $C \times \mathbb{R}, (-\infty, f) = \{(x, t) : t < f(x)\} \text{ and } (f, +\infty) = \{(x, t) : f(x) < t\}.$ are semialgebraic cells in \mathbb{R}^{n+1} .

- E

Let $k \in \mathbb{N} \cup \{\omega\}$. A C^k cell is a cell with the basis set C being a C^k -manifold and the functions f, g being of class C^k .

Exercise. Prove that each cell is homeomorphic to a box $(0,1)^d$.

A C^p cell decomposition of \mathbb{R}^n is defined by induction on n:

- A C^p decomposition of ${\mathbb R}$ is a finite collection of intervals and points

$$\{(-\infty, a_1), \cdots, (a_p, +\infty), \{a_1\}, \cdots, \{a_p\}\},\$$

where $a_1 < \cdots < a_p$, $p \in \mathbb{N}$.

- A C^p decomposition of \mathbb{R}^{n+1} is a finite partition of \mathbb{R}^{n+1} into C^p cells C, such that the collection of all the projections $\pi(C)$ is a C^p

decomposition of $\mathbb{R}^n,$ where $\pi:\mathbb{R}^{n+1}\to\mathbb{R}^n$ is the projection on the first n coordinates.

We say that a decomposition compatible with a class \mathcal{A} of subsets of \mathbb{R}^n , if each $S \in \mathcal{A}$ is a union of some cells of the decomposition.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (C^{ω} semialgebraic cell decomposition).

Let A_1, \dots, A_p be semialgebraic subsets of \mathbb{R}^n . Then there exists a C^{ω} semialgebraic cell decomposition of \mathbb{R}^n compatible with $\{A_1, \dots, A_p\}$.

Proof. Induction on n and basing on Cylindrical decomposition theorem. For n = 1: Let \mathcal{G} be the family of polynomials which describes A_1, \dots, A_p .

Augment ${\cal G}$ to ${\cal F}$ by all non null partial derivatives of all degree of polynomials in ${\cal G}.$

Then, by Thom's Lemma, \mathcal{F} defines a cell decomposition of \mathbb{R} such that each A_i is a union of cells defined by sign conditions of polynomials in \mathcal{F} .

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

For n > 1: For each $k = 1, \dots, n$, let $\pi_k : \mathbb{R}^n \to \mathbb{R}^k$ denote the projection the first k coordinates. From Cylindrical decomposition theorem and induction, we can construct a family of polynomials $\mathcal{F} = \mathcal{F}_n \cup \dots \cup \mathcal{F}_1$, which satisfies the following properties for each $k \in \{1, \dots, n\}$:

- $\mathcal{F}_k = \{f_{k,j} : j = 1, \dots, l_j\} \subset \mathbb{R}[X_1, \dots, X_k]$ is constructed from the polynomials describing $\pi_k(A_1), \dots, \pi_k(A_p)$, then augmented to be closed under derivative operator $\frac{\partial}{\partial X_k}$.

- The family $\mathcal{F}_{k-1} \cup \cdots \cup \mathcal{F}_1$ defines decomposition \mathcal{C}_{k-1} of \mathbb{R}^{k-1} consisting of cells, each of the cells is given by the sign condition of the polynomial in the family.

- For each $C \in \mathcal{C}_{k-1}$ there exists semialgebraic functions $\xi_{C,1} < \cdots < \xi_{C,r(C)} : C \to \mathbb{R}$, such that each $x \in C$, $\{\xi_{C,1}(x), \cdots, \xi_{C,r(C)}(x)\}$ is the zeros of $f_{k,1}(x, X_k), \cdots, f_{k,l_k}(x, X_k)$, and

- Each of $\pi_k(A_1), \cdots, \pi_k(A_p)$ is an union of cells such that each of the cells has the form $\Gamma(\xi_{C,i}), (\xi_{C,i}, \xi_{C,i+1}), (-\infty, \xi_{C,1})$ or $(\xi_{C,r(C)}, +\infty)$, where $C \in \mathcal{C}_{k-1}$, and the polynomials in \mathcal{F}_k do not change sign on that cell.

