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The first part of this lecture we present Curve Selection Lemma, which
has many applications in geometry and Singularity theory.
Roughly speaking, the lemma states that in a semialgebraic subset the
existence of a sequence convergent to a point a is equivalent to the
existence of a curve in the subset starting from a. Moreover, one can
choose the curve to be the restriction of an analytic one.
Therefore, considering a sequence in a semialgebraic set, we can transfer
to an analytic curve. It is convenient to use analysis tools.
We can also use the lemma to transfer a several-variable problems to a
one-variable one.

In the second part, basing on the lemma, we present some important
inequalities in Semialgebraic geometry:  Lojasiewicz’s inequalities.



1. Curve Selection

Curve Selection Lemma (weak form).

Let X ⊂ Rn be a semialgebraic subset. Let a be an accumulate point of
X. Then there exists γ : [0, ε)→ Rn which is continuous, analytic on
(0, ε), γ(0) = a and γ((0, ε)) ⊂ X \ {a}.

Proof. By Cell decomposition theorem, in a neighborhood of a, X is a
finite union of sets of the forms Γ(ξ) or (ξ1, ξ2), where ξ, ξ1, ξ2 : C → R
are analytic on semialgebraic submanifold C ⊂ Rm−1, and can be
continuous extended to C.
By induction on n, the curve γ in X is constructed by lifting the curve in
C by ξi.



Percisely, put a = (a′, an) ∈ Rn−1 × R, by induction, there exists a
continuous curve ϕ : [0, ε)→ Rn−1, such that ϕ(0) = a′, ϕ|(0,ε) is
analytic and ϕ((0, ε)) ⊂ C \ {a′}. There are two cases to consider:

- Case X = Γ(ξ) and a ∈ X:
Define γ(t) = (ϕ(t), ξ(ϕ(t)), t ∈ [0, ε).
- Case X = (ξ1, ξ2) and a = (a′, an) ∈ X,
an = ξ1(a′) + θ0(ξ2(a′)− ξ1(a′)), where θ0 ∈ [0, 1].
Define γ(t) = ξ1(ϕ(t)) + θ(t)(ξ2(ϕ(t))− ξ1(ϕ(t))), t ∈ [0, ε),
where θ is an affine function satisfying θ(0) = θ0, θ(ε) = 1

2 .
�



Exercise. Find examples of sets which do not have the ‘curve selection’
property as the conclusion of above lemma.



By the Puiseux theorem, the lemma can be made stronger.

Theorem (Puiseaux).

Let
F (t, y) = yn + a1(t)yn−1 + · · ·+ an(t),

be a polynomial in y, where each ai is complex analytic function at 0.
Then there exists a positive integer k and complex analytic functions at
0, h1, · · · , hn such that

F (tk, y) = (y − h1(t)) · · · (y − hn(t)).



Curve Selection Lemma (strong form).

Let X ⊂ Rn be a semialgebraic subset. Let a be an accumulate point of
X. Then there exists γ : (−ε, ε)→ Rn which is analytic, γ(0) = a and
γ((0, ε)) ⊂ X \ {a}.

Proof. In duction on n. We can suppose a = 0, and we only need to
prove the case where X is a semialgebraic subset of the form Γ(ξ) given
in the above lemma.



By the lemma about the boundaries of semialgebraic subsets, there exists

f(x, y) = yd + a1(x)yd−1 + · · ·+ a0(x) ∈ R[x][y],

where x ∈ Rn−1, C ⊂ Rn−1, such that f(x, ξ(x)) = 0 for all x ∈ C.
By induction, there exists a curve x : (−ε, ε)→ Rn−1 which is analytic,
x(0) = 0 and x((0, ε)) ⊂ C \ {0}.
Put F (t, y) = yd + a1(x(t))yd−1 + · · ·+ a0(x(t)).
Then F ∈ O((−ε, ε))[y], and F (t, ξ(x(t)) = 0, when t ∈ [0, ε).
Extending F to complex space (t, y ∈ C), by Puiseux’s theorem,
shrinking ε if needed, we get k ∈ N such that:

F (tk, y) =

d∏
i=1

(y − hi(t)), where hi’s analytic on the disk |t| < k
√
ε.

Since F (tk, ξ(x(tk))) = 0 when t ∈ [0, k
√
ε) and the uniqueness of

analytic functions, there exists ν ∈ {1, · · · , d} such that
ξ(x(tk)) = hν(t), t ∈ [0, k

√
ε).

Then γ(t) = (x(tk), hν(t)), t ∈ (− k
√
ε, k
√
ε), is the desired curve. �



Exercise.

1) Let X = {(x, y) ∈ R2 : x > 0, e−
1
x < y < e−

1
2x }.

