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Deep learning: theory vs practice

Machine Vision Game Playing Text Generation

Shallow models

Input Output

Deep models

Input Output

Practical success vs theoretical mystery
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What’s new in deep learning?

• Classical models (Polynomials, Fourier series, kernel SVM, shallow NNs) build
complexity by increasing number of linear combinations of simple functions

• Deep neural networks build complexity through compositions of simple
functions
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Supervised learning

Goal: learn/approximate the target relationship F∗

Approach: Define a model hypothesis space H, and find a “closest” model F̃ ∈ H

C. M. Bishop et al., Pattern Recognition and Machine Learning. springer New York, 2006, vol. 4
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Example: shallow and deep neural network hypothesis spaces

Shallow neural networks (width m, input dimension d)

H =
{
F̂(x) = v⊤σ(Wx+ b) : v,b ∈ Rm,W ∈ Rm×d

}
The scalar function σ is called the activation function, and is applied
element-wise

Deep (residual) neural networks (widths mk, depth K, input dimension d)

H =

{
F̂(x) = v⊤xK :xk+1 = xk + Vkσ(Wkxk + bk), k = 1, . . . , K− 1, x0 = x

Wk ∈ Rdk×dk , Vk ∈ Rdk+1×dk ,bk ∈ Rdk , v ∈ RdK

}

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016
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Approximation, optimisation and generalisation
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How does the compositional structure affect approximation,
optimisation and generalisation?
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The dynamics viewpoint of deep learning

W. E, “A Proposal on Machine Learning via Dynamical Systems,” Communications in Mathematics and Statistics, vol. 5, no. 1, 2017
E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems, vol. 34, no. 1, 2017
Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep learning,” The Journal of Machine Learning Research, vol. 18, no. 1, 2017
T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in Advances in Neural Information Processing

Systems, 2018
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Controlling differential equations

Consider the following ODE control system

ẋt = f(xt, θt), x0 ∈ Rd, t ∈ [0, T]

where

• State xt ∈ Rd

• Dynamics f : Rd ×Θ → Rd

• Control θt ∈ Θ ⊂ Rm (control set)
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Two main mathematical questions for control

Given a control system

ẋt = f(xt, θt), x0 ∈ Rd, t ∈ [0, T],

two interesting questions can be posed:

• Controllability: For any z ∈ Rd, does there exist T > 0 and controls
θ = {θt ∈ Θ : t ∈ [0, T]} such that xT = z? If this holds for any x0, z ∈ Ω, we say
that the system is controllable in Ω

• Optimal control: minimise some cost functional

inf
θ

Φ(xT)︸ ︷︷ ︸
Terminal cost

+

∫ T

0
L(xt, θt)︸ ︷︷ ︸

Running cost

dt
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The control family

It is useful to adopt a more geometric view

To this end, define the family of vector fields, called the control family

F = {f(·, θ) : θ ∈ Θ}

One the recasts

ẋt = f(xt, θt), θt ∈ Θ → ẋt = ft(xt), ft ∈ F

Flows maps generated by f ∈ F is denoted by x0 7→ etf(x0)
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Controllability from the geometric view

What points can be reached by flows driven by F?

Let us assume from now on that F is symmetric, i.e. f ∈ F =⇒ −f ∈ F

A local analysis shows for any f,g ∈ F

etf(x0) = x0 + tf(x0) + o(t)
ea1tf ◦ ea2tg (x0) = x0 + t (a1f+ a2g) (x0) + o(t)

Thus, points in span(F) are reachable

Is this all that are reachable?
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The Lie bracket

Local analysis shows

e−tg ◦ e−tf ◦ etg ◦ etf (x0) = x0 + t2[f,g] (x0) + o
(
t2
)

where [f,g] = ∇g · f−∇f · g is the Lie bracket

Then, Span{F , {[f,g]}} is again reachable
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A controllability result

Repeating the previous procedure we obtain

Lie F := Span {[f1, [. . . [fk−1, fk] . . .]] | fi ∈ F , k ∈ N}

and it’s not hard to see that all points in Lie F are reachable!

Note: Lie F can be much larger than Span F !

Example: F = {1, x, x2, x3}, and Lie F contains all polynomials!

Theorem [Chow 40, Rashevsky 38]
Let Ω ⊂ Rd be open. Let F be a symmetric family of smooth vector fields and
dim Lie F = d, then the system ẋt = ft(xt), ft ∈ F is controllable in Ω.