Therefore, to prove the cells are submanifolds of class C^{ω} , we need to prove $\xi_C = \xi_{C,i} : C \to \mathbb{R}$ is of class C^{ω} , for each cell $C \in \mathcal{C}_{k-1}$. By induction, C is a cell of class C^{ω} . Let $f \in \mathcal{F}_k$ be the polynomial in X_k of smallest degree (wrt. X_k) and $f(x, \xi_C(x)) = 0$, for all $x \in C$. By the closeness under the derivative operator $\frac{\partial}{\partial X_k}$ of the family \mathcal{F}_k and by the unchange sign of $\frac{\partial f}{\partial X_k}$ on $\Gamma(\xi_C)$, we get $\frac{\partial f}{\partial X_k}(x, \xi_C(x)) \neq 0$, for all $x \in C$.

By the Implicit function theorem, ξ_C is an analytic function.

From the above theorem, we have the following basic properties:

Theorem (The piecewise analytic property).

Let $A \subset \mathbb{R}^n$ be a semialgebraic subset and $f : A \to \mathbb{R}$ be a semialgebraic function. Then there exists a C^{ω} semialgebraic decomposition \mathcal{C} of \mathbb{R}^n , compatible with A, such that $f|_C$ is of class C^{ω} , for all $C \in \mathcal{C}$ and $C \subset A$.

Proof. Applying the cell decomposition theorem to $A_1 = \Gamma(f) \subset \mathbb{R}^{n+1}$, we get the result.

《曰》 《聞》 《臣》 《臣》 三臣

Proposition (Monotonnicity theorem).

Let $f: \mathbb{R} \to \mathbb{R}$ be a semialgebraic function. Then there exist points $-\infty = a_0 < a_1 < \cdots < a_N = +\infty$ such that on each interval (a_i, a_{i+1}) the function is either constant, or strictly monotone and analytic. As a consequence, for all $a \in \mathbb{R} \cup \{\pm\infty\}$, the limits $\lim_{x \to a^+} f(x), \lim_{x \to a^-} f(x)$ exist (in $\mathbb{R} \cup \{\pm\infty\}$).

Proof. From the above theorem, there exists a decomposition of \mathbb{R} into finite points or intervals on which f is analytic.

Each of the intervals can be decomposed into finte points or intervals compatible with the conditions f'=0, f'>0, f'<0. The result follows.

《曰》 《聞》 《臣》 《臣》 三臣

Proposition (Uniformly finiteness).

Let $A \subset \mathbb{R}^n$ be a semialgebraic set. Let $\pi : \mathbb{R}^n \to \mathbb{R}^{n-1}$ be the natural projection. Suppose that $\#A \cap \pi^{-1}(x) < +\infty$, $\forall x \in \mathbb{R}^{n-1}$. Then there exists $N \in \mathbb{N}$, such that $\#A \cap \pi^{-1}(x) \leq N$, $\forall x \in \mathbb{R}^{n-1}$.

Proof. Decompose \mathbb{R}^n into cells compatible with A. Since# $A \cap \pi^{-1}(x) < +\infty$, for all $x \in \mathbb{R}^{n-1}$, A is a finite union of sets of the graph form $\Gamma(\xi_C)$, for $C \subset \pi(A)$ being cells in \mathbb{R}^{n-1} . Therefore, N = maximum of the numbers of graphs over C, for $C \subset \pi(A)$, is the desired uniform bound.

(日) (图) (문) (문) (문)

Dimension is a basic notion of topology and geometry. Since semialgebraic sets are finite union of manifolds, the following definition of dimension of semialgebraic sets is suitabe.

Definition. The dimension of a semialgebraic subset $X \subset \mathbb{R}^n$ is defined by

dim $X = \sup \{ \dim \Gamma : \Gamma \subset X, \Gamma \text{ is a analytic submanifold of } \mathbb{R}^n \}.$

Note. If $X = \bigcup_{i \in I} C_i$ is a finite union of analytic cells, then

 $\dim X = \max\{\dim C_i : i \in I\}.$

In fact, let $\Gamma \subset X$ be a submanifold such that $\dim \Gamma = \dim X$. Since $\Gamma = \bigcup_{i \in I} \Gamma \cap C_i$, by Baire's property of manifolds, there exists $i_0 \in I$ such that $\Gamma \cap C_{i_0}$ has nonempty interior in Γ . So $\dim C_{i_0} \ge \dim \Gamma$. From this we get the conclusion of the note.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Basing on results of dimension of manifolds, the dimension of semialgebraic has following natural properties:

Proposition.

