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1. Cell decomposition

From Cylindrical decomposition theorem, a semialgebraic subset of Rn

has an especially simple form - it splits into finitely many cells.

Each cell is similar to a curving box.

Moreover, each semialgebraic function is ‘cellwise’ analytic.

In this lecture we show these results and their consequences.



Definition. The semialgebraic cells in Rn are defined by induction on n
as follows:
- A semialgebraic cell in R is a point or an open interval.
- If C ⊂ Rn is a cell and f, g : C → R are continuous semialgebraic
functions such that f < g, then the sets:

Γ(f) = {(x, t) : t = f(x)}, (f, g) = {(x, t) : f(x) < t < g(x)},
C × R, (−∞, f) = {(x, t) : t < f(x)} and (f,+∞) = {(x, t) : f(x) < t}.
are semialgebraic cells in Rn+1.
Let k ∈ N ∪ {ω}. A Ck cell is a cell with the basis set C being a
Ck-manifold and the functions f, g being of class Ck.

Exercise. Prove that each cell is homeomorphic to a box (0, 1)d.



A Cp cell decomposition of Rn is defined by induction on n:
- A Cp decomposition of R is a finite collection of intervals and points

{(−∞, a1), · · · , (ap,+∞), {a1}, · · · , {ap}},

where a1 < · · · < ap, p ∈ N.
- A Cp decomposition of Rn+1 is a finite partition of Rn+1 into Cp cells
C, such that the collection of all the projections π(C) is a Cp

decomposition of Rn, where π : Rn+1 → Rn is the projection on the first
n coordinates.
We say that a decomposition compatible with a class A of subsets of Rn,
if each S ∈ A is a union of some cells of the decomposition.



Theorem (Cω semialgebraic cell decomposition).

Let A1, · · · , Ap be semialgebraic subsets of Rn. Then there exists a Cω

semialgebraic cell decomposition of Rn compatible with {A1, · · · , Ap}.

Proof. Induction on n and basing on Cylindrical decomposition theorem.
For n = 1: Let G be the family of polynomials which describes
A1, · · · , Ap.
Augment G to F by all non null partial derivatives of all degree of
polynomials in G.
Then, by Thom’s Lemma, F defines a cell decomposition of R such that
each Ai is a union of cells defined by sign conditions of polynomials in F .



For n > 1: For each k = 1, · · · , n, let πk : Rn → Rk denote the
projection the first k coordinates. From Cylindrical decomposition
theorem and induction, we can construct a family of polynomials
F = Fn ∪ · · · ∪ F1, which satisfies the following properties for each
k ∈ {1, · · · , n}:
- Fk = {fk,j : j = 1, · · · lj} ⊂ R[X1, · · · , Xk] is constructed from the
polynomials describing πk(A1), · · · , πk(Ap), then augmented to be
closed under derivative operator ∂

∂Xk
.

- The family Fk−1 ∪ · · · ∪ F1 defines decomposition Ck−1 of Rk−1

consisting of cells, each of the cells is given by the sign condition of the
polynomial in the family.
- For each C ∈ Ck−1 there exists semialgebraic functions
ξC,1 < · · · < ξC,r(C) : C → R, such that each x ∈ C,
{ξC,1(x), · · · , ξC,r(C)(x)} is the zeros of fk,1(x,Xk), · · · , fk,lk(x,Xk),
and
- Each of πk(A1), · · · , πk(Ap) is an union of cells such that each of the
cells has the form Γ(ξC,i), (ξC,i, ξC,i+1), (−∞, ξC,1) or (ξC,r(C),+∞),
where C ∈ Ck−1, and the polynomials in Fk do not change sign on that
cell.



Therefore, to prove the cells are submanifolds of class Cω, we need to
prove ξC = ξC,i : C → R is of class Cω, for each cell C ∈ Ck−1.
By induction, C is a cell of class Cω. Let f ∈ Fk be the polynomial in
Xk of smallest degree (wrt. Xk) and f(x, ξC(x)) = 0, for all x ∈ C.
By the closeness under the derivative operator ∂

∂Xk
of the family Fk and

by the unchange sign of ∂f
∂Xk

on Γ(ξC), we get ∂f
∂Xk

(x, ξC(x)) 6= 0, for all
x ∈ C.
By the Implicit function theorem, ξC is an analytic function. �



From the above theorem, we have the following basic properties:

Theorem (The piecewise analytic property).

Let A ⊂ Rn be a semialgebraic subset and f : A→ R be a semialgebraic
function. Then there exists a Cω semialgebraic decomposition C of Rn,
compatible with A, such that f |C is of class Cω, for all C ∈ C and
C ⊂ A.

