The computational abilities of biological neurons and the relation to their neural network counterparts

Martin Hornkjøl

Department of Mathematics University of Oslo

20/07/23

UiO **University of Oslo**

This was derived from a collaboration between Tuyen and I where we looked at how children learn

NEUROSCIENCE TECHNIQUES USED WITH INFANTS

EEG/ERP: Electrical field changes Excellent temporal resolution Studies cover the lifespan Sensitive to movement Noiseless

MEG: Magnetic field changes Excellent temporal & spatial resolution Studies on adults and young children Head tracking for movement calibration Noiseless

fMRI: Hemodynamic changes Excellent spatial resolution Studies on adults & a few on infants Extremely sensitive to movement Noise protectors needed

NIRS: Hemodynamic changes Good spatial resolution Studies infants in the first 2 years Sensitive to movement Noiseless

This talk explores the computational ability of neurons

Biological Neurons

Computational Abilities

The Deep Learning Context

The neuron are the fundamental unit of the nervous

system

The neuron have 4 main components

The synapse is a structure that allows the neuron to transmit a signal to a neighboring cell

The synapse is a structure that allows the neuron to transmit a signal to a neighboring cell

Chemical synapses transfers signals through a biochemical process Bignal initiated in postsynaptic cell

Synapses can also transmit signals electrically

The McCulloch-Pitts Neuron was the original mathemiccal neuron model

The McCulloch-Pitts Neuron was the original mathematical neuron model

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$

$$\begin{aligned} y &= f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \geq \theta \\ &= 0 \quad if \quad g(\mathbf{x}) < \theta \end{aligned}$$

You can easily represent AND and OR functions with this model

$$g(x_1, x_2, x_3, \dots, x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$
$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$
$$\theta = 3$$

You can easily represent AND and OR functions with this model

 $\rightarrow y \in \{0,1\}$

$$g(x_1, x_2, x_3, \dots, x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$

$$x_1$$

$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$

$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$

$$\theta = 1$$

$$x_1$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_2$$

$$x_3$$

$$x_4$$

$$x_3$$

$$y = f(g(\mathbf{x})) = 1$$

The single neuron model can be summarized a sum of inputs filtered by a threshold function

In modern neuron models the threshold function is replaced by a LNP model

In modern neuron models the threshold function is replaced by a LNP model

In the following we will be focusing on the neurons related to visual stimuli

In modern neuron models the threshold function is replaced by a LNP model

6	-			-	-	and the second second

 $\implies \mathbf{x} = [1, 0, 1, \dots, 0]$

Detect the flies filter by checking response to all the pixels

The linear filter

The linear filter is a matrix ${\bf k}$ with same dimensionality as ${\bf x}$

$$\mathbf{k} = [k_1, k_2, \dots, k_{81}]$$

The filter is multiplied by the input

 $\mathbf{k}\cdot\mathbf{x}$

The non-linear function

The filter output the input of a non-linear function

$$\lambda = \Phi(\mathbf{k} \cdot \mathbf{x})$$

The non-linear function for a LIF neuron

The poisson spike generator

The spike train emitted from the neuron is created by an inhomogeneous poisson process with rate $\Phi(K^T{\bf x})$

The poisson distribution has had a lot of different applications

The poisson distribution has had a lot of different applications

The poisson spike generator

The spike train emitted from the neuron is created by an inhomogeneous poisson process with rate $\Phi(K^T \mathbf{x})$

The traditional view with g being sum can be challenged

Neurologist has long been interested in neurons ability to multiply signals

Hassenstein-Reichardt-Detector

Recently, the multiplication of signals have been biologically proven and explained

Article

A biophysical account of multiplication by a single neuron

https://doi.org/10.1038/s41586-022-04428-3	Lukas N. Groschner^{12 $\boxtimes}$, Jonatan G. Malis^{12}, Birte Zuidinga^ & Alexander Borst^{1 $\boxtimes}$				
Received: 21 June 2021					
Accepted: 14 January 2022	Nonlinear, multiplication-like operations carried out by individual nerve cells greatly enhance the computational power of a neural system ¹⁻³ , but our understanding of their biophysical implementation is scant. Here we pursue this problem in the Dresenbild medanogaster (ON motion vision ginguist ⁵ in which we record the				
Published online: 23 February 2022					
Open access					
Check for updates	<i>Drosophila melanogaster</i> ON motion vision circuit ^{4,5} , in which we record the membrane potentials of direction-selective T4 neurons and of their columnar input elements ^{6,7} in response to visual and pharmacological stimuli in vivo. Our electrophysiological measurements and conductance-based simulations provide evidence for a passive supralinear interaction between two distinct types of synapse on T4 dendrites. We show that this multiplication-like nonlinearity arises from the coincidence of cholinergic excitation and release from glutamatergic inhibition. The latter depends on the expression of the glutamate-gated chloride channel GluClα ^{8,9} in T4 neurons, which sharpens the directional tuning of the cells and shaper the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and excitatory synapses have long been postulated as an analogue approximation of a multiplication, which is integral to theories of motion detection ^{10,11} , sound				

The T4 neuron of the fly is monitored

The T4 neuron has several incoming dendrites

The voltage response of neurons component parts are measured

The correlation between the incoming synapses and the T4 neuron

Groschner et.al, 2021

The voltage response of neurons component parts are measured

The neuron responds when the light moves in the primary direction

The flys ability to detect direction of moving light could be chemically disabled

So why are we talking about neurons?

The neurons are the inspiration for neural networks

The standard view of a neural network neuron

Following biology we can consider other neuron models for NN

Multiplication neural networks have been explored

Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks

Richard Durbin David E. Rumelhart Department of Psychology, Stanford University, Stanford, CA 94305, USA

We introduce a new form of computational unit for feedforward learning networks of the backpropagation type. Instead of calculating a weighted sum this unit calculates a weighted product, where each input is raised to a power determined by a variable weight. Such a unit can learn an arbitrary polynomial term, which would then feed into higher level standard summing units. We show how learning operates with product units, provide examples to show their efficiency for various types of problems, and argue that they naturally extend the family of theoretical feedforward net structures. There is a plausible neurobiological interpretation for one interesting configuration of product and summing units.

The multiplicative sum is actually equivalent to the additive sum

$$\Pi_j x_j^{w_{ij}} = \exp(\Sigma_j w_{ij} \ln(x_j))$$

$\sigma' = \exp \circ \sigma \circ \ln$

The object function can potentially be replaced by a LNP process

The object function can potentially be replaced by a LNP process

The object function can potentially be replaced by a LNP process

A more reasonable approach for a DNN might be to use a multilayer neuron model

Other possibilities

• Probability distribution

ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/tpsyg.2021.896231

> Onesh for specific

Can the Brain Build Probability Distributions?

Marcus Lindskog12*, Pär Nyström1 and Gustaf Gredebäck1

¹ Department of Psychology, Uppsala University, Uppsala, Sweden, ² Department of Education, Uppsala University, Uppsala, Sweden

How humans efficiently operate in a world with massive amounts of data that need to be processed, stored, and recalid has long been an unsettled question. Our physical and social environment needs to be represented in a structured way, which could be achieved by reducing input to latent variables in the form of publibility distributions, as proposed by initiantial, probabilities accounts of cognition and perception. However, few studies have investigated the neural processes underlying the brain's potential ability to represent a probability distribution's complex, global features. Here, we presented

Thank you for your attention