(i) Let $X, Y \subset \mathbb{R}^n$ be semialgebraic subsets. Then $\dim X < n \Leftrightarrow \stackrel{\circ}{X} = \emptyset.$ $X \subset Y \Rightarrow \dim X \leq \dim Y.$ (ii) If $X = \bigcup_{i=1}^p X_i$, where X_i are semialgebraic, then $\dim X = \max_{1 \leq i \leq p} \dim X_i.$

(iii) Let $X \subset \mathbb{R}^m \times \mathbb{R}^n$ be semialgebraic. Let $\pi : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ be the natural projection. Suppose $\dim \pi^{-1}(x) \cap X \leq k$, $\forall x \in \pi(X)$. Then

 $\dim \pi(X) \le \dim X \le \dim \pi(X) + k.$

(iv) Let $f: M \to N$ be a semialgebraic mapping, and $X \subset M$ be a semialgebraic subset. Then $\dim f(X) \leq \dim X$.

Proof. (i) is clear.

(ii) Let $\Gamma \subset X$ be a submanifold such that $\dim \Gamma = \dim X$. Represent $X_i = \bigcup_j \Gamma_{i,j}$ as a finite union of manifolds. Arguing as in the above note for $\Gamma = \bigcup_{i,j} (\Gamma \cap \Gamma_{i,j})$, we get i_0, j_0 such that the interior of Γ_{i_0,j_0} trong Γ is not empty. From that we have (ii).

(iii) By Cell decomposition theorem, $X = \cup_i \Gamma_i$ is a finite union of analytic cells such that π_{Γ_i} is of constant rank and $\pi(\Gamma_i)$ is an analytic cell.

Then $\pi(X) = \cup_i \pi(\Gamma_i)$ and $\dim \Gamma_i \ge \operatorname{rank} \pi_{\Gamma_i}$. Therfore,

$$\dim X = \max_{i} \dim \Gamma_{i} \ge \max_{i} \operatorname{rank} \pi_{\Gamma_{i}} = \max_{i} \dim \pi(\Gamma_{i}) = \dim \pi(X).$$

Besides, let $\Gamma \subset X$ be an analytic cell in the above decomposition with dimension dim X. Then each fiber $\pi_{\Gamma}^{-1}(x) = \pi^{-1}(x) \cap \Gamma$, $x \in \pi(\Gamma)$ is a submanifold of dimension dim Γ - rank π_{Γ} . From the supposition, we have dim $X = \dim \Gamma \leq \dim \pi(X) + k$. (iv) is followed from (iii) with the note that

 $X = \pi_1(f_X), f(X) = \pi_2(f_X)$, where $f_X = f \cap X \times N$ and π_1, π_2 are the projections from $M \times N$ to M, N respectively.

Exercise. Learn the construction of Peano's curves, which are continuous maps $f : [0,1] \rightarrow [0,1]^2$, with image $f([0,1]) = [0,1]^2$.

Therefore, in general, continuous mappings do not have the property (iv) of the above proposition.

3. Stratification.

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ へ ○

Hassler Whitney (1907-1989)

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣 - のへで

René Thom (1923-2002)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stratification theory was initialled by Whitney. In 1957 Whitney showed that every algebraic set in \mathbb{R}^n can be partitioned into finitely many connected semialgebraic submanifolds, which are fitted to each other along their boundaries and satisfy some certain 'good' condition (called Whitney regular conditions). Such a partition is called stratification. Many problems, in many different fields, were solved by basing on the property that the involved sets are stratified.

For example, equi-singularity problems proposed by Thom (see [GWPL] and the examples below).

Another example: To solved the Schwartz's division problem, Łojasiewicz (1959) (see [Ł]), constructed the stratification of semi-analytic sets and certain metric properties (called Łojasiewicz's inequalities). From that he obtained the solution for the problem.

In this part, we present a result of Lojasiewicz that any semialgebraic set can be stratified.

