
Deep Learning, Dynamics and Control
II: Deep Learning for Sequence Modelling

Qianxiao Li
Department of Mathematics
Institute for Functional Intelligent Materials
blog.nus.edu.sg/qianxiaoli

Dynamical systems and Semi-algebraic geometry
Interactions with Optimization and Deep Learning
Dalat, Vietnam
17–21 Jul 2023

blog.nus.edu.sg/qianxiaoli

Overview

1. Recurrent Neural Networks

2. Temporal Convolutional Networks

3. Encoder-Decoder Networks

1

Sequence Modelling Applications

2

Machine Learning Architectures for Sequence Modelling

General question: How are they different? When should we use which?

3

Supervised Learning

Goal: Learn/approximate target F

4

Supervised Learning

Goal: Learn/approximate target F

4

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F(x)

Dynamic setting

(input) x = {xt ∈ Rd} ∈ X
(output) y = {yt ∈ Rn} ∈ Y
(target) yt = Ht(x) ∀ t

Goal of supervised learning

• Static: learn/approximate the target F
• Dynamic: learn/approximate the target H = {Ht}

5

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F(x)

Dynamic setting

(input) x = {xt ∈ Rd} ∈ X
(output) y = {yt ∈ Rn} ∈ Y
(target) yt = Ht(x) ∀ t

Goal of supervised learning

• Static: learn/approximate the target F
• Dynamic: learn/approximate the target H = {Ht}

5

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F(x)

Dynamic setting

(input) x = {xt ∈ Rd} ∈ X
(output) y = {yt ∈ Rn} ∈ Y
(target) yt = Ht(x) ∀ t

Goal of supervised learning

• Static: learn/approximate the target F
• Dynamic: learn/approximate the target H = {Ht}

5

The Problem of Approximation

6

The Problem of Approximation

6

Example: Approximation by Trigonometric Polynomials

Consider

• C = Cαper([0, 2π],R) (Periodic Cα functions)

• H = ∪m∈N+

{
Ĥ(x) =

m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai,bi ∈ R

}
.

Then, the Stone-Weierstrass theorem implies density

For any H ∈ C and ϵ > 0, there exists Ĥ ∈ H with ‖H− Ĥ‖ ≤ ϵ.

7

Example: Approximation by Trigonometric Polynomials

Consider

• C = Cαper([0, 2π],R) (Periodic Cα functions)

• H = ∪m∈N+

{
Ĥ(x) =

m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai,bi ∈ R

}
.

Then, the Stone-Weierstrass theorem implies density

For any H ∈ C and ϵ > 0, there exists Ĥ ∈ H with ‖H− Ĥ‖ ≤ ϵ.

7

Example: Approximation by Trigonometric Polynomials

We can also ask a finer question: rate of approximation

Given an approximation budget m, consider

Hm =

{
Ĥ(x) =

m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai,bi ∈ R,m ≥ 1
}
.

What is the best possible approximation error given budget m?

Jackson proved the following estimate

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ cαmax0≤r≤α ‖H(r)‖
mα

,

N. I. Achieser, Theory of Approximation. Courier Corporation, 5, 2013

8

Example: Approximation by Trigonometric Polynomials

We can also ask a finer question: rate of approximation

Given an approximation budget m, consider

Hm =

{
Ĥ(x) =

m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai,bi ∈ R,m ≥ 1
}
.

What is the best possible approximation error given budget m?

Jackson proved the following estimate

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ cαmax0≤r≤α ‖H(r)‖
mα

,

N. I. Achieser, Theory of Approximation. Courier Corporation, 5, 2013

8

Example: Approximation by Trigonometric Polynomials

We can also ask a finer question: rate of approximation

Given an approximation budget m, consider

Hm =

{
Ĥ(x) =

m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai,bi ∈ R,m ≥ 1
}
.

What is the best possible approximation error given budget m?

Jackson proved the following estimate

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ cαmax0≤r≤α ‖H(r)‖
mα

,

N. I. Achieser, Theory of Approximation. Courier Corporation, 5, 2013

8

Example: Approximation by Trigonometric Polynomials

We can also ask the reverse question: suppose H can be efficiently approximated
(e.g. rate m−α) by Hm. What can we say about H?

Bernstein proved the following result

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ c
mα

, ∀m ≥ 1 =⇒ H ∈ C = Cαper([0, 2π])

N. I. Achieser, Theory of Approximation. Courier Corporation, 5, 2013

9

Example: Approximation by Trigonometric Polynomials

We can also ask the reverse question: suppose H can be efficiently approximated
(e.g. rate m−α) by Hm. What can we say about H?

Bernstein proved the following result

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ c
mα

, ∀m ≥ 1 =⇒ H ∈ C = Cαper([0, 2π])

N. I. Achieser, Theory of Approximation. Courier Corporation, 5, 2013

9

Insight on trigonometric polynomial approximation

Efficient approximation ⇐⇒ Smoothness
(small gradient norm)

9

Three Types of Results

Given a hypothesis space H and a target space C, we seek three types of results

Density-type

For all H ∈ C

inf
Ĥ∈H

‖H− Ĥ‖ = 0

Jackson-type

For all H ∈ C

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ C(H,m)

Bernstein-type

If for all m ≥ 1

inf
Ĥ∈Hm

‖H− Ĥ‖ ≤ C(H,m),

then H ∈ C

10

Sequence Modelling as an Approximation Problem

Consider an input sequence

x = {x(t) : t ∈ T }, x(t) ∈ Rd (Index set T ⊂ R or T ⊂ Z)

and corresponding output sequence y = {y(t) ∈ R : t ∈ T } related by

y(t) = Ht(x), t ∈ T

The approximation target is the functional sequence

H = {H(t) ≡ Ht : t ∈ T }

11

Sequence Modelling as an Approximation Problem

Consider an input sequence

x = {x(t) : t ∈ T }, x(t) ∈ Rd (Index set T ⊂ R or T ⊂ Z)

and corresponding output sequence y = {y(t) ∈ R : t ∈ T } related by

y(t) = Ht(x), t ∈ T

The approximation target is the functional sequence

H = {H(t) ≡ Ht : t ∈ T }

11

Sequence Modelling as an Approximation Problem

Consider an input sequence

x = {x(t) : t ∈ T }, x(t) ∈ Rd (Index set T ⊂ R or T ⊂ Z)

and corresponding output sequence y = {y(t) ∈ R : t ∈ T } related by

y(t) = Ht(x), t ∈ T

The approximation target is the functional sequence

H = {H(t) ≡ Ht : t ∈ T }

11

An Approximation Theory for Sequence Modelling

Our goal is to derive Density-type, Jackson-type and Bernstein-type results for

• C → suitable classes of functional sequences

H = {H(t) ≡ Ht : t ∈ T }

• H → RNNs, CNNs/WaveNets, Encoder-Decoders, Transformers

12

Recurrent Neural Networks

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

h(t+ 1) = σ(Wh(t) + Ux(t) + b)
ŷ(t) = c⊤h(t) t ∈ Z

(1)