Prove that one can choose a curve from 0 into X as Curve selection
lemma in weak form, but the curve can not analytical extended to a
larger interval as in the above lemma.
2) Prove that the function ϕ(t) = tα, t ∈ [0, 1], is continuous
semialgebraic if and only if α is a nonnegative rational number.
3) Let f, g : Rn → R be smooth nonnegative semialgebraic funtions and
f(0) = g(0) = 0. Use Curve selection lemma to prove that there is a
neighborhood of cận 0 in which the derivatives df(x), dg(x) can not be in
the opposite directions but one of them vanishes.
4) Let f : Rn → R be a smooth semialgebraic function. Prove that if a is
either a regular point or a isolated singular point of f , then there exists
ε0 > 0 such that for any sphere Sε of center a and radius ε < ε0 is
transversal with hypersurface Z = {x : f(x) = 0}, i.e. grad f(x) and
x− a are linearly independent for all x ∈ Z ∩ Sε.



2. The  Lojasiewicz inequalities

Stanis law  Lojasiewicz (1926-2002)



2. The  Lojasiewicz inequalities

 Lojasiewicz inequalities have many interesting relations to various
branches of mathematics: Differential Analysis, Dynamical Systems,
Algebraic Geometry, Optimization, ...
In this part, we present the inequalities for the semialgebraic class.
Some applications are given.



The Hörmander- Lojasiewicz inequality

Theorem (The Hörmander- Lojasiewicz inequality).

Let f, g : K → R be continuous semialgebraic functions on compact set
K. Suppose f−1(0) ⊂ g−1(0). Then there exist α > 0, C > 0 such that

|f(x)| ≥ C|g(x)|α, ∀x ∈ K.

Proof. Since K is compact and g is continuous semialgebraic,
T = {t ∈ R : ∃x(x ∈ K, t = |g(x)|} is a compact semialgebraic subset.
Put

ϕ(t) = inf{|f(x)| : x ∈ K, |g(x)| = t}, t ∈ T.

The inequality is equivalent to: ϕ(t) ≥ Ctα,∀t ∈ T.
The graphϕ can be represented in the form

= {(t, u) : ∃x, y ∈ K, t = |g(x)|, u = |f(x)|, |g(y)| = t⇒ |f(y)| ≥ |f(x)|}.

Hence it is a compact, semialgebraic subset.



Case 1: 0 is not a limit point of của T .
Then there exists δ > 0: T ∗ = {t ∈ T : t 6= 0} = {t ∈ T : t ≥ δ}.
Therefore K∗ = {x ∈ K : g(x) 6= 0} is compact.
Since f−1(0) ⊂ g−1(0), f(x) 6= 0 when x ∈ K∗, and hence min

K∗
|f | > 0.

This implies that for all α ≥ 0, there exists C > 0 such that
ϕ(t) ≥ min

K∗
|f | ≥ C(max

K
|g|)α ≥ Ctα,∀t ∈ T ∗.

Hence, we get the desired inequality.
Case 2: 0 is a limit point of T .
Since f−1(0) ⊂ g−1(0), ϕ(t) > 0 when t > 0.
By Curve selection lemma, there exists a analytic parameterization for ϕ:

t = t(s) = ask + o(sk), ϕ(t(s)) = bsl + o(sl),

where a, b 6= 0, k, l ∈ N, k 6= 0.
Then there exist C1, δ > 0, such that ϕ(t) ≥ C1|t|

l
k when |t| < δ.

By Case 1, on compact set {t ∈ T : t ≥ δ}, we have C2 > 0, such that

ϕ(t) ≥ C2t
l
k .

Therefore, put α =
l

k
, C = min(C1, C2), we get ϕ(t) ≥ Ctα,∀t ∈ T . �



Exercise.
1) Find an example to show that the compactness in the theorem is
necessary.
2) In the theorem, the supposition that f, g are continuous is necessary?
3) Find an example of functions f, g of class C∞ which satisfy the
suppositions of the theorem, but the conclusion inequality does not hold
for any C,α > 0.



More information on the exponents.

Definition. By the Hörmander- Lojasiewicz inequality, the infimum

LK(f, g) = inf{α : ∃C, |f(x)| ≥ C|g(x)|α, ∀x ∈ K}

is well defined and called the  Lojasiewicz exponent of g with respect to f
on K.

Theorem (Bochnak and Risler).

Under the supposition of the Hörmander- Lojasiewicz inequality theorem,
LK(f, g) is a rational number.
Moreover, there exists C > 0 such that

|f(x)| ≥ C|g(x)|LK(f,g), ∀x ∈ K.

Proof. See, J. Bochnak and J,J. Risler, ‘Sur les exposants de
 Lojasiewicz’, Comment. Math. Helv. 50(1975), 493-507. �



We have the following forms of the above inequality.
Let d denote the Euclidean distance in Rn.

 Lojasiewicz’s inequality 1.

Let f : K → R be continuous semialgebraic functions on compact
K ⊂ Rn. Put Z = {x ∈ K : f(x) = 0}. Then there exist α,C > 0 such
that

|f(x)| ≥ Cd(x, Z)α, ∀x ∈ K.

Proof. Apply the above theorem for g(x) = d(x, Z), x ∈ K. �

Exercise. Prove that if X ⊂ Rn is semialgebraic subset, then the
function Rn 3 x 7→ d(x,X) is semialgebraic.



An application of  Lojasiewicz’s inequality 1.

• L. Schwarz’s Division Problem (1957-58): Let f be an analytic
function and T be a distribution. Prove that there exists a distribution S:
fS = T .

At the same time with Hörmander,  Lojasiewicz (1959) proved the
problem basing on stratification and an inequality of the form

|f(x)| ≥ Cd(x, f−1(0))α, when x is in a compact neighborhood.

See, S.  L ojasiewicz, Sur le problèm de la division, Studia Math. (1959).



 Lojasiewicz’s inequality 2.

Let X,Y ⊂ Rn be closed semialgebraic subsets. Then the pair (X,Y )
satisfies the regular separation condition: For any compact set K, there
exists α > 0, C > 0 such that

d(x,X) + d(x, Y ) ≥ Cd(x,X ∩ Y )α, ∀x ∈ K.

Proof. Apply the above theorem to
f(x) = d(x,X) + d(x, Y ), g(x) = d(x,X ∩ Y ). �

Exercise. Pove that the following subsets do not satisfy the regular
separation condition

X = {(x, y) ∈ R2 : y = e−
1
x , 0 < x ≤ 1}∪0, Y = {(x, y) : y = 0, 0 ≤ x ≤ 1}.

(Note that y = e−
1
x is flat at 0).



One of the applications of  Lojasiewicz inequality 2 is the following
‘cluing’ differentiable functions theorem.
Let X be a subset of Rn. Put

E(X) = {f : X → R : ∃f̃ ∈ C∞(Rn), f̃ |X = f },

called the class of Whitney’s fields on X, i.e. the class of functions on X
that can be extended to be of class C∞ on the whole Rn.

Theorem.

The followings are equivalent:
(i) X,Y ⊂ Rn are closed subset which satisfy the regular separate
condition:
∀x0 ∈ X ∩ Y,∃U a neighborhood of x0, ∃α,C > 0 such that

d(x,X)+ d(x, Y ) ≥ C d(x,X ∩ Y )α, ∀x ∈ U.
(ii) If f ∈ E(X), g ∈ E(Y ) and f = g on X ∩ Y , then there exists the
extension F ∈ E(Rn) = C∞(Rn) such that F |X = f, F |Y = g.

Proof. See B. Malgrange, Ideals of Differentiable Functions,
Oxford Univ. Press, 1966, Ch.I, Th.5.5. �



The Bochnak- Lojasiewicz inequality

Theorem (The Bochnak- Lojasiewicz inequality).

Let f : U → R be a semialgebraic function of class C1 on an open
subset U ⊂ Rm containg 0 and f(0) = 0. Then there exist a
neighborhood V of 0 and C > 0 such that

‖x‖‖grad f(x)‖ ≥ C|f(x)|, ∀x ∈ V.

Proof. Suppose the opposition. Then, by the curve selection lemma,
there is an analytic curve γ : (−ε, ε)→ U , γ(0) = 0, such that

(∗) ‖γ(t)‖‖grad f(γ(t))‖
|f(γ(t))|

→ 0, when t→ 0.

Moreover, the curve can be parametrized so that f ◦ γ is analytic.
Then γ(t) = atp + o(tp), a 6= 0, p ≥ 1, f(γ(t) = btq + o(tq), b 6= 0, q ≥ 1.
From |(f ◦ γ)′(t)| = |〈grad f(γ(t), γ′(t)〉| ≤ ‖grad f(γ(t)‖γ′(t)‖, we have

‖γ(t)‖‖grad f(γ(t)‖
|f(γ(t)|

≥ ‖γ(t)‖|(f ◦ γ)′(t)|
‖γ′(t)‖|f(γ(t)|

=
‖atp + o(tp)‖|qbtq−1 + o(tq−1)|
‖patp−1 + o(tp−1)‖|btq + o(tq)|

→ q

p
, when t→ 0.

This contradicts (∗). �



An application of the above inequality in Singularity Theory:

• The problem of finitely determined germs: Let f : (R, 0)→ (R, 0)
be a germ of differentiable of class Ck. Find conditions for that there
exist a homeomorphism germ h such that

f ◦ h = T k0 f (the Taylor polynomial of degree k of f at 0).

Theorem (Kuipier-Kuo-Bochnak- Lojasiewicz).