Definition. A stratification of \mathbb{R}^n is a partition $\{\Gamma_\alpha\}_{\alpha \in \Lambda}$ of \mathbb{R}^n into finitely many subsets, called strata, such that: (S1) Each stratum Γ_α is a connected submanifold of \mathbb{R}^n . (S2) Boundary condition: if $\overline{\Gamma}_\alpha \cap \Gamma_\beta \neq \emptyset$, then $\Gamma_\beta \subset \overline{\Gamma}_\alpha$ and $\dim \Gamma_\beta < \dim \Gamma_\alpha$. i.e. $\overline{\Gamma}_\alpha \setminus \Gamma_\alpha$ is a union of some of the strata with $\dim \Gamma_\beta < \dim \Gamma_\alpha$. A strafication is called compatible with a subset $X \subset \mathbb{R}^n$ iff $\Gamma_\alpha \cap X \neq \emptyset$, then $\Gamma_\alpha \subset X$, i.e. X is a union of some Γ_α . A strafication is called semialgebraic iff each stratum is semialgebraic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Example.

In \mathbb{R}^3 , let V be a subset defined by $x^2 - zy^2 = 0$ (Whitney's umbrela).

Partition 1: $\mathbb{R}^3 \setminus V, V \setminus Oz, Oz$,

is not a stratification because it does not satisfy (S2). Partition 2: $\mathbb{R}^3 \setminus V, V \setminus Oz, \{(0.0, z) : z > 0\}, \{(0, 0, z) : z < 0\}, O$, is a stratification compatible with V.

Note. For Partition 2, the topo types of $V \cap B_a$, where B_a is a ball with center a of sufficiently small radius, are the same when a ranges in a stratum (the topological equisingularity).

Exercise.

1) Find a stratification compatible with X given by the following equation:

a) $x^3 + zx^2 - y^2 = 0$ b) $x^3 + y^2 - z^2x^2 = 0$.

Find a stratification which satisfies the topological equisingularity for X.

2) Prove that \mathbb{R}^{n+1} is stratified by the family $\Gamma_{i_1\cdots i_k} = \{(a_0,\cdots,a_n) \in \mathbb{R}^{n+1} :$

 $a_0+a_1T+\cdots+a_nT^n$ has exactly k complex zeros with multiplicities i_1,\cdots,i_k ,

< ロ > (四 > (四 > (三 > (三 >))) (三 =))

where
$$k \in \mathbb{N}, (i_1, \cdots, i_k) \in \{0, \cdots, n\}^k$$
.
Concretize when $n = 2$.

Theorem (Semi-algebraic stratification).

Let X_1, \dots, X_k be semialgebraic subsets of \mathbb{R}^n . Then there exists a stratification of \mathbb{R}^n , compatible with each X_i , and the strata are semialgebraic.

<ロト <回ト < 注ト < 注ト = 注

To prove the theorem we prepare some tools and lemmas.

To generalize Thom's Lemma to polynomial of several variables we have the following notion:

Definition. A family of polynomial functions $f_1, \dots, f_N : \mathbb{R}^n \to \mathbb{R}$ is called separating iff for any $s : \{1, \dots, N\} \to \{<, =, >\}$, the semialgebraic subset of the form

$$A_s = \{ x \in \mathbb{R}^n : f_i(x) \ s(i) \ 0, \ i = 1, \cdots, N \},\$$

satisfies:

(i) A_s is either empty or connected.
(ii) If A_s ≠ Ø, then the closure of A_s has the algebraic description

$$\overline{A_s} = \{ x \in \mathbb{R}^n : f_i(x) \ \underline{s}(i) \ 0, \ i = 1, \cdots, N \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

where $\underline{s}(i)$ is $\leq =$ or \geq according as s(i) is < =or >. (i.e. the closure is obtained by relaxing all strict inequalities to weak inequalities). To construct a separating family from a finite set of polynomial functions, we need to pay attention to the boundedness of the roots of a polynomial with respect to its coefficient of the highest degree.

Lemma 1.

Put
$$g(t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_0 \in \mathbb{C}[t]$$
, where $a_d \neq 0$. Then if $\xi \in \mathbb{C}, \ g(\xi) = 0$, then $|\xi| \le \max_{0 \le k \le d-1} \left(d \frac{|a_k|}{|a_d|} \right)^{\frac{1}{d-k}}$.

Proof. When |t| > M, we have

$$|g(t)| > |a_d| M^d - (|a_{d-1}| M^{d-1} + \dots + |a_0|).$$

<ロト <四ト <注入 <注下 <注下 <

Therefore, when we choose M such that $\frac{1}{d}|a_d|M^d \ge |a_k|M^k$, for all $k = 0, \dots d - 1$, ta có |g(t)| > 0. From that we get the estimate.