Proof. Applying the cell decomposition theorem to A1 = Γ(f) ⊂ Rn+1,
we get the result. �



Proposition (Monotonnicity theorem).

Let f : R→ R be a semialgebraic function. Then there exist points
−∞ = a0 < a1 < · · · < aN = +∞ such that on each interval (ai, ai+1)
the function is either constant, or strictly monotone and analytic.
As a consequence, for all a ∈ R ∪ {±∞}, the limits
lim
x→a+

f(x), lim
x→a−

f(x) exist (in R ∪ {±∞}).

Proof. From the above theorem, there exists a decomposition of R into
finite points or intervals on which f is analytic.
Each of the intervals can be decomposed into finte points or intervals
compatible with the conditions f ′ = 0, f ′ > 0, f ′ < 0.
The result follows. �



Proposition (Uniformly finiteness).

Let A ⊂ Rn be a semialgebraic set. Let π : Rn → Rn−1 be the natural
projection. Suppose that #A ∩ π−1(x) < +∞, ∀x ∈ Rn−1.
Then there exists N ∈ N, such that #A ∩ π−1(x) ≤ N , ∀x ∈ Rn−1.

Proof. Decompose Rn into cells compatible with A.
Since#A ∩ π−1(x) < +∞, for all x ∈ Rn−1, A is a finite union of sets of
the graph form Γ(ξC), for C ⊂ π(A) being cells in Rn−1.
Therefore, N = maximum of the numbers of graphs over C, for
C ⊂ π(A), is the desired uniform bound. �



2. Dimension.

Dimension is a basic notion of topology and geometry.
Since semialgebraic sets are finite union of manifolds, the following
definition of dimension of semialgebraic sets is suitabe.

Definition. The dimension of a semialgebraic subset X ⊂ Rn is defined
by

dimX = sup{dim Γ : Γ ⊂ X, Γ is a analytic submanifold of Rn}.

Note. If X = ∪i∈ICi is a finite union of analytic cells, then

dimX = max{dimCi : i ∈ I}.

In fact, let Γ ⊂ X be a submanifold such that dim Γ = dimX. Since
Γ = ∪i∈IΓ ∩ Ci, by Baire’s property of manifolds, there exists i0 ∈ I
such that Γ ∩ Ci0 has nonempty interior in Γ. So dimCi0 ≥ dim Γ.
From this we get the conclusion of the note.



Basing on results of dimension of manifolds, the dimension of
semialgebraic has following natural properties:

Proposition.

(i) Let X,Y ⊂ Rn be semialgebraic subsets. Then

dimX < n ⇔
◦
X = ∅.

X ⊂ Y ⇒ dimX ≤ dimY.
(ii) If X = ∪pi=1Xi, where Xi are semialgebraic, then

dimX = max
1≤i≤p

dimXi.

(iii) Let X ⊂ Rm × Rn be semialgebraic. Let π : Rm × Rn → Rm be
the natural projection. Suppose dimπ−1(x) ∩X ≤ k, ∀x ∈ π(X). Then

dimπ(X) ≤ dimX ≤ dimπ(X) + k.

(iv) Let f : M → N be a semialgebraic mapping, and X ⊂M be a
semialgebraic subset. Then dim f(X) ≤ dimX.



Proof. (i) is clear.
(ii) Let Γ ⊂ X be a submanifolsd such that dim Γ = dimX. Represent
Xi = ∪jΓi,j as a finite union of manifolds. Arguing as in the above note
for Γ =

⋃
i,j(Γ ∩ Γi,j), we get i0, j0 such that the interior of Γi0,j0 trong

Γ is not empty. From that we have (ii).
(iii) By Cell decomposition theorem, X = ∪iΓi is a finite union of
analytic cells such that πΓi

is of constant rank and π(Γi) is an analytic
cell.
Then π(X) = ∪iπ(Γi) and dim Γi ≥ rankπΓi . Therfore,

dimX = max
i

dim Γi ≥ max
i

rankπΓi = max
i

dimπ(Γi) = dimπ(X).

Besides, let Γ ⊂ X be an analytic cell in the above decomposition with
dimension dimX. Then each fiber π−1

Γ (x) = π−1(x) ∩ Γ, x ∈ π(Γ) is a
submanifold of dimension dim Γ− rankπΓ. From the supposition, we have
dimX = dim Γ ≤ dimπ(X) + k.
(iv) is followed from (iii) with the note that
X = π1(fX), f(X) = π2(fX), where fX = f ∩X ×N and π1, π2 are
the projections from M ×N to M,N respectively. �



Exercise. Learn the construction of Peano’s curves, which are
continuous maps f : [0, 1]→ [0, 1]2, with image f([0, 1]) = [0, 1]2..