W.-L. Chow, “Über systeme von liearren partiellen differentialgleichungen erster ordnung,” Mathematische Annalen, vol. 117, no. 1, 1940
P. K. Rashevsky, “About connecting two points of a completely nonholonomic space by admissible curve,” Uch. Zapiski Ped. Inst. Libknechta, vol. 2,

1938
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The Bolza problem of optimal control

Consider the following optimal control problem, also called a Bolza problem

min
θ
J[θ] ≡ Φ(xT) +

∫ T

0
L(xt, θt)dt

subject to
ẋt = f(xt, θt), x0 ∈ Rd is given

We seek

• Necessary conditions: if θ minimises J, what properties must it have?
• Sufficient conditions: what properties ensures that θ minimises J?
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Necessary conditions: Pontryagin’s maximum principle

Let us define the Hamiltonian H(x,p, θ) = p⊤f(x, θ)− L(x, θ)

Theorem [Pontryagin’s maximum principle]
Let θ∗ be a bounded measurable optimal control and x∗ be its corresponding
state trajectory. Then, there exists an absolutely continuous process
p = {pt ∈ Rd : t ∈ [0, T]} such that

ẋ∗t = ∇pH(x∗t ,p∗t , θ∗t ), x∗0 = x0
ṗ∗t = −∇xH(x∗t ,p∗t , θ∗t ), p∗T = −∇Φ(x∗T)
H(t, x∗t ,p∗t , θ∗t ) ≥ H(t, x∗t ,p∗t , θ), ∀θ ∈ Θ and a.e. t ∈ [0, T]

V. G. Boltyanskii, R. V. Gamkrelidze, and L. S. Pontryagin, “The theory of optimal processes. {I}. {T}he maximum principle,” TRW Space Tochnology
Labs, Los Angeles, California, 1960
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The value function

To derive more general conditions, we define the value function

V(s, z) := inf
θ

∫ T

s
L(xt, θt)dt+Φ(xT)

subject to
ẋt = f(xt, θt), t ∈ [s, T], xs = z.

• V(0, x0) is the optimal cost of the Bolza problem
• This expands the Bolza problem to a family of problems, but we can derive a
recursion!
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Hamilton-Jacobi-Bellman equation

Hamilton-Jacobi-Bellman equation
Let V : [0, T]× Rd → R be the value function. Then, V is the unique viscosity
solution of the Hamilton-Jacobi-Bellman equation

∂tV(t, x) + inf
θ∈Θ

{
L(x, θ) + [∇xV(t, x)]⊤f(x, θ)

}
(t, x) ∈ (0, T)× Rd

V(T, x) = Φ(x)

Moreover, any minimizer of minθ∈Θ
{
L(xt, θ) + [∇xV(t, xt)]⊤f(xt, θ)

}
is an optimal

control.

R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, 1966
M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations,” Transactions of the American Mathematical Society, vol. 277, no. 1,

1983
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Controllability and approximation theory for deep NNs

Let us now return to the problem of approximation for continuum deep ResNets

We will see that it is intimately connected with controllability, but with key
differences

• We need to handle an (infinite) ensemble of points together
• Is arbitrary point matching enough?

18



How do dynamics approximate functions?

Binary Classification Problem

Not linearly separable!

Evolve with the dynamics

ẋt,1 = −xt,2 sin(t)

ẋt,2 = − 12(1− x2t,1)xt,2 + xt,1 cos(t)

Classify using linear classifier at the end:

g(xT) = 1xT,1>0

19



How do dynamics approximate functions?

Dynamical Hypothesis Space
H(F ,G) = ∪T≥0{g ◦ φ : g ∈ G, φ ∈ Φ(F , T)}
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Universal approximation by dynamics

Theorem [LLS, 22]
Let d ≥ 2 and Suppose that F ,G satisfy
1. G contains a surjective Lipschitz
function

2. F is restricted affine invariant
3. conv(F) contains a well function

Then, H(F ,G) is dense in Lploc, p ∈ [1,∞).