For several-variable polynomials, the following notion gives the boundedness of the zeros.

Definition. A polynomial $f \in \mathbb{R}[X_1, \dots, X_k]$ is called quasi-monic with respect to X_k iff

$$f = a_d X_k^d + a_{d-1}(X_1, \cdots, X_{k-1}) X_k^{d-1} + \cdots + a_0(X_1, \cdots, X_{k-1}),$$

where the leading coefficient is a constant $a_d \neq 0$.

Example. f(x, y) = xy - 1. The equation f(x, y) = 0 has the root $x = \frac{1}{y} \to \infty$, when $y \to 0$. Change the coordinates: $x = X + \lambda Y, y = X - \lambda Y$, where $\lambda \neq 0$. Then $f = X^2 - \lambda^2 Y^2 - 1$ is monic with respect to Xand f = 0 has the root $X = \pm \lambda \sqrt{Y^2 + 1}$ which is locally bounded.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma 2.

Let g_1, \dots, g_p be real polynomials of k variables. Then there exists a linear change of coordinates $\varphi : \mathbb{R}^k \to \mathbb{R}^k$, such that $g_1 \circ \varphi, \dots, g_p \circ \varphi$ are monic with respect to X_k .

Proof. Represent a polynomial in the form $g = \sum_{j=0}^{d} p_j$, where p_j is the

homogenous of degree j and $p_d \neq 0$. Then the set of directions $Q_g = \{e \in S^{k-1} : p_d(e) \neq 0\}$ is open and dense subset of the unit sphere S^{k-1} .

For $p_d(e) \neq 0$, let φ be a linear transfomation of \mathbb{R}^k such that $\varphi(e_k) = e$, where $e_k = (0, \cdots, 1)$. Then

$$g \circ \varphi(X_k e_k) = \sum_{j=0}^d p_j(\varphi(X_k e_k)) = \sum_{j=0}^d p_j(X_k e) = \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_k^j = p_d(e) X_k^d + \dots + \sum_{j=0}^d p_j(e) X_j^d + \dots + \sum_{j=0}^d p$$

<ロト (四) (三) (三) (三)

Hence, $g \circ \varphi$ is quasi-monic wrt. X_k .

By the densense and open property, there exists $e \in Q_{g_1} \cap \cdots \cap Q_{g_p}$, and hence there exists a linear change of coordinates φ which satisfies the demand of the lemma.

Theorem (Separating family).

Any finite set of polynomials on \mathbb{R}^n can be augmented to a separating family.

Proof. Induction on *n*. Let $f_1, \dots, f_p : \mathbb{R}^n \to \mathbb{R}$ be polynomial functions.

By the above lemma, after changing of coordinates, we get $f_i(x,t) \in \mathbb{R}[x][t]$, where $(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R}, i = 1, \cdots, p$, are quasi-monic wrt. t.

For n = 1, by Thom's lemma, augmenting all derivatives of the polynomials we get the separating family.

《曰》 《聞》 《臣》 《臣》 三臣 …

For n > 1, we add all non null derivatives of all orders wrt. t of f_1, \dots, f_p to get $f_1, \dots, f_p, f_{p+1}, \dots, f_{p+q}$. By Cylindrical decomposition theorem, \mathbb{R}^{n-1} can be partitioned to semialgebraic sets S_1, \dots, S_k , which are described by a finite set of polynomial on \mathbb{R}^{n-1} . By the induction, that set can be added to get a separating family on \mathbb{R}^{n-1} , say $f_{p+q+1}, \cdots, f_{p+q+r}$. We prove that f_1, \dots, f_{p+q+r} is a separating family on $\mathbb{R}^{n-1} \times \mathbb{R}$. Consider $A = \{(x, t) : f_i(x, t) \ s(i) \ 0, \ i = 1, \cdots, p + q + r\}.$ By Cylindrical decomposition theorem, A is either \emptyset or of the forms $\Gamma(\xi_i)$ or (ξ_i, ξ_{i+1}) , where $\xi_i, \xi_{i+1} : C \to \mathbb{R}$ are continuous semialgebraic functions on the set $C = \{x: f_i(x) \ s(i) \ 0, \ i = p + q + 1, \cdots, p + q + r\}$ By the induction, C is connected, and hence A is connected. When $A \neq \emptyset$, put $A' = \{(x, t) : f_i(x, t) \ s(i) \ 0, \ i = 1, \dots, p + q + r\}.$ Clearly, $\overline{A} \subset A'$. We need to prove that $A' \subset \overline{A}$. By induction, $\overline{C} = \{x: f_i(x) \ s(i) \ 0, \ i = p + q + 1, \cdots, p + q + r\}.$ Let $x_0 \in \overline{C}$. Since $f_i(x,t), i = 1, \dots, p+q$, are monic wrt. t, by Lemma 1, their zeros ξ_i are locally bounded at x_0 on \overline{C} .