This gives rise to the RNN hypothesis space

HRNN =
⋃
m≥1

Hm
RNN Hm

RNN =

{
Ĥ :Ĥt(x) = c⊤h(t),h follows Eq. (1) with
W ∈ Rm×m,U ∈ Rm×d,b ∈ Rm, c ∈ Rm

}

Continuous time index variant

h(t+ 1) = σ(Wh(t) + Ux(t) + b) → ḣ(t) = σ(Wh(t) + Ux(t) + b),

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, 6088 1986

13

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

h(t+ 1) = σ(Wh(t) + Ux(t) + b)
ŷ(t) = c⊤h(t) t ∈ Z

(1)

This gives rise to the RNN hypothesis space

HRNN =
⋃
m≥1

Hm
RNN Hm

RNN =

{
Ĥ :Ĥt(x) = c⊤h(t),h follows Eq. (1) with
W ∈ Rm×m,U ∈ Rm×d,b ∈ Rm, c ∈ Rm

}

Continuous time index variant

h(t+ 1) = σ(Wh(t) + Ux(t) + b) → ḣ(t) = σ(Wh(t) + Ux(t) + b),

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, 6088 1986

13

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

h(t+ 1) = σ(Wh(t) + Ux(t) + b)
ŷ(t) = c⊤h(t) t ∈ Z

(1)

This gives rise to the RNN hypothesis space

HRNN =
⋃
m≥1

Hm
RNN Hm

RNN =

{
Ĥ :Ĥt(x) = c⊤h(t),h follows Eq. (1) with
W ∈ Rm×m,U ∈ Rm×d,b ∈ Rm, c ∈ Rm

}

Continuous time index variant

h(t+ 1) = σ(Wh(t) + Ux(t) + b) → ḣ(t) = σ(Wh(t) + Ux(t) + b),

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, 6088 1986

13

Density-type Results for RNN

Early results focus on target functional sequences that are themselves generated
by hidden dynamical systems

C =

{
x 7→ H(x) = y with

ḣ(t) = f(h(t), x(t)), h(t) ∈ Rn

y(t) = g(h(t)), h(−∞) = 0

}

Density on bounded intervals t ∈ [0, T] follows from the density of fully connected
networks

(h, x) 7→ f(h, x) ≈ (h1, x) 7→ σ(W(h1,h2)⊤ + Ux+ b)

E. Sontag, “Neural Nets As Systems Models And Controllers,” in Proc. Seventh Yale Workshop on Adaptive and Learning Systems, 1992
T. Chow and Xiao-Dong Li, “Modeling of continuous time dynamical systems with input by recurrent neural networks,” IEEE Trans. Circuits Syst. I,

vol. 47, no. 4, 2000
A. M. Schäfer and H. G. Zimmermann, “Recurrent Neural Networks Are Universal Approximators,” in Artificial Neural Networks – ICANN 2006,

S. D. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds., Berlin, Heidelberg: Springer, 2006

14

Density-type Results for RNN

Early results focus on target functional sequences that are themselves generated
by hidden dynamical systems

C =

{
x 7→ H(x) = y with

ḣ(t) = f(h(t), x(t)), h(t) ∈ Rn

y(t) = g(h(t)), h(−∞) = 0

}

Density on bounded intervals t ∈ [0, T] follows from the density of fully connected
networks

(h, x) 7→ f(h, x) ≈ (h1, x) 7→ σ(W(h1,h2)⊤ + Ux+ b)

E. Sontag, “Neural Nets As Systems Models And Controllers,” in Proc. Seventh Yale Workshop on Adaptive and Learning Systems, 1992
T. Chow and Xiao-Dong Li, “Modeling of continuous time dynamical systems with input by recurrent neural networks,” IEEE Trans. Circuits Syst. I,

vol. 47, no. 4, 2000
A. M. Schäfer and H. G. Zimmermann, “Recurrent Neural Networks Are Universal Approximators,” in Artificial Neural Networks – ICANN 2006,

S. D. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds., Berlin, Heidelberg: Springer, 2006

14

Density-type Results for RNN on Unbounded Index Sets

To handle unbounded sets, one usually resorts to some localization argument

• Fading memory property. For some decreasing w : R+ → R, assume

|Ht(x1)− Ht(x2)| < ϵ whenever sup
s∈(−∞,t]

|x1(s)− x2(s)|w(t− s) < δ.

• Uniformly asymptotically incrementally stable (for f− g type).

L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,” Neural Networks, vol. 108, 2018
J. Hanson and M. Raginsky, “Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets,”

Proceedings of the 2nd Conference on Learning for Dynamics and Control, vol. 120, 8, 2020

15

Density-type Results for RNN on Unbounded Index Sets

To handle unbounded sets, one usually resorts to some localization argument

• Fading memory property. For some decreasing w : R+ → R, assume

|Ht(x1)− Ht(x2)| < ϵ whenever sup
s∈(−∞,t]

|x1(s)− x2(s)|w(t− s) < δ.

• Uniformly asymptotically incrementally stable (for f− g type).

L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,” Neural Networks, vol. 108, 2018
J. Hanson and M. Raginsky, “Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets,”

Proceedings of the 2nd Conference on Learning for Dynamics and Control, vol. 120, 8, 2020

15

Density-type Results for RNN on Unbounded Index Sets

To handle unbounded sets, one usually resorts to some localization argument

• Fading memory property. For some decreasing w : R+ → R, assume

|Ht(x1)− Ht(x2)| < ϵ whenever sup
s∈(−∞,t]

|x1(s)− x2(s)|w(t− s) < δ.

• Uniformly asymptotically incrementally stable (for f− g type).

L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,” Neural Networks, vol. 108, 2018
J. Hanson and M. Raginsky, “Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets,”

Proceedings of the 2nd Conference on Learning for Dynamics and Control, vol. 120, 8, 2020

15

Jackson-type Results for RNN

Results in the non-linear setting:

• Time truncation (fading memory) + Barron-type assumption on truncated
functional

• Time truncation (stability) + Barron-type assumption on f,g

These give Jackson-type estimates of order m−1/2

L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Approximation Bounds for Random Neural Networks and Reservoir Systems,” 16, 2021
J. Hanson and M. Raginsky, “Universal Simulation of Stable Dynamical Systems by Recurrent Neural Nets,”

Proceedings of the 2nd Conference on Learning for Dynamics and Control, vol. 120, 8, 2020

16

Empirically, it is found RNN performs poorly when modelling
“long-term memory”

A precise investigation of this requires operating directly on
unbounded index set and quantifying memory effects

16

The Linear RNN Hypothesis Space

We analyze the linear case where σ(z) = z, we have the dynamics

ŷ(t) = c⊤h(t),
ḣ(t) = Wh(t) + Ux(t).

where

h(t) ∈ Rm (hidden state)
W ∈ Rm×m (Recurrent Kernel)
U ∈ Rm×d (Input Kernel)
c ∈ Rm (Output layer weights)

This gives rise to the (stable) linear RNN hypothesis space

HL-RNN = ∪m≥1

{
{Ĥt(x) =

∫ ∞

0
c⊤eWsUx(t− s)ds},W ∈ Wm,U ∈ Rm×d, c ∈ Rm

}
︸ ︷︷ ︸

Hm
L-RNN

Wm = {W ∈ Rm×m : eigenvalues of W have negative real parts (Hurwitz)}

17

The Linear RNN Hypothesis Space

We analyze the linear case where σ(z) = z, we have the dynamics

ŷ(t) = c⊤h(t),
ḣ(t) = Wh(t) + Ux(t).

where

h(t) ∈ Rm (hidden state)
W ∈ Rm×m (Recurrent Kernel)
U ∈ Rm×d (Input Kernel)
c ∈ Rm (Output layer weights)

This gives rise to the (stable) linear RNN hypothesis space

HL-RNN = ∪m≥1

{
{Ĥt(x) =

∫ ∞

0
c⊤eWsUx(t− s)ds},W ∈ Wm,U ∈ Rm×d, c ∈ Rm

}
︸ ︷︷ ︸

Hm
L-RNN

Wm = {W ∈ Rm×m : eigenvalues of W have negative real parts (Hurwitz)}

17

Density of L-RNN on Unbounded Index Domains

L-RNN functional sequences: Ĥt(x) =
∫ ∞

0
c⊤eWsUx(t− s)ds

Notice that:

• Each Ĥt is a continuous, linear, causal functional
• The functional sequence Ĥ is shift-equivariant (time-homogeneous)

H ◦ Sτ = Sτ ◦ H, Sτ (x)(t) = x(t− τ)

It turns out that HL-RNN is dense in any C satisfying the same properties!

Main idea: Prove a general Riesz representation for H ∈ C

Ht(x) =
∫ ∞

0
ρ(s)⊤x(t− s)ds

[
Approximate ρ(s) by [c⊤eWsU]⊤

]

Z. Li, J. Han, W. E, and Q. Li, “On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis,”, presented at the
International Conference on Learning Representations, 18, 2021

18

Density of L-RNN on Unbounded Index Domains

L-RNN functional sequences: Ĥt(x) =
∫ ∞

0
c⊤eWsUx(t− s)ds

Notice that:

• Each Ĥt is a continuous, linear, causal functional
• The functional sequence Ĥ is shift-equivariant (time-homogeneous)

H ◦ Sτ = Sτ ◦ H, Sτ (x)(t) = x(t− τ)

It turns out that HL-RNN is dense in any C satisfying the same properties!

Main idea: Prove a general Riesz representation for H ∈ C

Ht(x) =
∫ ∞

0
ρ(s)⊤x(t− s)ds

[
Approximate ρ(s) by [c⊤eWsU]⊤

]

Z. Li, J. Han, W. E, and Q. Li, “On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis,”, presented at the
International Conference on Learning Representations, 18, 2021

18

Density of L-RNN on Unbounded Index Domains

L-RNN functional sequences: Ĥt(x) =
∫ ∞

0
c⊤eWsUx(t− s)ds

Notice that:

• Each Ĥt is a continuous, linear, causal functional
• The functional sequence Ĥ is shift-equivariant (time-homogeneous)

H ◦ Sτ = Sτ ◦ H, Sτ (x)(t) = x(t− τ)

It turns out that HL-RNN is dense in any C satisfying the same properties!

Main idea: Prove a general Riesz representation for H ∈ C

Ht(x) =
∫ ∞

0
ρ(s)⊤x(t− s)ds

[
Approximate ρ(s) by [c⊤eWsU]⊤

]

Z. Li, J. Han, W. E, and Q. Li, “On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis,”, presented at the
International Conference on Learning Representations, 18, 2021

18

Density of L-RNN on Unbounded Index Domains

L-RNN functional sequences: Ĥt(x) =
∫ ∞

0
c⊤eWsUx(t− s)ds

Notice that:

• Each Ĥt is a continuous, linear, causal functional
• The functional sequence Ĥ is shift-equivariant (time-homogeneous)

H ◦ Sτ = Sτ ◦ H, Sτ (x)(t) = x(t− τ)

It turns out that HL-RNN is dense in any C satisfying the same properties!