• Applies to most dense ResNet type architectures with width≥ d
• d = 1 case requires target to be increasing

Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” J. Eur. Math. Soc., 13, 2022
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Extension to symmetric functions

Functions invariant to (some) permutations of its indices

F∗(x) = F∗(s(x)) where s(x)i = xs(i), s ∈ G (subgroup of Sd)

Examples
• Convolutional NN:
G = T(Group of Translations)

• DeepSets: G = Sd
• Material Property Prediction from
CIF data: G = Sd1 × Sd2

Similar sufficient conditions for
approximation [LLS 22b, c]

X-coord Y-coord Z-coord

Na 0 0 0

Cl 0.5 0.5 0.5

X-coord Y-coord Z-coord

Ca 0 0 0

Ca 0.5 0.5 0.5

C 0.25 0.25 0.25

C 0.75 0.75 0.75

O 0.0073 0.4927 0.75

O 0.25 0.9927 0.5073

O 0.4927 0.75 0.0073

O 0.5073 0.25 0.9927

O 0.75 0.0073 0.4927

O 0.9927 0.5073 0.25

Q. Li, T. Lin, and Z. Shen, “Deep Neural Network Approximation of Invariant Functions through Dynamical Systems,” 18, 2022
Q. Li, T. Lin, and Z. Shen, “On the Universal Approximation Property of Deep Fully Convolutional Neural Networks,” 25, 2022
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Approximation results via controllability

It is shown in [LLS, 22] that for universal approximation it is enough to show that
flow maps of

ẋt = ft(xt), ft ∈ F

is dense in Lp(Rd,Rd)

This is close to requiring that any N distinct initial points can be matched to N
distinct target points

This leads to the definition of universal interpolation: ability to match two
arbitrary sets of source-target points

Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” J. Eur. Math. Soc., 13, 2022
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Universal interpolation

Variety of ways to achieve the universal interpolation property (UIP)

[CLT 20] constructs a F containing 5 polynomial vector fields with Lie F
containing all polynomials, achieving UIP
[TG 22] shows that if the activation function of continuum ResNets are
chosen appropriately (satisfying an ODE), UIP is achieved. This includes tanh
and sigmoid activations
[RZ 21] shows that ReLU networks can achieve UIP by construction

C. Cuchiero, M. Larsson, and J. Teichmann, “Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs,” SIAM Journal on
Mathematics of Data Science, vol. 2, no. 3, 2020
P. Tabuada and B. Gharesifard, “Universal Approximation Power of Deep Residual Neural Networks Through the Lens of Control,” IEEE Transactions

on Automatic Control, 2022
D. Ruiz-Balet and E. Zuazua, “Neural ODE control for classification, approximation and transport,” 2021
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Two questions

• How difficult is it to achieve UIP?
• Is achieving UIP enough to get UAP (density)?

24



UIP vs UAP

Characterising UIP (ensemble controllability) in general is difficult, but often we
have affine invariance

f ∈ F =⇒ Af(B · −b) ∈ F , ∀ A,B ∈ Rd×d, c ∈ Rd

which is satisfied by many NN architectures

Under the assumption of affine invariance, we obtain [CLLS 23]

• A characterisation of UIP: UIP holds if and only if F contains a non-linear
function

• UIP and UAP are in general independent, but are equivalent under special
classes of target mappings

J. Cheng, Q. Li, T. Lin, and Z. Shen, “Interpolation, approximation and controllabilit of deep neural networks,” In Preparation, 2023
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Approximation Rates?

So far, the discussion is on density-type results

What about approximation rates, e.g. minimum T required to achieve a specified
approximation error?

• In 1D, rates can be obtained [LLS, 22]
• In general, problem is much more delicate

• Requires identification of right function spaces, complexity measures, etc.
• Connections to switching controls [RZ 21], compositional features [KG 22], etc.

Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” J. Eur. Math. Soc., 13, 2022
D. Ruiz-Balet and E. Zuazua, “Neural ODE control for classification, approximation and transport,” 2021
W. Kang and Q. Gong, “Feedforward Neural Networks and Compositional Functions with Applications to Dynamical Systems,” SIAM J. Control Optim.,

vol. 60, no. 2, 30, 2022
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Bolza problem revisited

Recall the Bolza problem

min
θ
J[θ] ≡ Φ(xT) +

∫ T

0
L(xt, θt)dt

subject to
ẋt = f(xt, θt), x0 ∈ Rd is given

In deep continuum ResNets, we are using the dynamics to steer an
ensemble/distribution of points!
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Deep learning as mean-field optimal control

Learning on dynamical hypothesis spaces is a variant of the Bolza problem

inf
θ
J[θ] := Eµ∗

Φ(xT, y)︸ ︷︷ ︸
Loss

+

∫ T

0
L(xt, θt)︸ ︷︷ ︸
Regularizer

dt


ẋt = f(xt, θt) 0 ≤ t ≤ T (x0, y) ∼ µ∗︸ ︷︷ ︸

input-output distribution

This is a mean-field optimal control problem, because we need to select θ that
controls not one, but an entire distribution of inputs and outputs

• Theoretical questions: Necessary and sufficient conditions for optimality
• Practical questions: Understanding, improving learning algorithms
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Mean-field Pontryagin’s maximum principle

Mean-field Pontryagin’s maximum principle
Let θ∗ ∈ L∞([0, T],Θ) be an optimal control, and x∗ the corresponding
controlled trajectory. Then, there exists an absolutely continuous stochastic
process p∗ such that

ẋ∗t = ∇pH(x∗t ,p∗t , θ∗t ) x∗t = x,
ṗ∗t = −∇xH(x∗t ,p∗t , θ∗t ), p∗T = −∇xΦ(x∗T, y),
EµH(x∗t ,p∗t , θ∗t ) ≥ EµH(x∗t ,p∗t , θ), ∀ θ ∈ Θ, a.e. t ∈ [0, T],
(x, y) ∼ µ

W. E, J. Han, and Q. Li, “A mean-field optimal control formulation of deep learning,” Research in the Mathematical Sciences, vol. 6, no. 1, 2019
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The value function

We can define an analogous value function

V : [0, T]× P2(Rd) → R

as
V(s, ρ) = inf

θ
E(x,y)∼ρ

[∫ T

t
L(x(t), θ(t))dt+Φ(x(T), y)

]
subject to
ẋ(t) = f(x(t), θ(t)), t ∈ [s, T], x(s) = x.

Key difference: the state is now a distribution over Rd, instead of a vector in Rd
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Mean-field Hamilton-Jacobi-Bellman equation

Mean-field Hamilton-Jacobi-Bellman equation
The value function is the unique viscosity solution to the following mean-field
Hamilton-Jacobi-Bellman equation

∂tV(t, ρ) + inf
θ∈Θ

∫
Rd+1

L(x, θ) + [∂ρV(t, ρ)(x, y)]⊤[f(x, θ), 0]dρ(x, y) = 0,

V(T, ρ) =
∫
Rd+1

Φ(x, y)dρ(x, y).

Note: ∂ρV is defined via the “lifting” technique commonly used in mean-field
games

W. E, J. Han, and Q. Li, “A mean-field optimal control formulation of deep learning,” Research in the Mathematical Sciences, vol. 6, no. 1, 2019
P. Cardaliaguet, “Notes on mean field games,” Technical report, 2010
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Optimisation and optimal control

Applications



Backpropagation and the MSA algorithm

The mean-field Pontryagin’s maximum principle gives us a method to find an
optimal control candidate via the method of successive approximations (MSA)

ẋnt = f(xnt , θnt ) xn(0) = x
ṗnt = −∇xH(xnt ,pnt , θnt ) pnT = −∇xΦ(xnT , y)
θn+1t = argmax

θ∈Θ
E(x,y)H(xnt ,pnt , θ).

• If the argmax step is replaced by gradient ascent, this is just the
back-propagation algorithm

• Replacing it with other methods leads to alternatives [LTE 17]
• E.g. can handle case where Θ is finite, e.g. binary/ternary networks [LH 18]

Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep learning,” The Journal of Machine Learning Research, vol. 18, no. 1, 2017
Q. Li and S. Hao, “An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks,” in Proceedings of the 35th

International Conference on Machine Learning, J. Dy and A. Krause, Eds., vol. 80, 2018
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Q. Li and S. Hao, “An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks,” in Proceedings of the 35th

International Conference on Machine Learning, J. Dy and A. Krause, Eds., vol. 80, 2018
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Adversarial examples

Reason: perturbations get magnified by propagation through layers
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The control viewpoint of adversarial defense

We can use closed loop control to stabilize propagation of features through a
deep network [CLZ 20, 22]

This leads to increased adversarial robustness without the need to retrain!

Z. Chen, Q. Li, and Z. Zhang, “Towards Robust Neural Networks via Close-loop Control,” in International Conference on Learning Representations, 28,
2020
Z. Chen, Q. Li, and Z. Zhang, “Self-Healing Robust Neural Networks via Closed-Loop Control,” Journal of Machine Learning Research, vol. 23, no. 319, 1,

2022
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Summary and outlook



Summary and outlook

Take-home messages

• Composition=dynamics
• Approximation≈controllability
• Optimisation≈optimal control

Many unanswered questions:

• Approximation rates and approximation spaces
• The optimisation landscape of deep models
• Generalisation≈?
(Connections: Γ-convergence, propagation of chaos, mean-field games)
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