Therefore, $\overline{A} \cap \pi^{-1}(x_0) \neq \emptyset$. By Thom's lemma, there are two posibilities for the fiber $A' \cap \pi^{-1}(x_0)$: (1) A point: that fiber coincides with the fiber $\overline{A} \cap \pi^{-1}(x_0)$. (2) A closed interval J: When $(x_0,t) \in \mathring{J}$, we have $f_i(x_0,t) \ s(i) \ 0, \ i = 1, \cdots, p+q$. This implies $(x_0,t) \in \overline{A}$. Thus $J \subset \overline{A}$. In the two cases $\overline{A} \cap \pi^{-1}(x_0) \supset A' \cap \pi^{-1}(x_0)$. Therefore, $A' \subset \overline{A}$. \Box

《曰》 《聞》 《臣》 《臣》 三臣

Lemma 3.

Let $X \subset \mathbb{R}^n$ be a semialgebraic subset. Then $\dim(\overline{X} \setminus X) < \dim X$.

Proof. By Cylindrical theorem and the separating family theorem, change the coordinates if needed, X is a finite of sets of the form $\Gamma(\xi)$ or (ξ_1, ξ_2) , where $C \subset \mathbb{R}^{n-1}$ is semialgebraic and $\xi, \xi_1, \xi_2 : C \to \mathbb{R}$ are continuous semialgebraic and zeros of a quasi-monic wrt. t

$$f(x,t) = a_0(x) + \dots + a_{d-1}(x)t^{d-1} + a_d t^d \in \mathbb{R}[x][t].$$

Moreover, the above set is of the form

$$A = \{(x,t): f_i(x,t) \ \epsilon(i) \ 0, \ i = 1, \cdots, N\}$$

<ロト <四ト <注入 <注下 <注下 <

where f_1, \dots, f_N is a separating family containing f.

Since the coefficient of t^d is not 0, ξ is locally bounded at each $y \in \overline{C} \setminus C$ (see Lemma 1). Therefore, there exist $l = \liminf_{x \to y} \xi(x)$ and $L = \limsup_{x \to y} \xi(x)$. Since $(x, \xi(x)) \in A$, $(y, l), (y, L) \in \{(x, t) : f_i(x, t) \in (i) 0, i = 1, \cdots, k\} = \overline{A}$. By Thom's lemma $y \times [l, L] \subset \overline{A}$. Hence, f(y, t) = 0, for all $t \in [l, L]$. Since f(y, t) is a polynomial not zero (wrt. t), l = L. Therefore, there exists $\lim_{x \to y} \xi(x)$, for all $y \in \overline{C} \setminus C$. So $y \times \mathbb{R} \cap \overline{\Gamma(\xi)}$ is a point. From this, by induction and dimension property (iii), we get

 $\dim(\overline{\Gamma}(\xi) \setminus \Gamma(\xi)) \leq \dim((\overline{C} \setminus C) \times \mathbb{R} \cap \overline{\Gamma(\xi)}) < \dim \Gamma(C) = \dim \Gamma(\xi).$

The above arguments give

 $\dim(\overline{(\xi_1,\xi_2)}\setminus(\xi_1,\xi_2))<\dim(\xi_1,\xi_2).$

(日) (四) (문) (문) (문) (문)

Exercise. Let $X = \{(x, y) \in \mathbb{R}^2 : y = \sin \frac{1}{x}, x \neq 0\}$. Prove that $\dim(\overline{X} \setminus X) = \dim X$.

・ロト ・四ト ・ヨト ・ヨト

æ

Lemma 4.

Let $X \subset \mathbb{R}^n$ be a semialgebraic subset of $\dim X = k$. Then there exists a closed semialgebraic subset $F \subset \mathbb{R}^n$ with $\dim F < k$ such that $X \setminus F$ is a submanifold of dimension k.