Therefore, in general, continuous mappings do not have the property (iv)
of the above proposition.



3. Stratification.



Hassler Whitney (1907-1989)



René Thom (1923-2002)



3. Stratification.

Stratification theory was initialled by Whitney. In 1957 Whitney showed
that every algebraic set in Rn can be partitioned into finitely many
connected semialgebraic submanifolds, which are fitted to each other
along their boundaries and satisfy some certain ‘good’ condition (called
Whitney regular conditions). Such a partition is called stratification.
Many problems, in many different fields, were solved by basing on the
property that the involved sets are stratified.
For example, equi-singularity problems proposed by Thom (see [GWPL]
and the examples below).
Another example: To solved the Schwartz’s division problem,  Lojasiewicz
(1959) (see [ L]), constructed the stratification of semi-analytic sets and
certain metric properties (called  Lojasiewicz’s inequalities). From that he
obtained the solution for the problem.
In this part, we present a result of  Lojasiewicz that any semialgebraic set
can be stratified.



Definition. A stratification of Rn is a partition {Γα}α∈Λ of Rn into
finitely many subsets, called strata, such that:
(S1) Each stratum Γα is a connected submanifold of Rn.
(S2) Boundary condition:
if Γα ∩ Γβ 6= ∅, then Γβ ⊂ Γα and dim Γβ < dim Γα.
i.e. Γα \ Γα is a union of some of the strata with dim Γβ < dim Γα.
A strafication is called compatible with a subset X ⊂ Rn iff Γα ∩X 6= ∅,
then Γα ⊂ X, i.e. X is a union of some Γα.
A strafication is called semialgebraic iff each stratum is semialgebraic.



Example.

In R3, let V be a subset defined by x2 − zy2 = 0 (Whitney’s umbrela).

Partition 1: R3 \ V, V \Oz,Oz,
is not a stratification because it does not satisfy (S2).
Partition 2: R3 \ V, V \Oz, {(0.0, z) : z > 0}, {(0, 0, z) : z < 0}, O,
is a stratification compatible with V .
Note. For Partition 2, the topo types of V ∩Ba, where Ba is a ball
with center a of sufficiently small radius, are the same when a ranges in a
stratum (the topological equisingularity).



Exercise.
1) Find a stratification compatible with X given by the following
equation:
a) x3 + zx2 − y2 = 0 b) x3 + y2 − z2x2 = 0.
Find a stratification which satisfies the topological equisingularity for X.

2) Prove that Rn+1 is stratified by the family
Γi1···ik = {(a0, · · · , an) ∈ Rn+1 :

a0+a1T+· · ·+anTn has exactly k complex zeros with multiplicities i1, · · · , ik},

where k ∈ N, (i1, · · · , ik) ∈ {0, · · · , n}k.
Concretize when n = 2.



Theorem (Semi-algebraic stratification).

Let X1, · · · , Xk be semialgebraic subsets of Rn. Then there exists a
stratification of Rn, compatible with each Xi, and the strata are
semialgebraic.

To prove the theorem we prepare some tools and lemmas.



To generalize Thom’s Lemma to polynomial of several variables we have
the following notion:

Definition. A family of polynomial functions f1, · · · , fN : Rn → R is
called separating iff for any s : {1, · · · , N} → {<,=, >}, the
semialgebraic subset of the form

As = {x ∈ Rn : fi(x) s(i) 0, i = 1, · · · , N},

satisfies:
(i) As is either empty or connected.
(ii) If As 6= ∅, then the closure of As has the algebraic description

As = {x ∈ Rn : fi(x) s(i) 0, i = 1, · · · , N}

where s(i) is ≤ ,= or ≥ according as s(i) is < ,= or >.
(i.e. the closure is obtained by relaxing all strict inequalities to weak
inequalities).



To construct a separating family from a finite set of polynomial
functions, we need to pay attention to the boundedness of the roots of a
polynomial with respect to its coefficient of the highest degree.

Lemma 1.

Put g(t) = adt
d + ad−1t

d−1 + · · ·+ a0 ∈ C[t], where ad 6= 0. Then if

ξ ∈ C, g(ξ) = 0, then |ξ| ≤ max
0≤k≤d−1

(
d
|ak|
|ad|

) 1
d−k

.

Proof. When |t| > M , we have

|g(t)| > |ad|Md − (|ad−1|Md−1 + · · ·+ |a0|).