Main idea: Prove a general Riesz representation for H ∈ C

Ht(x) =
∫ ∞

0
ρ(s)⊤x(t− s)ds

[
Approximate ρ(s) by [c⊤eWsU]⊤

]
Z. Li, J. Han, W. E, and Q. Li, “On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis,”, presented at the

International Conference on Learning Representations, 18, 2021

18

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei, i = 1, . . . ,d as the standard basis vectors in Rd

• ei as the constant signal ei,t = ei1{t≥0}

Given a functional sequence H,

• Denote the output of constant signal yi(t) := Ht(ei)
• smoothness is measured by the smoothness of t 7→ yi(t)
• memory is measured by the decay rate of the t 7→ y(k)i (t)

19

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei, i = 1, . . . ,d as the standard basis vectors in Rd

• ei as the constant signal ei,t = ei1{t≥0}

Given a functional sequence H,

• Denote the output of constant signal yi(t) := Ht(ei)
• smoothness is measured by the smoothness of t 7→ yi(t)
• memory is measured by the decay rate of the t 7→ y(k)i (t)

19

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei, i = 1, . . . ,d as the standard basis vectors in Rd

• ei as the constant signal ei,t = ei1{t≥0}

Given a functional sequence H,

• Denote the output of constant signal yi(t) := Ht(ei)
• smoothness is measured by the smoothness of t 7→ yi(t)
• memory is measured by the decay rate of the t 7→ y(k)i (t)

19

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei, i = 1, . . . ,d as the standard basis vectors in Rd

• ei as the constant signal ei,t = ei1{t≥0}

Given a functional sequence H,

• Denote the output of constant signal yi(t) := Ht(ei)
• smoothness is measured by the smoothness of t 7→ yi(t)
• memory is measured by the decay rate of the t 7→ y(k)i (t)

19

Jackson-type Result for L-RNN

We assume that the memory decays exponentially

eβtH(r)
t (ei) = o(1), t→ ∞, i = 1, . . . ,d, 1 ≤ r ≤ α+ 1

Then, we have a Jackson-type estimate

inf
Ĥ∈Hm

L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

, γ = sup
t≥0

max
i=1,...,d

max
r=1,...,α+1

|eβtH(r)
t (ei)|
βr

Z. Li, J. Han, W. E, and Q. Li, “On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis,”, presented at the
International Conference on Learning Representations, 18, 2021

20

Curse of Memory in Approximation

Rate estimate
inf

Ĥ∈Hm
L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

,

Observations

• The smoothness dependence (α) is familiar
• The memory dependence (β, γ) is new: we need

y(r)i (t) ≡ H(r)
t (ei) ∼ e−βt, β > 0, 1 ≤ r ≤ α+ 1

• There is no curse of dimensionality due to linearity
• However, hidden in these results is a curse of memory: if we replace

H(r)
t (ei) ∼ e−βt −→ H(r)

t (ei) ∼ t−(r+ω) (ω > 0),

then, the sufficient number of neurons to achieve approximation error of ϵ
grows like m ∼ ϵ−1/ω

21

Curse of Memory in Approximation

Rate estimate
inf

Ĥ∈Hm
L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

,

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β, γ) is new: we need

y(r)i (t) ≡ H(r)
t (ei) ∼ e−βt, β > 0, 1 ≤ r ≤ α+ 1

• There is no curse of dimensionality due to linearity
• However, hidden in these results is a curse of memory: if we replace

H(r)
t (ei) ∼ e−βt −→ H(r)

t (ei) ∼ t−(r+ω) (ω > 0),

then, the sufficient number of neurons to achieve approximation error of ϵ
grows like m ∼ ϵ−1/ω

21

Curse of Memory in Approximation

Rate estimate
inf

Ĥ∈Hm
L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

,

Observations

• The smoothness dependence (α) is familiar
• The memory dependence (β, γ) is new: we need

y(r)i (t) ≡ H(r)
t (ei) ∼ e−βt, β > 0, 1 ≤ r ≤ α+ 1

• There is no curse of dimensionality due to linearity
• However, hidden in these results is a curse of memory: if we replace

H(r)
t (ei) ∼ e−βt −→ H(r)

t (ei) ∼ t−(r+ω) (ω > 0),

then, the sufficient number of neurons to achieve approximation error of ϵ
grows like m ∼ ϵ−1/ω

21

Curse of Memory in Approximation

Rate estimate
inf

Ĥ∈Hm
L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

,

Observations

• The smoothness dependence (α) is familiar
• The memory dependence (β, γ) is new: we need

y(r)i (t) ≡ H(r)
t (ei) ∼ e−βt, β > 0, 1 ≤ r ≤ α+ 1

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory: if we replace

H(r)
t (ei) ∼ e−βt −→ H(r)

t (ei) ∼ t−(r+ω) (ω > 0),

then, the sufficient number of neurons to achieve approximation error of ϵ
grows like m ∼ ϵ−1/ω

21

Curse of Memory in Approximation

Rate estimate
inf

Ĥ∈Hm
L-RNN

‖H− Ĥ‖ ≤ cαdγ
βmα

,

Observations

• The smoothness dependence (α) is familiar
• The memory dependence (β, γ) is new: we need

y(r)i (t) ≡ H(r)
t (ei) ∼ e−βt, β > 0, 1 ≤ r ≤ α+ 1

• There is no curse of dimensionality due to linearity
• However, hidden in these results is a curse of memory: if we replace

H(r)
t (ei) ∼ e−βt −→ H(r)

t (ei) ∼ t−(r+ω) (ω > 0),

then, the sufficient number of neurons to achieve approximation error of ϵ
grows like m ∼ ϵ−1/ω

21

Bernstein-type Result for L-RNN

We can further derive a Bernstein-type result

Assuming H can be efficiently approximated by {Hm
L-RNN}, i.e. there exists

Ĥm ∈ Hm
L-RNN with ‖H− Ĥm‖ → 0 and

sup
t≥0

|H(k)
t (ei)− Ĥ(k)

m,t(ei)| → 0, k = 1, . . . , α+ 1.

Then, under technical conditions, there must exist a β > 0 with

eβtH(r)
t (ei) = o(1), t→ ∞, i = 1, . . . ,d, 1 ≤ r ≤ α+ 1.

That is, the memory must decay exponentially!

Z. Li, J. Han, W. E, and Q. Li, “Approximation and Optimization Theory for Linear Continuous-Time Recurrent Neural Networks,”
Journal of Machine Learning Research, vol. 23, no. 42, 2022

22

Bernstein-type Result for L-RNN

We can further derive a Bernstein-type result

Assuming H can be efficiently approximated by {Hm
L-RNN}, i.e. there exists

Ĥm ∈ Hm
L-RNN with ‖H− Ĥm‖ → 0 and

sup
t≥0

|H(k)
t (ei)− Ĥ(k)

m,t(ei)| → 0, k = 1, . . . , α+ 1.

