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This was derived from a collaboration between
Tuyen and | where we looked at how children learn

NEUROSCIENCE TECHNIQUES USED WITH INFANTS
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EEG/ERP: Electrical field changes

+5uV
Excellent temporal resolution Fz
Studies cover the lifespan iy
Sensitive to movement
Noiseless
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MEG: Magnetic field changes
Excellent temporal & spatial resolution
Studies on adults and young children
Head tracking for movement calibration|
Noiseless

fMRI: Hemodynamic changes
Excellent spatial resolution

Studies on adults & a few on infants
Extremely sensitive to movement
Noise protectors needed

NIRS: Hemodynamic changes
Good spatial resolution
Studies infants in the first 2 years
Sensitive to movement
Noiseless 38>
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This talk explores the computational ability of
heurons

Biological Neurons

Computational Abilities

The Deep Learning Context




The neuron are the fundamental unit of the nervous




The neuron have 4 main components

Synapse




The synapse is a structure that allows the neuron to
transmit a signal to a neighboring cell
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The synapse is a structure that allows the neuron to
transmit a signal to a neighboring cell
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
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Chemical synapses transfers signals through a
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process
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Chemical synapses transfers signals through a
biochemical process

Signal initiated in postsynaptic cell J

Actiop @ Action potential arrives at axon terminal J
potential
@ e @ Voltage-gated Ca2+ channels open J
/ V:D
@ Ca?* channel @ Ca** enters the presynaptic neuron ]
\ ":v’ Synaptic @ ST . i o J
a“* signals eurotransmitter vesicles
\ ca2+ Pl vesicles |g 0 neu r I vesicie

@ @ @ @ Vesicles move to the membrane and dock J

Selrotansmitiss @ Neurotransmitters released via exocytosis ]
w i
e
v " @ Neurotransmitters bind to receptors J
<4
Docking protein v "

o o | \—' Graded potential

Receptor



Synapses can also transmit signals electrically

Synaptic
Presynaptic neuron gap Postsynaptic neuron
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The McCulloch-Pitts Neuron was the original
mathemiccal neuron model
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The McCulloch-Pitts Neuron was the original
mathematical neuron model




You can easily represent AND and OR functions with
this model
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You can easily represent AND and OR functions with
this model
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The single neuron model can be summarized a sum
of inputs filtered by a threshold function
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In modern neuron models the threshold function is
replaced by a LNP model
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In modern neuron models the threshold function is
replaced by a LNP model
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In the following we will be focusing on the neurons
related to visual stimuli




In modern neuron models the threshold function is
replaced by a LNP model
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The linear filter operates on a pixel matrix input

Wq




The linear filter operates on a pixel matrix input
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The linear filter operates on a pixel matrix input
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The linear filter operates on a pixel matrix input
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The linear filter operates on a pixel matrix input
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Detect the flies filter by checking response to all the pixels




The linear filter

The linear filter is a matrix k with same
dimensionality as x

k = ki, ko, ..., ks
The filter is multiplied by the input

k- x



The non-linear function

The filter output the input of a non-linear function

A= ®(k - x)



The non-linear function for a LIF neuron
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The poisson spike generator

The spike train emitted from the neuron is created
by an inhomogeneous poisson process with rate ®(K*x)



The poisson distribution has had a lot of different
applications




The poisson distribution has had a lot of different
applications




The poisson spike generator

The spike train emitted from the neuron is created
by an inhomogeneous poisson process with rate ®(K*x)
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The traditional view with g being sum can be
challenged
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Neurologist has long been interested in neurons
ability to multiply signals
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Recently, the multiplication of signals have been
biologically proven and explained

Article

Abiophysical account of multiplicationby a
single neuron

https://doi.org/10.1038/541586-022-04428-3  Lukas N. Groschner'?*, Jonatan G. Malis'?, Birte Zuidinga' & Alexander Borst'™
Received: 21 June 2021

Accepted: 14 January 2022 Nonlinear, multiplication-like operations carried out by individual nerve cells greatly

Published online: 23 February 2022 enhance the computational power of a neural system'?, but our understanding of

their biophysical implementation is scant. Here we pursue this problemin the

Drosophila melanogaster ON motion vision circuit**, in which we record the

%) Check for updates membrane potentials of direction-selective T4 neurons and of their columnar
input elements®’ in response to visual and pharmacological stimuliin vivo. Our
electrophysiological measurements and conductance-based simulations provide
evidence for a passive supralinear interaction between two distinct types of synapse
on T4 dendrites. We show that this multiplication-like nonlinearity arises from the
coincidence of cholinergic excitation and release from glutamatergic inhibition.
The latter depends on the expression of the glutamate-gated chloride channel
GluClo®? in T4 neurons, which sharpens the directional tuning of the cells and shapes
the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and
excitatory synapses have long been postulated as an analogue approximation of a
multiplication, which is integral to theories of motion detection'®", sound
localization'?and sensorimotor control®.

Open access




The T4 neuron of the fly is monitored




The fly is placed in front of a monitor




The fly is placed in front of a monitor




The fly is placed in front of a monitor




The fly is placed in front of a monitor




The T4 neuron has several incoming dendrites

Groschner et.al, 2021



The voltage response of neurons component parts
are measured
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The correlation between the incoming synapses and
the T4 neuron
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The voltage response of neurons component parts
are measured
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The neuron responds when the light moves in the

primary direction T M9 T Tm3 T M1 T M4 "~ C3
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The flys ability to detect direction of moving light

could be chemically disabled

Groschner et.al, 2021
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So why are we talking about neurons?



The neurons are the inspiration for neural networks
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The standard view of a neural network neuron
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Following biology we can consider other neuron models for NN
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Multiplication neural networks have been explored

Product Units: A Computationally Powerful and
Biologically Plausible Extension to Backpropagation
Networks

Richard Durbin
David E. Rumelhart
Department of Psychology, Stanford University, Stanford, CA 94305, USA

We introduce a new form of computational unit for feedforward learn-
ing networks of the backpropagation type. Instead of calculating a
weighted sum this unit calculates a weighted product, where each in-
put is raised to a power determined by a variable weight. Such a unit
can learn an arbitrary polynomial term, which would then feed into
higher level standard summing units. We show how learning operates
with product units, provide examples to show their efficiency for vari-
ous types of problems, and argue that they naturally extend the family
of theoretical feedforward net structures. There is a plausible neurobi-
ological interpretation for one interesting configuration of product and
summing units.



The multiplicative sum is actually equivalent to the additive sum
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The object function can potentially be replaced by a LNP process
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The object function can potentially be replaced by a LNP process

Inputs Weights




The object function can potentially be replaced by a LNP process
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A more reasonable approach for a DNN might be to
use a multilayer neuron model
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Other possibilities

e Probability distribution

ORIGINAL RESEARCH

'." frontiers

Can the Brain Build Probability
Distributions?

Marcus Lindskog?=*, Pér Nystrsm' and Gustaf Gredeback'

amounts of data that need to
be processed, jestion. Our physical
and social environment needs to be represented in a structured way, which could be
ieved by reducing input to latent variables in the form of probability distributions
proposed by infiuential, probabilistic accounts of cognition and perception. However
few studies have investigated the neural processes underlying the brain's potential ability
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Thank you for your attention



