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OUTLINE
1) Neuron firing models: Linear, ReLu, Tanh, Type 1, Type 2, etc…
     
       à Threshold or current adaptation: brief review
            WHY ADAPTATION? One frontier in deep learning 

2) Computing with adaptation: precise temporal coding 

3) Computing with adaptation: time sequence prediction

4) Inferring adaptive neural circuitry from microscopic data

5) A word about Stochastic Optimal Control of Neurons
   à produces reliable spiking output for real learning tasks? 



https://aman.ai/cs231n/training-neural-nets-I/

Neural Firing functions used in deep learning

Input = total synaptic currents
Output = mean firing rate



Two main “physiological” firing functions
x axis: input current

y axis: (steady state) mean firing rate       



Neuron:
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Leaky Integrate-and-Fire model:

Leaky Integrate-and-Fire model
with adaptive threshold
(“generalized LIF”) 
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fires when voltage meets threshold



Ex:  Leaky integrate-and-fire dynamics inside 
a recurrent network

y

Spike train from  
neuron j External input

Internal noise and 
other background 
noise

Feedback response kernel

Noises are “additive”  



The picture can't be displayed.

“Adaptation” signals “change”
à Encodes time derivative of input: high-pass property



Good model: 
Leaky Integrate-and-Fire + Adaptation + Gaussian white noise

Some theoretical work on ISI correlations in single neurons and networks 
(series of papers by Schwalger + Lindner)

Escape-time process is non-Markovian - Evolution of correlations
(Braun, Thul, Longtin PRE2017) 



Part 2: Adaptation produces sequential  
correlations + precise temporal firing

• Correlations increase regularity of stochastic firing process
à  regularity reduces noise, improves signal-to-noise ratio 
 à similar to what a refractory period does

Adaptation is a latent variable: optimal representation of 
information in individual neurons (Nesse, Maler, Longtin, PNAS 2010)

Adaptation increases number of network firing patterns (in prep)



firing occurs when  V(t) = Vthr with Vthr is fixed firing occurs when  V(t) = A(t)

+ Δ 𝛿(𝑡 −𝑡! ) + Δ 𝛿(𝑡 −𝑡! )

Benda, Maler, Longtin, J. Neurophysiol. 2010



Correlations between firing intervals

Nesse, Maler, Longtin, PNAS 2010; NECO 2021

Adaptation H(t)

Autocorrelation 
of successive 
intervals 
between spikes



Serial correlations between Interspike Intervals  

do not imply 

Serial correlations between adaptation states giving rise 
to these intervals

Adaptation states are quasi-independent: 
à enhanced encoding properties



Theorem: 

conditions for quasi-independent adaptation states to 
give rise to correlated ISI’s

you basically need a mechanism that impedes the 
next spike, like a refractory period

Nesse, Maler, Longtin, NECO 2021

Proof uses a time coordinate change to an 
internal “adaptation time”



Adaptation makes computing more temporally precise

à based on mean and variance of spike count during windows of duration T 

Chacron, Longtin, Maler, J. Neurosci. 2001

Deviation from Poisson process is due to correlations: 
lower variance implies enhanced information transmission



Another point of view: ROC analysis
à the further from the diagonal, the better 

Chacron, Longtin, Maler, J. Neurosci. 2001



firing occurs when  V(t) = Vthr with Vthr is fixed firing occurs when  V(t) = A(t)

+ Δ 𝛿(𝑡 −𝑡! ) + Δ 𝛿(𝑡 −𝑡! )

Benda, Maler, Longtin, J. Neurophysiol. 2010



Level of adaptation before stimulus changes the 
instantaneous firing function:

SUBTRACTION (right shift) VS DIVISION (slope decrease) 

Benda, Maler, Longtin, J. Neurophysiol. 2010

Many conductance-based models (more realistic) behave like LIFAC

Many neurons display both LIFAC and LIFDT 



Dependence of transfer function on level of 
adaptation at time of stimulus

Benda, Maler, Longtin, J. Neurophysiol. 2010



Quadratic integrate-and-fire model
“type 1 excitability”

Firings ?
 
Subthreshold: V goes beyond unstable fixed point
Suprathreshold: V crosses a fixed phase on a limit cycle

Benda, Maler, Longtin, J. Neurophysiol. 2010



Exponential integrate-and-fire with adaptive threshold
excellent model for many cells in cortex

fires when
 
Subthreshold: V goes beyond unstable fixed point
Suprathreshold: V crosses a fixed phase on a limit cycle

Benda, Maler, Longtin, J. Neurophysiol. 2010



J

escape process,
stochastic intensity
   

J

stochastic spike arrival
     (diffusive noise)

Noise models
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Gerstner et al. ND book

Probability of firing                             VS.                      first passage time of stochastic diff. eq.



Trinh, Girardi-Schappo, Harvey-Girard, Beique, Longtin, Maler, J. Physiol. (in press 2023)

Adaptation of Mossy cells of the hippocampus Hilus (between DG and CA3) 



Part 3: Adaptation to Compute Time Sequences
 
1) Context: Timing of encounters with landmarks during navigation
                   
2) Encounters produce bursts of spikes targeting memory circuits 

3) Using burst size to infer time since last encounter

4) Using burst size to infer sequence of past encounters 

Wallach, Harvey-Girard, Jun, Longtin, Maler, eLife 2018; 
Lafond-Mercier, Wallach, Maler, Longtin (in prep)



Adaptation to represent time between spatial encounters



distance between OBJECT 1 and OBJECT 2

 = 

(mean) travel speed    X    elapsed time 

IDEA: Assume neurons can compute time 
between last encounter (OBJECT 1) and new 
encounter (OBJECT 2). 

Then:





Computational model 
à Maximum likelihood estimation (MLE) from population; 

compute Cramer-Rao bound

ReLu



Latent “adaptation” dynamics
50% of the cells have beta > 0   (i.e. longer memory)



Maximum Likelihood Approach

This maximum was found numerically for each generated time interval.

For homogeneous population, 
assuming rates > 0 : 



MODEL: 500 cells suffice to encode time and account for 
experimental error   ( good, since 9000 are available! )
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Representation of more than one past interval: non-trivial !

This maximum was found numerically for each generated time interval



Computational model for 2 intervals:
Different values of β (i.e. 2 or more populations) are needed

1

2



Computational model
Time interval estimations using 10,000 cells: 
β1 = 0 (5,000 cells) and β2 > 0.39 (5,000 cells) 



Conclusion Part 3
• Adaptation acting on long time scales (beyond 

0.5 sec) can represent sequence of intervals 
between encounters

• This could support path learning and path 
integration 

• Complements RNNs and LSTMs for sequence 
learning? 



PART 4: INFERENCE OF CIRCUITS

• Two principal types of neuron: Excitatory (E) and Inhibitory (I)

•  Autonomous rhythms via Synchronization of E and I    
 
•  Information stored in the timing of rhythms: not yet including   in 

deep learning frameworks

•  Much deterministic modeling

• REAL RHYTHMS ARE STOCHASTIC/CHAOTIC: HOW TO INFER MODEL 
FROM DATA?

 à stochastic dynamical systems AND machine learning 
 



Schwalger et al., 
PLoSCB 13(4), 2017 



What if you don’t have the right model

Estimate an “effective” model 

See how far that gets you…



Inference of a mesoscopic population model from
population spike trains

Alexandre René (U. Ottawa) + Jakob Macke (U. Tuebingen)

A. René, A. Longtin, J. Macke, Neural Comput. 2020 (article)





IDEA: 

You have microscopic data, e.g. individual spike time from many cells in different populations

Use these data to construct population responses

Need a theory relating population responses (mesoscopic level) to single cell responses 
(microscopic level) 

Need NOISE to write a likelihood of observing the data.

Minimize this likelihood to fit the parameters of the mesoscopic model

Add e.g. adaptation or other phenomena of interest if theory exists.



Generating the microscopic data: 2 population model (E-I)
à noisy sinusoidal input 

Raster plots of generated spikes

Inference algorithm sees only
summed activity



Run 25 fits, keep the one with highest likelihood (in red)

Black: mesoscopic model groundtruth, 
based on microscopic model groundtruth

Grey: different fits
Red: best fit



Convergence after about 20,000 spikes



Ability to generalize: 
train on one kind of input, test on another
Here: train on noisy sine, testing on lowpass-filtered noise (frozen) 



Inference of a 4-population model, 36 free parameters
Potjans and Diesmann, 2014
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Bayesian inference used to obtain best fits 
à Hamiltonian Monte Carlo sampling 

for parameter uncertainty and correlations 



challenges

What if the model is incorrect? 

What if we have only partial information?

Can one do any of this online during an experiment?

Currently applying the method to epileptic and Parkinsonian data  



PART 5: Stochastic Optimal Control of Neural Firing Times

48

• knowing the state variable V(t): intracellular recordings
   à dynamic programming

OR

• knowing only last firing time: extracellular recordings 
    à maximization principle (less info, worse performance) 



References
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General Context
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A stochastic (drift-diffusion) process evolves in time.

Can we optimally control the time(s) at which it crosses a 
threshold?

à Stochastic Optimal Control of “Hitting” Times
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REGIMES

SupraThreshold

SubThreshold

Low  Noise                      High Noise



Leaky Integrate-and-fire Neural Model
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This is an Ornstein-Uhlenbeck process with an absorbing threshold.

μ is a bias term that sets distance of equilibrium to threshold

α is the external control



Goal: 
apply control to achieve a specified threshold crossing time t*
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T = inf{t > 0 : Xt � S}

t⇤

↵(·) = argmin
↵(·)

�
E(T � t⇤)2

�

Desired spike time:

Realized spike time:

Control:

Note:  System evolution is governed by a stochastic differential equation, so 
control can only be achieved in a statistical sense



Two Costs
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More generally, we seek an optimal solution that minimizes 
the cost function:   

J [↵(·)] =E

"
✏

Z T

0
↵2(s)ds+ (T � t⇤

�2
#

The first term controls the total injected current to 
the cell (i.e. delivered energy): 

          à  we want that to be low…
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Closed-loop control of Morris-Lecar 
neural model
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Open-loop control, Morris-Lecar 
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Conclusion part 5: Stochastic Optimal Control
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1. Strategy to control Hitting times in a drift-diffusion process

2. Ornstein-Uhlenbeck process with absorbing boundary (good model 
for noisy neural firing) 

3. Works in closed loop (Hamilton-Jacobi-Bellman eq.) and open loop 
(optimization of transition density from Fokker-Planck eq.)

4. Works in different regimes: sub or suprathreshold, low or high noise.

5. Can be generalized to more elaborate neuron models
 
  à used for decision/classification dynamics in “real” neural nets? 