Then, under technical conditions, there must exist a β > 0 with

eβtH(r)
t (ei) = o(1), t→ ∞, i = 1, . . . ,d, 1 ≤ r ≤ α+ 1.

That is, the memory must decay exponentially!

Z. Li, J. Han, W. E, and Q. Li, “Approximation and Optimization Theory for Linear Continuous-Time Recurrent Neural Networks,”
Journal of Machine Learning Research, vol. 23, no. 42, 2022

22

Bernstein-type Result for L-RNN

We can further derive a Bernstein-type result

Assuming H can be efficiently approximated by {Hm
L-RNN}, i.e. there exists

Ĥm ∈ Hm
L-RNN with ‖H− Ĥm‖ → 0 and

sup
t≥0

|H(k)
t (ei)− Ĥ(k)

m,t(ei)| → 0, k = 1, . . . , α+ 1.

Then, under technical conditions, there must exist a β > 0 with

eβtH(r)
t (ei) = o(1), t→ ∞, i = 1, . . . ,d, 1 ≤ r ≤ α+ 1.

That is, the memory must decay exponentially!

Z. Li, J. Han, W. E, and Q. Li, “Approximation and Optimization Theory for Linear Continuous-Time Recurrent Neural Networks,”
Journal of Machine Learning Research, vol. 23, no. 42, 2022

22

Insight on RNN approximation

Efficient approximation ⇐⇒ Exponentially decaying
memory

22

Temporal Convolutional Networks

Convolutional Architectures

A popular alternative to recurrent architectures is convolutional based
architectures for sequence modelling

Example: WaveNet

A. van den Oord et al., “Wavenet: A generative model for raw audio,” Proc. 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9), 2016
23

Convolutional vs Recurrent Architectures

In practice, there are empirical works demonstrating the superiority of either,
depending on application

v.s.

Is one really better than the other?
When should we use convolutional and recurrent architectures?

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” 2018

24

The Dilated Convolutional Architecture

For discrete sequences, define the dilated convolution operation

(u∗ l v)(t) =
∑
s≥0

u(s)⊤v(t− ls), l ∈ Z+.

The temporal CNN architecture is

h0,i = xi

hk+1,i = σ

 Mk∑
j=1

wkji ∗dk hk,j


ŷ = hK,1

hk,i hidden state at layer k, channel i

wkji size Rl convolutional filters l = 2

K # layers

Mk # channels at layer k

dk dilation rate at layer k

25

The Dilated Convolutional Architecture

For discrete sequences, define the dilated convolution operation

(u∗ l v)(t) =
∑
s≥0

u(s)⊤v(t− ls), l ∈ Z+.

The temporal CNN architecture is

h0,i = xi

hk+1,i = σ

 Mk∑
j=1

wkji ∗dk hk,j


ŷ = hK,1

hk,i hidden state at layer k, channel i

wkji size Rl convolutional filters l = 2

K # layers

Mk # channels at layer k

dk dilation rate at layer k
25

Density Results for CNN

Density results for CNN are mostly studied for image applications

• Results without shift-equivariance1,2 cannot be adapted to the temporal
setting

• Results with shift equivariance3,4 can be, but not straightforward for
unbounded index sets

1K. Oono and T. Suzuki, “Approximation and non-parametric estimation of ResNet-type convolutional neural networks,” in
Proceedings of the 36th International Conference on Machine Learning, PMLR, May 24, 2019, pp. 4922–4931.
2D.-X. Zhou, “Universality of deep convolutional neural networks,” Applied and computational harmonic analysis, vol. 48, no. 2, pp. 787–794, 2020.
3T. Lin, Z. Shen, and Q. Li, “On the Universal Approximation Property of Deep Fully Convolutional Neural Networks,” 2022.
4D. Yarotsky, “Universal Approximations of Invariant Maps by Neural Networks,” Constructive Approximation, vol. 55, no. 1, pp. 407–474, Feb. 1, 2022.

26

Linear Convolutional Hypothesis Space

To obtain quantitative results on unbound domains, we turn to linear activation
case and choose Mk = M, dk = 2k

We get the linear temporal CNN hypothesis space

HL-CNN =
⋃
K,M

H(K,M)
L-CNN =

{
Ĥ : Ĥt(x) =

∞∑
s=0

ρ̂(s)⊤x(t− s)
}
,

where ρ̂ is determined by the convolutional filters {wkji}:

ρ̂i =
∑

i1,...,iK−1

wK−1,iK−1,1∗ 2K−1wK−2,iK−2,iK−1 ∗ 2K−2 . . .∗ 2w0,i,i1 .

Compare this with the L-RNN:

• They are both of the form Ht(x) =
∑

ρ̂(s)⊤x(t− s)
• RNN: ρ̂ is an exponential sum (infinite support)
• CNN: ρ̂ is a product-sum of length l = 2 filters (finite support)

27

Linear Convolutional Hypothesis Space

To obtain quantitative results on unbound domains, we turn to linear activation
case and choose Mk = M, dk = 2k

We get the linear temporal CNN hypothesis space

HL-CNN =
⋃
K,M

H(K,M)
L-CNN =

{
Ĥ : Ĥt(x) =

∞∑
s=0

ρ̂(s)⊤x(t− s)
}
,

where ρ̂ is determined by the convolutional filters {wkji}:

ρ̂i =
∑

i1,...,iK−1

wK−1,iK−1,1∗ 2K−1wK−2,iK−2,iK−1 ∗ 2K−2 . . .∗ 2w0,i,i1 .

Compare this with the L-RNN:

• They are both of the form Ht(x) =
∑

ρ̂(s)⊤x(t− s)
• RNN: ρ̂ is an exponential sum (infinite support)
• CNN: ρ̂ is a product-sum of length l = 2 filters (finite support)

27

Linear Convolutional Hypothesis Space

To obtain quantitative results on unbound domains, we turn to linear activation
case and choose Mk = M, dk = 2k

We get the linear temporal CNN hypothesis space

HL-CNN =
⋃
K,M

H(K,M)
L-CNN =

{
Ĥ : Ĥt(x) =

∞∑
s=0

ρ̂(s)⊤x(t− s)
}
,

where ρ̂ is determined by the convolutional filters {wkji}:

ρ̂i =
∑

i1,...,iK−1

wK−1,iK−1,1∗ 2K−1wK−2,iK−2,iK−1 ∗ 2K−2 . . .∗ 2w0,i,i1 .

Compare this with the L-RNN:

• They are both of the form Ht(x) =
∑

ρ̂(s)⊤x(t− s)
• RNN: ρ̂ is an exponential sum (infinite support)
• CNN: ρ̂ is a product-sum of length l = 2 filters (finite support)

27

Density-type Results for Temporal L-CNN

Consider the same assumptions of H being continuous, linear, causal and
shift-equivariant

Temporal CNN approximates

Ht(x) =
∑
s≥0

ρ(s)⊤x(t− s) by Ĥt(x) =
∑
s≥0

ρ̂(s)⊤x(t− s)

with ρ̂ (the Riesz representation of Ĥ) being a convolution product-sum

An immediate consequence is that the temporal CNN hypothesis is dense

H. Jiang, Z. Li, and Q. Li, “Approximation Theory of Convolutional Architectures for Time Series Modelling,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, 1, 2021

28

Density-type Results for Temporal L-CNN

Consider the same assumptions of H being continuous, linear, causal and
shift-equivariant

Temporal CNN approximates

Ht(x) =
∑
s≥0

ρ(s)⊤x(t− s) by Ĥt(x) =
∑
s≥0

ρ̂(s)⊤x(t− s)

with ρ̂ (the Riesz representation of Ĥ) being a convolution product-sum

An immediate consequence is that the temporal CNN hypothesis is dense

H. Jiang, Z. Li, and Q. Li, “Approximation Theory of Convolutional Architectures for Time Series Modelling,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, 1, 2021

28

Density-type Results for Temporal L-CNN

Consider the same assumptions of H being continuous, linear, causal and
shift-equivariant

Temporal CNN approximates

Ht(x) =
∑
s≥0

ρ(s)⊤x(t− s) by Ĥt(x) =
∑
s≥0

ρ̂(s)⊤x(t− s)

with ρ̂ (the Riesz representation of Ĥ) being a convolution product-sum

An immediate consequence is that the temporal CNN hypothesis is dense

H. Jiang, Z. Li, and Q. Li, “Approximation Theory of Convolutional Architectures for Time Series Modelling,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, 1, 2021

28

Principles of CNN Approximation

How does CNN approximation work?

First, since a K-layer L-CNN has Riesz representation ρ̂ of support 2K, the estimate
should be of the form

sup
∥x∥≤1

|Ht(x)− Ĥt(x)| ≤
2K−1∑
s=0

|ρ(s)− ρ̂(s)|︸ ︷︷ ︸
approx by convs

+
∞∑
s=2K

|ρ(s)|︸ ︷︷ ︸
tail (memory)→ 0

Note:

• Second term goes to 0 exponentially in K for any ρ ∈ ℓ2 (does not require
exponential decay!)

• So, what does CNN require for efficient approximation?

29

Principles of CNN Approximation

How does CNN approximation work?

First, since a K-layer L-CNN has Riesz representation ρ̂ of support 2K, the estimate
should be of the form

sup
∥x∥≤1

|Ht(x)− Ĥt(x)| ≤
2K−1∑
s=0

|ρ(s)− ρ̂(s)|︸ ︷︷ ︸
approx by convs

+
∞∑
s=2K

|ρ(s)|︸ ︷︷ ︸
tail (memory)→ 0

Note:

• Second term goes to 0 exponentially in K for any ρ ∈ ℓ2 (does not require
exponential decay!)

• So, what does CNN require for efficient approximation?

29

Principles of CNN Approximation

How does CNN approximation work?

First, since a K-layer L-CNN has Riesz representation ρ̂ of support 2K, the estimate
should be of the form

sup
∥x∥≤1

|Ht(x)− Ĥt(x)| ≤
2K−1∑
s=0

|ρ(s)− ρ̂(s)|︸ ︷︷ ︸
approx by convs

+
∞∑
s=2K

|ρ(s)|︸ ︷︷ ︸
tail (memory)→ 0

Note:

• Second term goes to 0 exponentially in K for any ρ ∈ ℓ2 (does not require
exponential decay!)

• So, what does CNN require for efficient approximation?

29

Principles of CNN Approximation

How does CNN approximation work?

First, since a K-layer L-CNN has Riesz representation ρ̂ of support 2K, the estimate
should be of the form

sup
∥x∥≤1

|Ht(x)− Ĥt(x)| ≤
2K−1∑
s=0

|ρ(s)− ρ̂(s)|︸ ︷︷ ︸
approx by convs

+
∞∑
s=2K

|ρ(s)|︸ ︷︷ ︸
tail (memory)→ 0

Note:

• Second term goes to 0 exponentially in K for any ρ ∈ ℓ2 (does not require
exponential decay!)

• So, what does CNN require for efficient approximation?

29

A Minimal Example

Let us consider approximating a target functional sequence

Ht(x) = r0x(t) + r1x(t− 1) + r2x(t− 2) + r3x(t− 3), rs ∈ R

This H has Riesz representation of support 4

ρ = (r0, r1, r2, r3)

Let us try to approximate it with a temporal CNN of depth K = 2 and channel
width M = 1, which has Riesz representation

ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1)

30

A Minimal Example

Let us consider approximating a target functional sequence

Ht(x) = r0x(t) + r1x(t− 1) + r2x(t− 2) + r3x(t− 3), rs ∈ R

This H has Riesz representation of support 4

ρ = (r0, r1, r2, r3)

Let us try to approximate it with a temporal CNN of depth K = 2 and channel
width M = 1, which has Riesz representation

ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1)

30

A Minimal Example

Let us consider approximating a target functional sequence

Ht(x) = r0x(t) + r1x(t− 1) + r2x(t− 2) + r3x(t− 3), rs ∈ R

This H has Riesz representation of support 4

ρ = (r0, r1, r2, r3)

Let us try to approximate it with a temporal CNN of depth K = 2 and channel
width M = 1, which has Riesz representation

ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1)

30

A Minimal Example

Therefore, we are seeking the approximation of

ρ = (r0, r1, r2, r3) by ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1),

which we can rewrite in matrix form as the approximation of

T(ρ) =

r0 r1

r2 r3

 by T(ρ̂) =

w0,0
w0,1


(
w1,0 w1,1

)

Then, approximation error is clear:

• If T(ρ) is rank 1, then approximation error is 0
• If T(ρ) is rank 2, then optimal approximation error is its second singular
value (Eckart-Young-Mirsky theorem)

31

A Minimal Example

Therefore, we are seeking the approximation of

ρ = (r0, r1, r2, r3) by ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1),

which we can rewrite in matrix form as the approximation of

T(ρ) =

r0 r1

r2 r3

 by T(ρ̂) =

w0,0
w0,1


(
w1,0 w1,1

)

Then, approximation error is clear:

• If T(ρ) is rank 1, then approximation error is 0
• If T(ρ) is rank 2, then optimal approximation error is its second singular
value (Eckart-Young-Mirsky theorem)

31

A Minimal Example

Therefore, we are seeking the approximation of

ρ = (r0, r1, r2, r3) by ρ̂ = (w0,0,w0,1)∗ 2(w1,0,w1,1),

which we can rewrite in matrix form as the approximation of

T(ρ) =

r0 r1

r2 r3

 by T(ρ̂) =

w0,0
w0,1


(
w1,0 w1,1

)

Then, approximation error is clear:

• If T(ρ) is rank 1, then approximation error is 0
• If T(ρ) is rank 2, then optimal approximation error is its second singular
value (Eckart-Young-Mirsky theorem)

31

The Notion of Tensorization Rank

This argument can be generalized to arbitrary M, K

For K ≥ 3 the tensorisation T(·) of a length-2K sequence produces a rank-K tensor
of linear dimension 2

T(ρ[0,2K])i1,...,iK = ρ[0,2K]

 K∑
j=1

ij2j−1
 , ij ∈ {0, 1}.

This has higher order singular values (HOSV)

σ
(K)
1 ≥ σ

(K)
2 ≥ · · · ≥ σ

(K)
2K ≥ 0,

whose decay rate (effecrtive tensorisation rank) controls the approximation error
by width-M filters

T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev., vol. 51, no. 3, 6, 2009

32

The Notion of Tensorization Rank

This argument can be generalized to arbitrary M, K

For K ≥ 3 the tensorisation T(·) of a length-2K sequence produces a rank-K tensor
of linear dimension 2

T(ρ[0,2K])i1,...,iK = ρ[0,2K]

 K∑
j=1

ij2j−1
 , ij ∈ {0, 1}.

This has higher order singular values (HOSV)

σ
(K)
1 ≥ σ

(K)
2 ≥ · · · ≥ σ

(K)
2K ≥ 0,

whose decay rate (effecrtive tensorisation rank) controls the approximation error
by width-M filters

T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev., vol. 51, no. 3, 6, 2009

32

The Notion of Tensorization Rank

This argument can be generalized to arbitrary M, K

For K ≥ 3 the tensorisation T(·) of a length-2K sequence produces a rank-K tensor
of linear dimension 2

T(ρ[0,2K])i1,...,iK = ρ[0,2K]

 K∑
j=1

ij2j−1
 , ij ∈ {0, 1}.

This has higher order singular values (HOSV)

σ
(K)
1 ≥ σ

(K)
2 ≥ · · · ≥ σ

(K)
2K ≥ 0,

whose decay rate (effecrtive tensorisation rank) controls the approximation error
by width-M filters

T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Rev., vol. 51, no. 3, 6, 2009

32

Jackson-type Results for L-CNN

This motivates us to define the complexity measure for H

C(G)(H) = inf

{
c : (Σ2K

i=s+K (σ
(K)
i)2︸ ︷︷ ︸

tail of singular values of tensorization

)
1
2 ≤ c

decay rate︷︸︸︷
G(s) , s ≥ 0, K ∈ N+

}

Then, we can show the following Jackson-type estimate

inf
Ĥ∈H(K,M)

L-CNN

‖H− Ĥ‖ ≤ G(KM
1
K − K)C(G)(H)d+ ‖ρ[2K,∞)‖2

H. Jiang, Z. Li, and Q. Li, “Approximation Theory of Convolutional Architectures for Time Series Modelling,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, 1, 2021

33

Jackson-type Results for L-CNN

This motivates us to define the complexity measure for H

C(G)(H) = inf

{
c : (Σ2K

i=s+K (σ
(K)
i)2︸ ︷︷ ︸

tail of singular values of tensorization

)
1
2 ≤ c

decay rate︷︸︸︷
G(s) , s ≥ 0, K ∈ N+

}

Then, we can show the following Jackson-type estimate

inf
Ĥ∈H(K,M)

L-CNN

‖H− Ĥ‖ ≤ G(KM
1
K − K)C(G)(H)d+ ‖ρ[2K,∞)‖2

H. Jiang, Z. Li, and Q. Li, “Approximation Theory of Convolutional Architectures for Time Series Modelling,” in
Proceedings of the 38th International Conference on Machine Learning, PMLR, 1, 2021

33

Convolutional vs Recurrent Achitectures

So, is CNN or RNN better? In general, neither!

Insight:
RNN works well if ρ decays exponentially
CNN works well if ρ has low rank under tensorization

34

Encoder-Decoder Networks

Encoder-Decoder Architectures for Modelling Sequences

Alternative to RNNs and CNNs are encoder-decoder class of architectures

How do they compare with RNN and CNN?

35

The Recurrent Encoder-Decoder

The simplest form of encoder-decoder architecture is the recurrent variant

ḣ(s) = σE(Wh(s) + Ux(s)), v = Qh0, s ≤ 0
ġ(t) = σD(Vg(t)), g0 = Pv,
ŷ(t) = c⊤g(t), t ≥ 0,

K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2, 2014
I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” Advances in neural information processing systems,

vol. 27, 2014

36

The Linear Recurrent Encoder-Decoder Hypothesis Space

In the linear setting, we have the following hypothesis spaces (d = 1 for simplicity)

HL-REncDec =
⋃
m,N

H(m,N)
L-REncDec =

⋃
m,N

{
Ĥ : Ĥt(x) =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
}
,

Where

• m is the width of the encoder and decoder RNNs
• N is the size of the context vector

The sequences ψ̂n and ϕ̂n are in exponential sum forms

ψ̂n(t) =
(m∑
i,j=1

ciPjn
[
eVt
]
ij

)
, ϕ̂n(t) =

(m∑
i,j=1

uiQnj
[
eWt
]
ji

)
.

37

The Linear Recurrent Encoder-Decoder Hypothesis Space

In the linear setting, we have the following hypothesis spaces (d = 1 for simplicity)

HL-REncDec =
⋃
m,N

H(m,N)
L-REncDec =

⋃
m,N

{
Ĥ : Ĥt(x) =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
}
,

Where

• m is the width of the encoder and decoder RNNs
• N is the size of the context vector

The sequences ψ̂n and ϕ̂n are in exponential sum forms

ψ̂n(t) =
(m∑
i,j=1

ciPjn
[
eVt
]
ij

)
, ϕ̂n(t) =

(m∑
i,j=1

uiQnj
[
eWt
]
ji

)
.

37

Principles of Encoder-Decoder Approximation

Since the input and ouput sequences no-longer have time correspondence, shift
equivariance is lost

Without shift-equivariance, the Riesz representation of H is

Ht(x) =
∫ ∞

0
ρ(t, s)x(−s)ds.

[
Compare: Ĥt =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
]

Thus, recurrent encoder-decoders approximates

ρ(t, s) by
N∑
n=1

ψ̂n(t)ϕ̂n(s)

That is, a rank-N approximation of a bi-variate function!

38

Principles of Encoder-Decoder Approximation

Since the input and ouput sequences no-longer have time correspondence, shift
equivariance is lost

Without shift-equivariance, the Riesz representation of H is

Ht(x) =
∫ ∞

0
ρ(t, s)x(−s)ds.

[
Compare: Ĥt =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
]

Thus, recurrent encoder-decoders approximates

ρ(t, s) by
N∑
n=1

ψ̂n(t)ϕ̂n(s)

That is, a rank-N approximation of a bi-variate function!

38

Principles of Encoder-Decoder Approximation

Since the input and ouput sequences no-longer have time correspondence, shift
equivariance is lost

Without shift-equivariance, the Riesz representation of H is

Ht(x) =
∫ ∞

0
ρ(t, s)x(−s)ds.

[
Compare: Ĥt =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
]

Thus, recurrent encoder-decoders approximates

ρ(t, s) by
N∑
n=1

ψ̂n(t)ϕ̂n(s)

That is, a rank-N approximation of a bi-variate function!

38

Principles of Encoder-Decoder Approximation

Since the input and ouput sequences no-longer have time correspondence, shift
equivariance is lost

Without shift-equivariance, the Riesz representation of H is

Ht(x) =
∫ ∞

0
ρ(t, s)x(−s)ds.

[
Compare: Ĥt =

∫ ∞

0

N∑
n=1

ψ̂n(t)ϕ̂n(s)x(−s)ds
]

Thus, recurrent encoder-decoders approximates

ρ(t, s) by
N∑
n=1

ψ̂n(t)ϕ̂n(s)

That is, a rank-N approximation of a bi-variate function!

38

Jackson-type Results for L-REncDec

Let us write down the formal SVD of ρ(t, s) as

ρ(t, s) =
∞∑
n=1

σnψn(t)ϕn(s)

Optimal rank-N approximation error depends on decay of singular values

C(H,N) ∝
(∞∑
n=N+1

σ2n

) 1
2

.

We then arrive at a Jackson-type estimate

inf
Ĥ∈Hm,N

L-REncDec

‖H− Ĥ‖ ≤ C1(α)γ
β2mα

+ C(H,N),

Z. Li, H. Jiang, and Q. Li, “On the approximation properties of recurrent encoder-decoder architectures,”, presented at the International Conference
on Learning Representations, 14, 2022

39

Jackson-type Results for L-REncDec

Let us write down the formal SVD of ρ(t, s) as

ρ(t, s) =
∞∑
n=1

σnψn(t)ϕn(s)

Optimal rank-N approximation error depends on decay of singular values

C(H,N) ∝
(∞∑
n=N+1

σ2n

) 1
2

.

We then arrive at a Jackson-type estimate

inf
Ĥ∈Hm,N

L-REncDec

‖H− Ĥ‖ ≤ C1(α)γ
β2mα

+ C(H,N),

Z. Li, H. Jiang, and Q. Li, “On the approximation properties of recurrent encoder-decoder architectures,”, presented at the International Conference
on Learning Representations, 14, 2022

39

Jackson-type Results for L-REncDec

Let us write down the formal SVD of ρ(t, s) as

ρ(t, s) =
∞∑
n=1

σnψn(t)ϕn(s)

Optimal rank-N approximation error depends on decay of singular values

C(H,N) ∝
(∞∑
n=N+1

σ2n

) 1
2

.

We then arrive at a Jackson-type estimate

inf
Ĥ∈Hm,N

L-REncDec

‖H− Ĥ‖ ≤ C1(α)γ
β2mα

+ C(H,N),

Z. Li, H. Jiang, and Q. Li, “On the approximation properties of recurrent encoder-decoder architectures,”, presented at the International Conference
on Learning Representations, 14, 2022

39

The Notion of Effective Rank under the Temporal Product Structure

high rank

low rank

Insight:
Encoder-decoders are most effective in capturing
temporal product structures with low effective rank

40

Summary

We introduced a basic mathematical setting that allows precise analysis of a
variety of architectures including

• RNN, CNN, Recurrent Encoder-Decoder

From the approximation viewpoint

• Can all achieve density in appropriate functional spaces
• Efficient approximation depends on different notions of complexity

• RNN: Exponential memory decay
• CNN: Low rank under tensorization
• Recurrent Encoder-Decoder: Low rank under temporal products

Need structural compatibility between the model and the target

H. Jiang, Q. Li, Z. Li, and S. Wang, “A Brief Survey on the Approximation Theory for Sequence Modelling,” JML, vol. 2, no. 1, 2023

41

Thank you!

41

	Recurrent Neural Networks
	Temporal Convolutional Networks
	Encoder-Decoder Networks