Therefore, when we choose M such that 1
d |ad|M

d ≥ |ak|Mk, for all

k = 0, · · · d− 1, ta có |g(t)| > 0. From that we get the estimate. �



For several-variable polynomials, the following notion gives the
boundedness of the zeros.

Definition. A polynomial f ∈ R[X1, · · · , Xk] is called quasi-monic with
respect to Xk iff

f = adX
d
k + ad−1(X1, · · · , Xk−1)Xd−1

k + · · ·+ a0(X1, · · · , Xk−1),

where the leading coefficient is a constant ad 6= 0.

Example. f(x, y) = xy − 1.

The equation f(x, y) = 0 has the root x =
1

y
→∞, when y → 0.

Change the coordinates: x = X + λY, y = X − λY , where λ 6= 0.
Then f = X2 − λ2Y 2 − 1 is monic with respect to X
and f = 0 has the root X = ±λ

√
Y 2 + 1 which is locally bounded.



Lemma 2.

Let g1, · · · , gp be real polynomials of k variables. Then there exists a
linear change of coordinates ϕ : Rk → Rk, such that g1 ◦ ϕ, · · · , gp ◦ ϕ
are monic with respect to Xk.

Proof. Represent a polynomial in the form g =

d∑
j=0

pj , where pj is the

homogenous of degree j and pd 6= 0.
Then the set of directions Qg = {e ∈ Sk−1 : pd(e) 6= 0} is open and
dense subset of the unit sphere Sk−1.
For pd(e) 6= 0, let ϕ be a linear transfomation of Rk such that ϕ(ek) = e,
where ek = (0, · · · , 1). Then

g◦ϕ(Xkek) =

d∑
j=0

pj(ϕ(Xkek)) =

d∑
j=0

pj(Xke) =

d∑
j=0

pj(e)X
j
k = pd(e)X

d
k+· · ·+p0(e).

Hence, g ◦ ϕ is quasi-monic wrt. Xk.
By the densense and open property, there exists e ∈ Qg1 ∩ · · · ∩Qgp , and
hence there exists a linear change of coordinates ϕ which satisfies the
demand of the lemma. �



Theorem (Separating family).

Any finite set of polynomials on Rn can be augmented to a separating
family.

Proof. Induction on n. Let f1, · · · , fp : Rn → R be polynomial
functions.
By the above lemma, after changing of coordinates, we get
fi(x, t) ∈ R[x][t], where (x, t) ∈ Rn−1 × R, i = 1, · · · , p, are
quasi-monic wrt. t.
For n = 1, by Thom’s lemma, augmenting all derivatives of the
polynomials we get the separating family.



For n > 1, we add all non null derivatives of all orders wrt. t of
f1, · · · , fp to get f1, · · · , fp, fp+1, · · · , fp+q.
By Cylindrical decomposition theorem, Rn−1 can be partitioned to
semialgebraic sets S1, · · · , Sk, which are described by a finite set of
polynomial on Rn−1.
By the induction, that set can be added to get a separating family on
Rn−1, say fp+q+1, · · · , fp+q+r.
We prove that f1, · · · , fp+q+r is a separating family on Rn−1 × R.
Consider A = {(x, t) : fi(x, t) s(i) 0, i = 1, · · · , p+ q + r}.
By Cylindrical decomposition theorem, A is either ∅ or of the forms Γ(ξj)
or (ξj , ξj+1), where ξj , ξj+1 : C → R are continuous semialgebraic
functions on the set
C = {x : fi(x) s(i) 0, i = p+ q + 1, · · · , p+ q + r} .
By the induction, C is connected, and hence A is connected.
When A 6= ∅, put A′ = {(x, t) : fi(x, t) s(i) 0, i = 1, · · · , p+ q + r}.
Clearly, A ⊂ A′.
We need to prove that A′ ⊂ A. By induction,
C = {x : fi(x) s(i) 0, i = p+ q + 1, · · · , p+ q + r}.
Let x0 ∈ C. Since fi(x, t), i = 1, · · · , p+ q, are monic wrt. t, by
Lemma 1, their zeros ξj are locally bounded at x0 on C.



Therefore, A ∩ π−1(x0) 6= ∅. By Thom’s lemma, there are two posibilities
for the fiber A′ ∩ π−1(x0):
(1) A point: that fiber coincides with the fiber A ∩ π−1(x0).

(2) A closed interval J : When (x0, t) ∈
◦
J , we have

fi(x0, t) s(i) 0, i = 1, · · · , p+ q. This implies (x0, t) ∈ A. Thus J ⊂ A.
In the two cases A ∩ π−1(x0) ⊃ A′ ∩ π−1(x0) . Therefore, A′ ⊂ A . �



Lemma 3.

Let X ⊂ Rn be a semialgebraic subset. Then dim(X \X) < dimX.

Proof. By Cylindrical theorem and the separating family theorem, change
the coordinates if needed, X is a finite of sets of the form Γ(ξ) or
(ξ1, ξ2), where C ⊂ Rn−1 is semialgebraic and ξ, ξ1, ξ2 : C → R are
continuous semialgebraic and zeros of a quasi-monic wrt. t

f(x, t) = a0(x) + · · ·+ ad−1(x)td−1 + adt
d ∈ R[x][t].

Moreover, the above set is of the form

A = {(x, t) : fi(x, t) ε(i) 0, i = 1, · · · , N}

where f1, · · · , fN is a separating family containing f .



Since the coefficient of td is not 0, ξ is locally bounded at each
y ∈ C \ C (see Lemma 1). Therefore, there exist l = lim inf

x→y
ξ(x) and

L = lim sup
x→y

ξ(x).

Since (x, ξ(x)) ∈ A,
(y, l), (y, L) ∈ {(x, t) : fi(x, t) ε(i) 0, i = 1, · · · , k} = A.
By Thom’s lemma y × [l, L] ⊂ A. Hence, f(y, t) = 0, for all t ∈ [l, L].
Since f(y, t) is a polynomial not zero (wrt. t), l = L. Therefore, there
exists lim

x→y
ξ(x), for all y ∈ C \ C. So y × R ∩ Γ(ξ) is a point.

From this, by induction and dimension property (iii), we get

dim(Γ(ξ) \ Γ(ξ)) ≤ dim((C \ C)× R ∩ Γ(ξ)) < dim Γ(C) = dim Γ(ξ).

The above arguments give

dim((ξ1, ξ2) \ (ξ1, ξ2)) < dim(ξ1, ξ2).

�



Exercise. Let X = {(x, y) ∈ R2 : y = sin
1

x
, x 6= 0}.

Prove that dim(X \X) = dimX.



Lemma 4.

Let X ⊂ Rn be a semialgebraic subset of dimX = k. Then there exists a
closed semialgebraic subset F ⊂ Rn with dimF < k such that X \F is a
submanifold of dimension k.

Proof. By Cell decomposition theorem, X is a finite union of analytic
cells. Let F be the union of the cells of dimension ≤ k − 1. By the above
lemma, dimF < k and X \ F is empty or a analytic submanifold of
dimension k. �



Theorem (Semi-algebraic stratification).

Let X1, · · · , Xk be semialgebraic subsets of Rn. Then there exists a
stratification of Rn, compatible with each Xi, and the strata are
semialgebraic.

Proof. For A,W ⊂ Rn, let b(A,W ) denote the (relative) boundary of A
in W . We will construct a sequence of semialgebraic subsets:

Rn = Zn ⊃ Zn−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 = ∅
such that dimZj ≤ j, Zj \ Zj−1 is either empty or a connected
semialgebraic submanifold of dimension j.
Suppose Zn ⊃ · · · ⊃ Zk are constructed. By Lemma 4, there exists a
closed semialgebraic subset Fk ⊂ Zk of dimension < k such that
Wk = Zk \ Fk is either empty or a submanifold of dimension k.
Let {Γjσ} be the family of connected components of Zj \ Zj−1. Put

Zk−1 = Fk
⋃
j>k

⋃
σ

b(Γ
j

σ,Wk)
⋃
i

b(Xi,Wk),

Then Zk−1 is semialgebraic. By Lemma 3, dimZk−1 < k. Clearly,
Zk \ Zk−1 is either empty or a k-dimensional submanifold.

Exercise. Check that the family {Γjσ}j,σ is a desired stratification. �



Exercise.
Use the above theorem to prove Sard’s Theorem for semialgebraic
functions:
1) Let M ⊂ Rn be a semialgebraic submanifold and f : M → R be a
differentiable semialgebrac function. Put C = {x : Df(x) = 0}. Prove
that f(C) is a finite set.
2) Let M,N be semialgebraic submanifolds and f : M → N be a
differentiable semialgebraic map. Put C = {x : rank xf < dimN}. Prove
that The critical values set f(C) is semialgebraic and dimf(C) < dimN .
3) Let X be a semialgebraic subset of Rn. Leti Σ(X) be the set of points
where X is not a submanifold. Suppose a ∈ X is either a smooth point
of X or a isolated point of Σ(X). Use the sard theorem for the function
f(x) = ‖x− a‖2 restricted to a neighborhood of X \ {a}, to prove the
existence of ε0 > 0 such that every sphere Sε of center a and radius
ε < ε0, we have X ∩ Sε is a submanifold.
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