Let f be a Ck function on a neighborhood of 0. Then the followings are
equivalent:
(i) There exists C > 0 such that ‖grad f(x)‖ ≥ C‖x‖k−1, when x is in
a neiborhood of 0.
(ii) There exists a homeomorphism h between neighborhoods of 0 such
that f ◦ h = T k0 (f),

Proof. See:
T.C.Kuo, On C0-sufficiency of jets of potential function, Topology
8(1969), 167-171.
J.Bochnak và S. Lojasiewicz, A converse of the Kuipier-Kuo theorem,
Springer Lecture Notes 192 (1971), 254-261. �



The gradient inequality

Theorem (The gradient inequality).

Let f : U → R be a semialgebraic function of class C1 on an open
subset U ⊂ Rn containing 0 and f(0) = 0. Then there exist a
neighborhood V of 0, C > 0 and 0 < ρ < 1 such that

‖grad f(x)‖ ≥ C|f(x)|ρ, ∀x ∈ V.

Proof. We need the following lemma:



Lemma.

Under the assumptions of the theorem. Suppose that U is bounded. Then
for any sequence (xk) in U \ f−1(0) such that f(xk)→ 0 when k →∞,

we have
‖grad f(xk)‖
|f(xk)|

→ ∞, when k →∞.

Indeed, contrary to the conclusion, there exists a consequence (xk) in

U \ f−1(0) such that f(xk)→ 0 but
‖grad f(xk)‖
|f(xk)|

6→ ∞, when k →∞.

Then, by the boundedness, (xk) has a accumulate point x̄ ∈ U .
By Curve selection lemma there exists an analytic curve
γ : (−ε, ε)→ U \ f−1(0), γ(0) = x̄, f(γ(t))→ 0, when t→ 0+,

and
‖grad f(γ(t))‖
|f(γ(t))|

< M .

Moreover, reparametrize if needed, we can suppose that f ◦ γ ia analytic.
Then f(γ(t)) = atm + o(tm), where a 6= 0 và m ≥ 1.
Therefore,

(f◦γ)′(t) = matm−1+o(tm−1) = 〈grad f(γ(t)), γ′(t)〉 ≤ ‖grad f(γ(t))‖‖γ′(t)‖.
This comes to contradiction:

M‖γ′(t)‖ ≥ |〈grad f(γ(t)), γ′(t)〉|
|f(γ(t))|

≥ |(f ◦ γ)′(t)|
|f(γ(t))|

=
|matm−1 + o(tm−1)|
|atm + o(tm)|

→ +∞,when t→ 0+.



To prove the theorem, we consider the function

ϕ(t) = inf{‖grad f(x)‖ : x ∈ U, |f(x)| = t}, t ≥ 0 sufficiently small.

Then ϕ is a semialgebraic function.
By the above lemma, there exists a compact neighborhood V of 0 such

that grad f−1(0) ∩ V ⊂ f−1(0) ∩ V , and
ϕ(t)

t
→∞, when t→ 0+.

By the proof of Theorem on the H- L inequality, there exist k, l ∈ N, such
that ϕ(t) = O(t

l
k ), and hence l

k < 1.

Therefore, there exist C > 0, ρ = l
k < 1, such that

‖grad f(x)‖ ≥ C|f(x)|ρ, ∀x ∈ V.

�



Some applications of the gradient inequality:

• The Whitney’s conjecture (1960): Let f be an analytic function on
an open subset U ⊂ Rn. Then there exists an open neighborhood of
Z = f−1(0) which is a deformation retraction of Z.

 Lojasiewicz (1963), Une propriété topologie des sous-ensembles
analytiques réel, Colloques Internationaux du CNRS, proved this
conjecture was true, basing on the gradient inequality.



• The gradient conjecture of Thom.
Let f be an analytic function on an open subset U ⊂ Rn.
Consider the orbit of ∇f , i.e. maximal curves x(t) satisfying

x′(t) = −∇f(x(t)), t ∈ [0, β).

 Lojasiewicz (1963) proved that β = +∞ and there exists lim
t→∞

x(t) = x0.

Thom’s conjecture (1988-99): x(t) admits a tangent at x0,

i.e. limt→∞
x(t)− x0
‖x(t)− x0‖

exists.

Kurdyka-Parusiński-Mostowski prove this conjecture is true. Their proof
mainly based on the  Lojasiewicz inequalities.

Theorem (Kurdyka-Parusiński-Mostowski, 2000).

Let x̃(t) =
x(t)− x0
‖x(t)− x0‖

be the radial projection of x(t) onto the unit

sphere. Then x̃ is of finite length.
In particular x(t) admits a tangent at x0.

Proof. See K. Kurdyka, T. Mostowski and A. Parusiński, ‘Proof of
Gradient conjecture of R. Thom’, Ann. Math. 52 (2000), 763-792. �
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