Proof. By Cell decomposition theorem, X is a finite union of analytic cells. Let F be the union of the cells of dimension $\leq k - 1$. By the above lemma, $\dim F < k$ and $X \setminus F$ is empty or a analytic submanifold of dimension k.

<ロト <回ト < 注ト < 注ト = 注

Theorem (Semi-algebraic stratification).

Let X_1, \dots, X_k be semialgebraic subsets of \mathbb{R}^n . Then there exists a stratification of \mathbb{R}^n , compatible with each X_i , and the strata are semialgebraic.

Proof. For $A, W \subset \mathbb{R}^n$, let b(A, W) denote the (relative) boundary of A in W. We will construct a sequence of semialgebraic subsets:

$$\mathbb{R}^n = Z_n \supset Z_{n-1} \supset \cdots \supset Z_0 \supset Z_{-1} = \emptyset$$

such that $\dim Z_j \leq j$, $Z_j \setminus Z_{j-1}$ is either empty or a connected semialgebraic submanifold of dimension j.

Suppose $Z_n \supset \cdots \supset Z_k$ are constructed. By Lemma 4, there exists a closed semialgebraic subset $F_k \subset Z_k$ of dimension < k such that $W_k = Z_k \setminus F_k$ is either empty or a submanifold of dimension k. Let $\{\Gamma_{\sigma}^j\}$ be the family of connected components of $Z_j \setminus Z_{j-1}$. Put

$$Z_{k-1} = F_k \bigcup_{j>k} \bigcup_{\sigma} b(\overline{\Gamma}^j_{\sigma}, W_k) \bigcup_i b(X_i, W_k),$$

Then Z_{k-1} is semialgebraic. By Lemma 3, dim $Z_{k-1} < k$. Clearly, $Z_k \setminus Z_{k-1}$ is either empty or a k-dimensional submanifold. **Exercise.** Check that the family $\{\Gamma_{\sigma}^j\}_{j,\sigma}$ is a desired stratification.

Exercise.

Use the above theorem to prove Sard's Theorem for semialgebraic functions:

1) Let $M \subset \mathbb{R}^n$ be a semialgebraic submanifold and $f: M \to \mathbb{R}$ be a differentiable semialgebrac function. Put $C = \{x : Df(x) = 0\}$. Prove that f(C) is a finite set.

2) Let M, N be semialgebraic submanifolds and $f: M \to N$ be a differentiable semialgebraic map. Put $C = \{x: \operatorname{rank}_x f < \dim N\}$. Prove that The critical values set f(C) is semialgebraic and $\dim f(C) < \dim N$. 3) Let X be a semialgebraic subset of \mathbb{R}^n . Let $\Sigma(X)$ be the set of points where X is not a submanifold. Suppose $a \in X$ is either a smooth point of X or a isolated point of $\Sigma(X)$. Use the sard theorem for the function $f(x) = ||x - a||^2$ restricted to a neighborhood of $X \setminus \{a\}$, to prove the existence of $\varepsilon_0 > 0$ such that every sphere S_{ε} of center a and radius $\varepsilon < \varepsilon_0$, we have $X \cap S_{\varepsilon}$ is a submanifold.

Further Reading: Stratification Theory - Regular conditions of Whitney. Ref.

C. B. Gibson, K. Wirthmuller, A. A. du Plessis và E. J. N. Loojenga, *Topological Stability of Smooth Mappings*, Lecture Notes in Mathematics 552, Springer-Verlag, 1976.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- E. Bierston and P. Milman, *Semianalytic and subanalytic sets*, Inst. Hautes Études Sci. Publ. Math. 67(1988), 5-42.
- M. Coste, *An introduction to semialgebraic geometry,* Universita di Pisa, Dottorato di recerca in Matematica, Instituti editoriali e poligrafigi internazionali, Pisa-Roma, 2000.
- C. B. Gibson, K. Wirthmuller, A. A. du Plessis và E. J. N. Loojenga, *Topological Stability of Smooth Mappings*, Lecture Notes in Mathematics 552, Springer-Verlag, 1976.
- S. Łojasiewicz, Ensembles Semi-Analytiques, IHES, Bures-sur-Yvette, 1965.

《曰》 《聞》 《臣》 《臣》 三臣

End of Lecture 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで