Lecture 3: Curve Selection Lemma The Łojasiewicz inequalities

Tạ Lê Lợi

Dalat University - 7/2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Contents

- 1. Curve Selection Lemma.
- 2. The Łojasiewicz inequalities.

The first part of this lecture we present Curve Selection Lemma, which has many applications in geometry and Singularity theory. Roughly speaking, the lemma states that in a semialgebraic subset the existence of a sequence convergent to a point *a* is equivalent to the existence of a curve in the subset starting from *a*. Moreover, one can choose the curve to be the restriction of an analytic one. Therefore, considering a sequence in a semialgebraic set, we can transfer to an analytic curve. It is convenient to use analysis tools. We can also use the lemma to transfer a several-variable problems to a one-variable one.

In the second part, basing on the lemma, we present some important inequalities in Semialgebraic geometry: Łojasiewicz's inequalities.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Curve Selection Lemma (weak form).

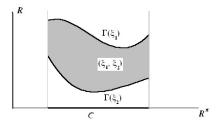
Let $X \subset \mathbb{R}^n$ be a semialgebraic subset. Let a be an accumulate point of X. Then there exists $\gamma : [0, \epsilon) \to \mathbb{R}^n$ which is continuous, analytic on $(0, \epsilon), \gamma(0) = a$ and $\gamma((0, \epsilon)) \subset X \setminus \{a\}$.

Proof. By Cell decomposition theorem, in a neighborhood of a, X is a finite union of sets of the forms $\Gamma(\xi)$ or (ξ_1, ξ_2) , where $\xi, \xi_1, \xi_2 : C \to \mathbb{R}$ are analytic on semialgebraic submanifold $C \subset \mathbb{R}^{m-1}$, and can be continuous extended to \overline{C} .

By induction on n, the curve γ in X is constructed by lifting the curve in C by ξ_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Percisely, put $a = (a', a_n) \in \mathbb{R}^{n-1} \times \mathbb{R}$, by induction, there exists a continuous curve $\varphi : [0, \epsilon) \to \mathbb{R}^{n-1}$, such that $\varphi(0) = a', \varphi|_{(0,\epsilon)}$ is analytic and $\varphi((0, \epsilon)) \subset C \setminus \{a'\}$. There are two cases to consider:



・ロト ・四ト ・ヨト ・ヨ

æ

- Case
$$X = \Gamma(\xi)$$
 and $a \in \overline{X}$:
Define $\gamma(t) = (\varphi(t), \xi(\varphi(t)), t \in [0, \epsilon)$.
- Case $X = (\xi_1, \xi_2)$ and $a = (a', a_n) \in \overline{X}$,
 $a_n = \xi_1(a') + \theta_0(\xi_2(a') - \xi_1(a'))$, where $\theta_0 \in [0, 1]$.
Define $\gamma(t) = \xi_1(\varphi(t)) + \theta(t)(\xi_2(\varphi(t)) - \xi_1(\varphi(t))), t \in [0, \epsilon)$,
where θ is an affine function satisfying $\theta(0) = \theta_0, \theta(\epsilon) = \frac{1}{2}$.

Exercise. Find examples of sets which do not have the 'curve selection' property as the conclusion of above lemma.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

By the Puiseux theorem, the lemma can be made stronger.

Theorem (Puiseaux).

Let

$$F(t,y) = y^n + a_1(t)y^{n-1} + \dots + a_n(t),$$

be a polynomial in y, where each a_i is complex analytic function at 0. Then there exists a positive integer k and complex analytic functions at 0, h_1, \dots, h_n such that

$$F(t^k, y) = (y - h_1(t)) \cdots (y - h_n(t)).$$

<ロト <四ト <注ト <注ト = 三

Curve Selection Lemma (strong form).

Let $X \subset \mathbb{R}^n$ be a semialgebraic subset. Let a be an accumulate point of X. Then there exists $\gamma: (-\epsilon, \epsilon) \to \mathbb{R}^n$ which is analytic, $\gamma(0) = a$ and $\gamma((0, \epsilon)) \subset X \setminus \{a\}$.

Proof. In duction on n. We can suppose a = 0, and we only need to prove the case where X is a semialgebraic subset of the form $\Gamma(\xi)$ given in the above lemma.

<ロト <回ト < 注ト < 注ト = 注

By the lemma about the boundaries of semialgebraic subsets, there exists

$$f(x,y) = y^d + a_1(x)y^{d-1} + \dots + a_0(x) \in \mathbb{R}[x][y]$$

where $x \in \mathbb{R}^{n-1}, \overline{C} \subset \mathbb{R}^{n-1}$, such that $f(x,\xi(x)) = 0$ for all $x \in \overline{C}$. By induction, there exists a curve $x : (-\epsilon, \epsilon) \to \mathbb{R}^{n-1}$ which is analytic, x(0) = 0 and $x((0,\epsilon)) \subset C \setminus \{0\}$. Put $F(t,y) = y^d + a_1(x(t))y^{d-1} + \cdots + a_0(x(t))$. Then $F \in \mathcal{O}((-\epsilon,\epsilon))[y]$, and $F(t,\xi(x(t)) = 0$, when $t \in [0,\epsilon)$. Extending F to complex space $(t, y \in \mathbb{C})$, by Puiseux's theorem, shrinking ϵ if needed, we get $k \in \mathbb{N}$ such that:

$$F(t^k,y)=\prod_{i=1}^d(y-h_i(t)), ext{ where } h_i ext{'s analytic on the disk } |t|<\sqrt[k]{\epsilon}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Since $F(t^k, \xi(x(t^k))) = 0$ when $t \in [0, \sqrt[k]{\epsilon})$ and the uniqueness of analytic functions, there exists $\nu \in \{1, \cdots, d\}$ such that $\xi(x(t^k)) = h_{\nu}(t), \ t \in [0, \sqrt[k]{\epsilon}).$ Then $\gamma(t) = (x(t^k), h_{\nu}(t)), t \in (-\sqrt[k]{\epsilon}, \sqrt[k]{\epsilon})$, is the desired curve.

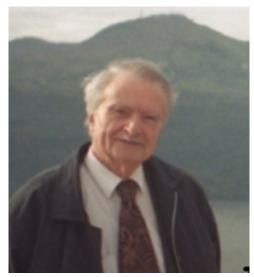
Exercise.

1) Let $X = \{(x, y) \in \mathbb{R}^2 : x > 0, e^{-\frac{1}{x}} < y < e^{-\frac{1}{2x}} \}$. Prove that one can choose a curve from 0 into X as Curve selection lemma in weak form, but the curve can not analytical extended to a larger interval as in the above lemma.

2) Prove that the function $\varphi(t) = t^{\alpha}$, $t \in [0, 1]$, is continuous semialgebraic if and only if α is a nonnegative rational number. 3) Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be smooth nonnegative semialgebraic functions and f(0) = g(0) = 0. Use Curve selection lemma to prove that there is a neighborhood of cận 0 in which the derivatives df(x), dg(x) can not be in the opposite directions but one of them vanishes.

4) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth semialgebraic function. Prove that if a is either a regular point or a isolated singular point of f, then there exists $\varepsilon_0 > 0$ such that for any sphere S_{ε} of center a and radius $\varepsilon < \varepsilon_0$ is transversal with hypersurface $Z = \{x : f(x) = 0\}$, i.e. $\operatorname{grad} f(x)$ and x - a are linearly independent for all $x \in Z \cap S_{\varepsilon}$.

2. The Łojasiewicz inequalities



Stanisław Łojasiewicz (1926-2002)

Łojasiewicz inequalities have many interesting relations to various branches of mathematics: Differential Analysis, Dynamical Systems, Algebraic Geometry, Optimization, ...

In this part, we present the inequalities for the semialgebraic class. Some applications are given.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Theorem (The Hörmander-Łojasiewicz inequality).

Let $f,g: K \to \mathbb{R}$ be continuous semialgebraic functions on compact set K. Suppose $f^{-1}(0) \subset g^{-1}(0)$. Then there exist $\alpha > 0, C > 0$ such that

 $|f(x)| \ge C |g(x)|^{\alpha}, \quad \forall x \in K.$

Proof. Since K is compact and g is continuous semialgebraic, $T = \{t \in \mathbb{R} : \exists x (x \in K, t = |g(x)|\}$ is a compact semialgebraic subset. Put

$$\varphi(t) = \inf\{|f(x)| : x \in K, |g(x)| = t\}, \ t \in T.$$

The inequality is equivalent to: $\varphi(t) \ge Ct^{\alpha}, \forall t \in T.$ The graph φ can be represented in the form

$$= \{(t, u) : \exists x, y \in K, t = |g(x)|, u = |f(x)|, |g(y)| = t \Rightarrow |f(y)| \ge |f(x)|\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Hence it is a compact, semialgebraic subset.

Case 1: 0 is not a limit point of của T. Then there exists $\delta > 0$: $T^* = \{t \in T : t \neq 0\} = \{t \in T : t \geq \delta\}$. Therefore $K^* = \{x \in K : g(x) \neq 0\}$ is compact. Since $f^{-1}(0) \subset g^{-1}(0), f(x) \neq 0$ when $x \in K^*$, and hence $\min_{K^*} |f| > 0$. This implies that for all $\alpha \geq 0$, there exists C > 0 such that $\varphi(t) \geq \min_{K^*} |f| \geq C(\max_K |g|)^{\alpha} \geq Ct^{\alpha}, \forall t \in T^*$. Hence, we get the desired inequality. Case 2: 0 is a limit point of T. Since $f^{-1}(0) \subset g^{-1}(0), \varphi(t) > 0$ when t > 0. By Curve selection lemma, there exists a analytic parameterization for φ :

$$t = t(s) = as^k + o(s^k), \varphi(t(s)) = bs^l + o(s^l),$$

where $a,b\neq 0,k,l\in\mathbb{N},k\neq 0.$ Then there exist $C_1,\delta>0$, such that $\varphi(t)\geq C_1|t|^{\frac{l}{k}}$ when $|t|<\delta.$ By Case 1, on compact set $\{t\in T:t\geq \delta\}$, we have $C_2>0$, such that $\varphi(t)\geq C_2t^{\frac{l}{k}}.$ Therefore, put $\alpha=\frac{l}{k},C=\min(C_1,C_2)$, we get $\varphi(t)\geq Ct^{\alpha},\forall t\in T.$

Exercise.

1) Find an example to show that the compactness in the theorem is necessary.

2) In the theorem, the supposition that f, g are continuous is necessary? 3) Find an example of functions f, g of class C^{∞} which satisfy the suppositions of the theorem, but the conclusion inequality does not hold for any $C, \alpha > 0$.

(日) (四) (문) (문) (문) (문)

More information on the exponents.

Definition. By the Hörmander-Łojasiewicz inequality, the infimum

 $L_K(f,g) = \inf\{\alpha : \exists C, |f(x)| \ge C|g(x)|^{\alpha}, \quad \forall x \in K\}$

is well defined and called the Łojasiewicz exponent of g with respect to f on K.

Theorem (Bochnak and Risler).

Under the supposition of the Hörmander-Łojasiewicz inequality theorem, $L_K(f,g)$ is a rational number. Moreover, there exists C > 0 such that

$$|f(x)| \ge C|g(x)|^{L_K(f,g)}, \quad \forall x \in K.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Proof. See, J. Bochnak and J,J. Risler, '*Sur les exposants de Lojasiewicz*', Comment. Math. Helv. 50(1975), 493-507.

We have the following forms of the above inequality. Let d denote the Euclidean distance in \mathbb{R}^n .

Łojasiewicz's inequality 1.

Let $f: K \to \mathbb{R}$ be continuous semialgebraic functions on compact $K \subset \mathbb{R}^n$. Put $Z = \{x \in K : f(x) = 0\}$. Then there exist $\alpha, C > 0$ such that

 $|f(x)| \ge Cd(x,Z)^{\alpha}, \quad \forall x \in K.$

《曰》 《聞》 《臣》 《臣》 三臣

Proof. Apply the above theorem for $g(x) = d(x, Z), x \in K$.

Exercise. Prove that if $X \subset \mathbb{R}^n$ is semialgebraic subset, then the function $\mathbb{R}^n \ni x \mapsto d(x, X)$ is semialgebraic.

An application of Łojasiewicz's inequality 1.

• L. Schwarz's Division Problem (1957-58): Let f be an analytic function and T be a distribution. Prove that there exists a distribution S: fS = T.

At the same time with Hörmander, Łojasiewicz (1959) proved the problem basing on stratification and an inequality of the form

 $|f(x)| \ge Cd(x, f^{-1}(0))^{\alpha}$, when x is in a compact neighborhood.

See, S. Ł ojasiewicz, Sur le problèm de la division, Studia Math. (1959).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Łojasiewicz's inequality 2.

Let $X, Y \subset \mathbb{R}^n$ be closed semialgebraic subsets. Then the pair (X, Y) satisfies the regular separation condition: For any compact set K, there exists $\alpha > 0, C > 0$ such that

$$d(x,X) + d(x,Y) \ge Cd(x,X \cap Y)^{\alpha}, \ \forall x \in K.$$

Proof. Apply the above theorem to $f(x) = d(x, X) + d(x, Y), g(x) = d(x, X \cap Y).$

Exercise. Pove that the following subsets do not satisfy the regular separation condition

$$X = \{(x, y) \in \mathbb{R}^2 : y = e^{-\frac{1}{x}}, 0 < x \le 1\} \cup 0, \ Y = \{(x, y) : y = 0, 0 \le x \le 1\}.$$

(Note that $y = e^{-\frac{1}{x}}$ is flat at 0).

One of the applications of Łojasiewicz inequality 2 is the following 'cluing' differentiable functions theorem. Let X be a subset of \mathbb{R}^n . Put

$$\mathcal{E}(X) = \{ f : X \to \mathbb{R} : \exists \tilde{f} \in C^{\infty}(\mathbb{R}^n), \ \tilde{f}|_X = f \},\$$

called the class of Whitney's fields on X, i.e. the class of functions on X that can be extended to be of class C^{∞} on the whole \mathbb{R}^n .

Theorem.

The followings are equivalent:

(i) $X,Y\subset \mathbb{R}^n$ are closed subset which satisfy the regular separate condition:

 $\begin{array}{l} \forall x_0 \in X \cap Y, \exists U \text{ a neighborhood of } x_0, \exists \alpha, C > 0 \text{ such that} \\ \quad d(x,X) + d(x,Y) \geq C \ d(x,X \cap Y)^{\alpha}, \ \forall x \in U. \\ (\text{ii)} \quad \text{lf } f \in \mathcal{E}(X), \ g \in \mathcal{E}(Y) \text{ and } f = g \text{ on } X \cap Y, \text{ then there exists the} \\ \text{extension } F \in \mathcal{E}(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n) \text{ such that } F|_X = f, \ F|_Y = g. \end{array}$

Proof. See B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966, Ch.I, Th.5.5.

The Bochnak-Łojasiewicz inequality

Theorem (The Bochnak-Łojasiewicz inequality).

Let $f: U \to \mathbb{R}$ be a semialgebraic function of class C^1 on an open subset $U \subset \mathbb{R}^m$ containg 0 and f(0) = 0. Then there exist a neighborhood V of 0 and C > 0 such that

 $||x|| ||\operatorname{grad} f(x)|| \ge C|f(x)|, \quad \forall x \in V.$

Proof. Suppose the opposition. Then, by the curve selection lemma, there is an analytic curve $\gamma: (-\varepsilon, \varepsilon) \to U, \ \gamma(0) = 0$, such that $\frac{\|\gamma(t)\|\|\operatorname{grad} f(\gamma(t))\|}{\|f(\gamma(t))\|} \to 0, \text{ when } t \to 0.$ (*)Moreover, the curve can be parametrized so that $f \circ \gamma$ is analytic. Then $\gamma(t) = at^p + o(t^p), a \neq 0, p \ge 1, f(\gamma(t) = bt^q + o(t^q), b \neq 0, q \ge 1.$ From $|(f \circ \gamma)'(t)| = |\langle \operatorname{grad} f(\gamma(t), \gamma'(t)) | \leq ||\operatorname{grad} f(\gamma(t) || \gamma'(t) ||$, we have $\begin{aligned} \frac{\|\gamma(t)\|\|\text{grad }f(\gamma(t)\|}{|f(\gamma(t)|} &\geq & \frac{\|\gamma(t)\||(f\circ\gamma)'(t)|}{\|\gamma'(t)\||f(\gamma(t)|} \\ &= & \frac{\|at^p + o(t^p)\||qbt^{q-1} + o(t^{q-1})|}{\|pat^{p-1} + o(t^{p-1})\||bt^q + o(t^q)|} \to \frac{q}{p}, \text{ when } t \to 0 \end{aligned}$ This contradicts (*).

An application of the above inequality in Singularity Theory:

• The problem of finitely determined germs: Let $f : (\mathbb{R}, 0) \to (\mathbb{R}, 0)$ be a germ of differentiable of class C^k . Find conditions for that there exist a homeomorphism germ h such that

 $f \circ h = T_0^k f$ (the Taylor polynomial of degree k of f at 0).

Theorem (Kuipier-Kuo-Bochnak-Łojasiewicz).

Let f be a C^k function on a neighborhood of 0. Then the followings are equivalent:

(i) There exists C > 0 such that $\|\operatorname{grad} f(x)\| \ge C \|x\|^{k-1}$, when x is in a neiborhood of 0.

(ii) There exists a homeomorphism h between neighborhoods of 0 such that $f\circ h=T_0^k(f),$

Proof. See:

T.C.Kuo, On C⁰-sufficiency of jets of potential function, Topology 8(1969), 167-171.

J.Bochnak và S.Łojasiewicz, A converse of the Kuipier-Kuo theorem, Springer Lecture Notes 192 (1971), 254-261.

・ロト ・御ト ・ヨト ・ヨト 三日

Theorem (The gradient inequality).

Let $f: U \to \mathbb{R}$ be a semialgebraic function of class C^1 on an open subset $U \subset \mathbb{R}^n$ containing 0 and f(0) = 0. Then there exist a neighborhood V of 0, C > 0 and $0 < \rho < 1$ such that

 $\|\operatorname{grad} f(x)\| \ge C |f(x)|^{\rho}, \quad \forall x \in V.$

Proof. We need the following lemma:

Lemma.

Under the assumptions of the theorem. Suppose that U is bounded. Then for any sequence (x_k) in $U \setminus f^{-1}(0)$ such that $f(x_k) \to 0$ when $k \to \infty$, we have $\frac{\|\operatorname{grad} f(x_k)\|}{|f(x_k)|} \to \infty$, when $k \to \infty$.

Indeed, contrary to the conclusion, there exists a consequence (x_k) in $U \setminus f^{-1}(0)$ such that $f(x_k) \to 0$ but $\frac{||\operatorname{grad} f(x_k)||}{|f(x_k)|} \not\to \infty$, when $k \to \infty$. Then, by the boundedness, (x_k) has a accumulate point $\overline{x} \in \overline{U}$. By Curve selection lemma there exists an analytic curve $\gamma : (-\varepsilon, \varepsilon) \to U \setminus f^{-1}(0), \ \gamma(0) = \overline{x}, \ f(\gamma(t)) \to 0$, when $t \to 0^+$, and $\frac{||\operatorname{grad} f(\gamma(t))||}{|f(\gamma(t))|} < M$. Moreover, reparametrize if needed, we can suppose that $f \circ \gamma$ is analytic. Then $f(\gamma(t)) = at^m + o(t^m)$, where $a \neq 0$ và $m \ge 1$. Therefore,

 $(f \circ \gamma)'(t) = mat^{m-1} + o(t^{m-1}) = \langle \operatorname{grad} f(\gamma(t)), \gamma'(t) \rangle \le \|\operatorname{grad} f(\gamma(t))\| \|\gamma'(t)\|.$

This comes to contradiction:

$$M\|\gamma'(t)\| \ge \frac{|\langle \operatorname{grad} f(\gamma(t)), \gamma'(t)\rangle|}{|f(\gamma(t))|} \ge \frac{|(f \circ \gamma)'(t)|}{|f(\gamma(t))|} = \frac{|mat^{m-1} + o(t^{m-1})|}{|f(\gamma(t))|} \xrightarrow{} + \frac{|mat^{m-1} + o(t^{m-1}$$

To prove the theorem, we consider the function

 $\varphi(t) = \inf\{\|\text{grad}\, f(x)\| : x \in U, |f(x)| = t\}, \ t \ge 0 \text{ sufficiently small}.$

Then φ is a semialgebraic function.

By the above lemma, there exists a compact neighborhood V of 0 such that $\operatorname{grad} f^{-1}(0) \cap V \subset f^{-1}(0) \cap V$, and $\frac{\varphi(t)}{t} \to \infty$, when $t \to 0^+$. By the proof of Theorem on the H-Ł inequality, there exist $k, l \in \mathbb{N}$, such that $\varphi(t) = O(t^{\frac{1}{k}})$, and hence $\frac{l}{k} < 1$. Therefore, there exist $C > 0, \rho = \frac{l}{k} < 1$, such that

 $\|\operatorname{grad} f(x)\| \ge C|f(x)|^{\rho}, \quad \forall x \in V.$

Some applications of the gradient inequality:

• The Whitney's conjecture (1960): Let f be an analytic function on an open subset $U \subset \mathbb{R}^n$. Then there exists an open neighborhood of $Z = f^{-1}(0)$ which is a deformation retraction of Z.

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のへで

Lojasiewicz (1963), *Une propriété topologie des sous-ensembles analytiques réel*, Colloques Internationaux du CNRS, proved this conjecture was true, basing on the gradient inequality.

• The gradient conjecture of Thom.

Let f be an analytic function on an open subset $U \subset \mathbb{R}^n$. Consider the orbit of ∇f , i.e. maximal curves x(t) satisfying

$$x'(t) = -\nabla f(x(t)), t \in [0, \beta).$$

Łojasiewicz (1963) proved that $\beta = +\infty$ and there exists $\lim_{t \to \infty} x(t) = x_0$. Them's conjecture (1988-00): x(t) admits a tangent at x

Thom's conjecture (1988-99): x(t) admits a tangent at x_0 ,

i.e. $\lim_{t\to\infty}\frac{x(t)-x_0}{\|x(t)-x_0\|}$ exists. Kurdyka-Parusiński-Mostowski prove this conjecture is true. Their proof mainly based on the Łojasiewicz inequalities.

Theorem (Kurdyka-Parusiński-Mostowski, 2000).

Let $\tilde{x}(t) = \frac{x(t) - x_0}{\|x(t) - x_0\|}$ be the radial projection of x(t) onto the unit sphere. Then \tilde{x} is of finite length. In particular x(t) admits a tangent at x_0 .

Proof. See K. Kurdyka, T. Mostowski and A. Parusiński, '*Proof of Gradient conjecture of R. Thom*', Ann. Math. 52 (2000), 763-792.

End of Lecture 3

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで