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Machine Learning (ML)

Concept

Predict some output variable y ∈ RD

from an input variable x ∈ RM .

ML Models

Function f , parameterized by θ ∈ RP .
We want f (x , θ) = y .

Neural networks (NN): a class of ML models

Compositional structure in layers (f`)`∈{1,...,L}:

f = fL ◦ fL−1 ◦ . . . ◦ f1.
Typical layer: f1(x , θ1) = g1 (W1x + b1), where,
– W1 is a matrix, b1 a vector,
– g1 is an activation function (non-linear).

Common activation functions
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Sigmoid(t) = 1/(1 + e t)
ReLU(t) = max(0, t)

– Parameter θ ∈ RP of f : coefficients of the
matrices and vectors of the layers.

– Deep learning: ML with neural
networks.
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Training neural networks: an optimization problem

Central question: How to select the parameter θ?

Loss function
– Training dataset: a collection of N examples

(xn, yn)n∈{1,...,N}.

– Loss function: sum of the errors made by a
neural network on the training set, e.g.,

J (θ)
e.g.
=

1
N

N∑
n=1

‖f (xn, θ)− yn‖22.

Training is an optimization problem

We seek θ ∈ RP which minimizes J :

min
θ∈RP

J (θ)
def
= min

θ∈RP

1
N

N∑
n=1

Jn(θ).

Main topic of the talk:
Designing new algorithms to train neural networks, i.e., to minimize J .

Temporary simplification
We first assume that J is twice differentiable.
Denote ∇J and ∇2J its gradient and Hessian matrix. 2/27
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Basic minimization algorithm

To minimize a function we can follow the direction of steepest descent.

Gradient descent (GD)
Given θ0, γ > 0, for all k ∈ N,

θk+1 = θk − γ∇J (θk).

GD only requires being able to evaluate ∇J .
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A difficult practical optimization problem

Selecting θ ∈ RP that minimizes J (θ) = 1
N

∑N
n=1 Jn(θ) was unachievable for decades.

Drawback: High computational cost
Neural networks:
– Usually have millions of parameters (P
large).
– Are trained on large datasets (N large,
J is the sum of many terms).

Assets
– Modern computers, in particular GPUs.
– The backpropagation (Rumelhart and
Hinton, 1986): efficient way of evaluating
the ∇Jn’s.
Consequences
– Possible but expensive to compute J
and ∇J . Expensive to store ∇J .
– Unreasonable to compute ∇2J .
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Mini-batch algorithms

GD remains expensive, another strategy is preferable.

Mini-batch (MB) sub-sampling

Let B ⊂ {1, . . . ,N} a sub-sample of indices, define

JB =
1

Card(B)

∑
n∈B

Jn and ∇JB =
1

Card(B)

∑
n∈B

∇Jn.

Approximations of J and ∇J with a sub-sample of the training set.

Stochastic gradient descent (SGD)

Given θ0, step-sizes γk > 0 and random mini-batches Bk ⊂ {1, . . . ,N}, for k ∈ N,
θk+1 = θk − γk∇JBk

(θk).

Consequences of mini-batches
– Empirically faster in most large-scale problems (Bottou and Bousquet, 2008).
– Brings new hardships (imprecise update directions, need for using vanishing
step-sizes, etc.).
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A possibly difficult optimization problem

Non-convexity
The compositional structure of NNs makes J
non-convex. Critical points need not be minima.

Non-smoothness
Loss function J may be
non-differentiable (e.g., due to ReLU).
Gradient is not always well defined.

Usually easier to minimize this function... than this one!

In deep learning, J is more likely to be similar to right figure.1

1Right figure credited to https://www.cs.umd.edu/~tomg/projects/landscapes/
6/27
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Motivation: New algorithms

– SGD is widely used in DL. Two main variations: Momentum and adaptivity.
– ADAM (Kingma and Ba, 2015) combines adaptivity and momentum (106 citations).

Goal: Making use of second-order information. Why?
– Potentially faster training.
– Tuning step-sizes.– And more (escaping saddles, etc.).

Many limitations: High computational cost, non-smoothness (lack of existence of 1st
and 2nd-order derivatives), mini-batch sub-sampling, etc.

Coming next:

– A practical second-order algorithm, built despite the limitations.

– Convergence guarantees in this restrained theoretical framework.
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ODEs and optimization algorithms

Assume temporarily that J is twice differentiable. Optimization algorithms with small
step-sizes can be modeled by Ordinary Differential Equations (ODEs).

Discrete gradient descent

θk+1 = θk − γ∇J (θk)

⇐⇒ θk+1 − θk
γ

+∇J (θk) = 0

−−−−−−→
γ→0←−−−−−−

discretize

Gradient system

dθ
dt

(t) +∇J (θ(t)) = 0,∀t > 0

The same can be done for Newton’s method

Newton’s method

θk+1 = θk − γ
(
∇2J (θk)

)−1∇J (θk)

−−−−−→
←−−−−−

Continuous Newton’s method

∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0

Strategy
We start from an ODE to build an algorithm. 8/27
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An interesting ODE as model
DIN (Alvarez, Attouch, Bolte, and Redont, 2002)

Take two hyper-parameters α ≥ 0 and β > 0. Consider for all t > 0,

d2θ

dt2
(t) + α

dθ
dt

(t) + β∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0. (DIN)

DIN mixes gradient descent, Newton’s method, and an acceleration term
connected to momentum methods (Polyak, 1964).

The solution of DIN are attracted by critical points
The limits (as t →∞) of the solutions of DIN (when they exist) are critical points of
J (Alvarez et al., 2002).

Related work (non-exhaustive)
Extensions and properties of DIN further studied by many (Attouch, Peypouquet, and
Redont, 2014, 2016; Boţ, Csetnek, and László, 2021). Link with Nesterov’s method
(Alecsa, László, and Pinţa, 2021; Shi, Du, Jordan, and Su, 2021), etc. 9/27



Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

Landscape of J (level lines)
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Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)
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How to deal with the Hessian term ∇2J ?
Equivalent form of DIN (Alvarez et al., 2002)

For J twice differentiable, this second-order ODE...
d2θ

dt2
(t) + α

dθ
dt

(t) + β∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0, (DIN)

can be rewritten into an equivalent first-order system with no explicit Hessian
term! dθ

dt (t) + (α− 1
β )θ(t) + 1

βψ(t) + β∇J (θ(t)) = 0
dψ
dt (t) + (α− 1

β )θ(t) + 1
βψ(t) = 0

(g-DIN)

Computational cost is now affordable
For differentiable functions we could discretize g-DIN, and incorporate mini-batches.
Remark: g-DIN was also used by others at a similar time (Chen and Luo, 2019;
Attouch, Chbani, Fadili, and Riahi, 2020).

Main challenge: how to adapt this to non-differentiable loss functions?
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Handling non-smoothness

From now on, J is not assumed to be differentiable anymore.

– However, J is locally Lipschitz continuous hence differentiable almost everywhere
(by Rademacher’s theorem).
– Let θ ∈ RP , for convex function, the sub-differential of J at θ is,{

v ∈ RP
∣∣∣∀ψ ∈ RP ,J (ψ)− J (θ) ≥ 〈v , ψ − θ〉

}
.

– Not suited for some non-convex functions (e.g., t ∈ R 7→ −|t|).
Sub-differential suited for deep learning: Clarke sub-differential (Clarke, 1990)

Denote R the set of points where J is differentiable. For θ ∈ RP ,

∂J (θ)
def
= conv

{
v ∈ RP | ∃(θk)k∈N ∈ RN, s.t. θk −−−→

k→∞
θ and ∇J (θk) −−−→

k→∞
v

}
.

This is formally the convex hull of the limits of all neighboring gradients.

Next step: mini-batch sub-sampling for sub-differentials.
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Non-smooth mini-batch sub-sampling
Sum of sub-differentials of two functions g1, g2 (dom(g1) = dom(g2) = R)
Convex case: ∂(g1 + g2) = ∂g1 + ∂g2.
Non-convex case: ∂(g1 + g2)⊂ ∂g1 + ∂g2.

Example

g : t ∈ R 7→ |t| − |t| = 0. Clearly ∂g(0) = {0}, whereas,
∂(|0|) + ∂(−|0|) = [−1, 1] + [−1, 1] = [−2, 2] ⊃ {0}.

Consequence: ∂J not suited for mini-batch sub-sampling!

– Ideally we would approximate ∂J = ∂
(

1
N

∑N
n=1 Jn

)
.

– Unfortunately we can only approximate DJ def
= 1

N

∑N
n=1 ∂Jn.

– This models what practitioners do (often unconsciously).
So we use DJ in place of ∂J to keep theory close to practice.

Mini-batch sub-sampling: for B ⊂ {1, . . . ,N}, DJB
def
= 1

Card(B)
∑

n∈B ∂Jn.
13/27



On computing DJ and ∂Jn

Simplification
Here I am assuming that computing elements of each Clarke subdifferential ∂Jn is
“easy” so that DJB = 1

Card(B)
∑

n∈B ∂Jn is also easy to evaluate.

It is not!

Reality
In practice ∂Jn is replaced by the output of automatic
differentiation: the PyTorch/Tensorflow implementation
of backpropagation.
Can be taken into account in convergence analyses
(Bolte and Pauwels, 2020a,b).

But not today
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The INNA algorithm
Incorporate DJ into g-DIN: new differential inclusiondθ

dt (t) +(α− 1
β )θ(t) + 1

βψ(t) + β∇J (θ(t)) = 0
dψ
dt (t) +(α− 1

β )θ(t) + 1
βψ(t) = 0

, for all t ∈ (0,+∞).

Finally: explicit Euler discretization and non-smooth mini-batch sub-sampling.

INNA: an Inertial Newton Algorithm

Choose hyper-parameters α ≥ 0, β > 0, a sequence of step-sizes (γk)k∈N, nonempty
mini-batches (Bk)k∈N i.i.d uniformly at random, and an initialization
(θ0, ψ0) ∈ RP × RP .

Iterate for k = 0, . . .,


vk ∈ DJBk

(θk) =
∑

n∈Bk
∂J (θk)

θk+1 = θk + γk

(
−(α− 1

β )θk − 1
βψk − βvk

)
ψk+1 = ψk + γk

(
−(α− 1

β )θk − 1
βψk

)
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Convergence of INNA for tame functions
The loss function J is tame
Functions are tame when their graph can be described with a finite number of
polynomials, logarithms, exponentials, etc. (extension of semi-algebraic functions).

Theorem (C., Bolte, Févotte, Pauwels, 2019)

If each Jn is locally Lipschitz continuous, tame, if γk = o(1/ log k) and∑
k γk = +∞. Assume that the iterates are bounded almost surely. Then, a sequence

(θk , ψk)k∈N generated by INNA is such that almost surely,

• any accumulation point (θ̄, ψ̄) is such that 0 ∈ DJ (θ̄),

• the sequence (J (θk))k∈N of values of the loss function converges.

Why does it work?
Formally, when the step-size γk −−−→

k→∞
0, “INNA behaves like g-DIN” (Benaïm, 1999;

Benaïm, Hofbauer, and Sorin, 2005).
16/27



Proof sketch 1/2: connecting discrete and continuous dynamics
Let (θk , ψk)k∈N generated by INNA, with step-sizes (γk)k∈N and mini-batches (Bk)k∈N.

INNA
vk ∈ DJBk

(θk)
θk+1−θk

γk
= −(α− 1

β )θk − 1
βψk − βvk

ψk+1−θk
γk

= −(α− 1
β )θk − 1

βψk

We compare the solutions of g-DIN with
INNA by interpolating the iterations.

g-DINdθ
dt (t) + (α− 1

β )θ(t) + 1
βψ(t) + βDJ (θ(t))3 0

dψ
dt (t) + (α− 1

β )θ(t) + 1
βψ(t) = 0

θk+1

θk

θk−1

θk−2

θk+3

θk+2

θk−3

Main elements to connect the dynamics

– By assumption (θk , ψk)k∈N is bounded, γk = o(1/ log k) and
∑

k∈N γk =∞.
– The mini-batches are chosen so that ∀k ∈ N, E [vk | Bk−1, . . . ,B0] ∈ DJ (θk).
– Interpolated INNA behaves asymptotically like solutions of g-DIN (it is a bounded
perturbed solution of g-DIN, Benaïm et al. (2005, Thm. 1.3&1.4)). 17/27



Proof sketch 2/2: Lyapunov analysis and limit
Lyapunov function

Let (θ, ψ) solution of g-DIN. Define for t > 0,

E (θ(t), ψ(t)) = (1 + αβ)J (θ(t)) +
1
2
‖(α− 1

β
)θ(t) +

1
β
ψ(t)‖2.

By differentiating E (θ, ψ) (chain rule for tame functions, see Davis et al. (2020)), we
show that for a.e. t > 0, E (θ(t), ψ(t))≤E (θ(0), ψ(0)) with strict inequality if

(θ(0), ψ(0)) 6∈ S =
{

(θ̃, ψ̃) ∈ RP × RP | 0 ∈ DJ (θ̃), ψ̃ = (1− αβ)θ̃
}
.

Sard’s lemma (based on Bolte, Daniilidis, Lewis, and Shiota 2007)
The loss function J is tame so has a finite number of D-critical values. Since
E ≡ (1 + αβ)J on S, E (S) is finite.

Finally combine (Benaïm et al., 2005, Theorem 3.6&3.27)

– E (θ, ψ) is a Lyapunov function =⇒ the limit set L of bounded perturbed solutions
is in S (so any accumulation point is D-critical).
– E (S) is finite =⇒ E (L) is a singleton, and E ≡ (1 + αβ)J on S. 18/27
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More guarantees

Rates of convergence
Linear or Sub-linear rates of convergence for the solutions of the differential
inclusion (g-DIN). Based on the Kurdyka-Łojasiewicz (KL) inequality (Bolte,
Daniilidis, Lewis, and Shiota, 2007). We provide a recipe to extend this to a large
class of dynamical systems.

Escape of strict saddles
Almost sure convergence to minimizers of J , under stronger assumptions (smooth,
deterministic setting) (Castera, 2021).
Not true for usual Newton’s methods (Dauphin et al., 2014), but also holds for a few
of them (Truong et al., 2020).
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Important disclaimer

Many tricks and tuning hidden behind DL problems (NN,
dataset, batchnorm, weight decay, hyper-parameter

tuning, etc.).

It is hardly possible to accurately benchmark optimizers
in DL (Sivaprasad et al., 2019).

19/27



Results for image classification on CIFAR-100
Classification of images in 100 categories with NiN (moderately large network, Lin et al. 2014).

Training loss (lower is better)
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More experiments in the paper
– Comparisons on more problems.
– Hyper-parameters sensitivity.
– Faster convergence with slower step-size schedule. 20/27



Conclusions on INNA



Take-home messages

• A second-order algorithm for training neural networks.

• Convergence guarantees in a stochastic non-smooth
non-convex framework.

• Promising experiments and good generalization on DL
problems.
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What’s next?

• In the experiments, the gap of performance is
satisfying but not tremendous.

• What should we improve? Is DIN the right ODE? Is
our discretization good?

Let’s go back to the smooth setting to find out.
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Part 2: Continuous Newton-like
Methods featuring Inertia and
Variable Mass



Let us take a step back
More favorable framework for optimization than deep learning
– Usual optimization notations: θ → x , J → f .
– Assume f to be strongly convex and smooth (C 2).
– Consider (for now) only the ODE framework.

Recall DIN?

d2x

dt2
(t) + α

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (DIN )

Typically α(t) = 3/t (Nesterov, 1983; Su et al., 2014).

Observation
DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence
compared to first-order methods.

This raises an important question
Are DIN-like ODEs really Newton-like methods? 21/27
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More favorable framework for optimization than deep learning
– Usual optimization notations: θ → x , J → f .
– Assume f to be strongly convex and smooth (C 2).
– Consider (for now) only the ODE framework.

Recall DIN? Here is a popular extension

d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (DIN-AVD)

Typically α(t) = 3/t (Nesterov, 1983; Su et al., 2014).

Observation
DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence
compared to first-order methods.

This raises an important question
Are DIN-like ODEs really Newton-like methods? 21/27



A new system VM-DIN-AVD
Introduce an additional parameter ε(t) in front of the acceleration

ε(t)
d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (VM-DIN-AVD)

where ε and α are two non-negative functions of [0,+∞[.

Intuition

β∇2f (xN(t))
dxN
dt

(t) +∇f (xN(t)) = 0. (CN)

α(t)
dxLM
dt

(t) + β∇2f (xLM(t))
dxLM
dt

(t) +∇f (xLM(t)) = 0. (LM)

When ε(t) and α(t) vanish asymptotically, the solution x of (VM-DIN-AVD) should
get close either to xN or xLM .
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Prior work: a partial answer (Alvarez et al., 2002)

Setting and Notation

We fix initial conditions x(0) = x0, dx
dt (0) = ẋ0.

Prior work: fixed ε and α = 0 (Alvarez et al., 2002)

ε
d2x

dt2
(t) +

�
�
�
�

α
dx
dt

(t) + ��β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0. (ε-DIN)

There exists C > 0 such that for all 0 ≤ ε ≤ 1 and for all t ≥ 0,

‖x(t)− xN(t)‖ ≤ C
√
ε.

Can we say more? What about α 6= 0, ε(t), α(t), etc.?
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Convergence to CN under moderate viscous damping

Theorem (C., Attouch, Fadili, Ochs, 2023)

In the case ε(t) ≥ α(t):
Under mild assumptions, there exist C0,C1,C2 ≥ 0 s.t. ∀(ε, α) for which the
assumptions hold the solution x of (VM-DIN-AVD) is s.t. ∀t ≥ 0,

‖x(t)− xN(t)‖ ≤ C0e
− t

β ε0 ‖ẋ0‖+ C1
√
ε(t) + C2

∫ t

s=0
e

1
β
(s−t)√

ε(s) ds.

Corollary: simpler bound

‖x(t)− xN(t)‖ ≤ C0e
− t

β ε0 ‖ẋ0‖+ C3
√
ε(t).

NB: The case ε(t) < α(t) is also covered but is more involved.
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Illustration: a control perspective

Initialization x0
Continuous Newton
Continuous gradient descent
DIN-AVD
Minimizer x  of f
Level lines of f
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Illustration of the result on a 2D quadratic function in the case ε(t) ≥ α(t) 25/27



New understanding

ε(t)
d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0 (VM-DIN-AVD)

= 0 (t) 0 > 0 constant
Viscous damping 

=
0

(t)
0

>
0 

co
ns

t.
Va

ria
bl

e 
m

as
s 

0 0 0

(t)
(t)

max(
(t)

, (t)
)

max(
, )

(Alvarez et al.)
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Conclusion & Perspective

• VM-DIN-AVD is really a second-order method, that
we can control.

• This paves the way to the design of new algorithms.

• But: finding the right trade-off between cheap and
efficient discretization is (extremely) challenging. I am
currently working on it.
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Associated publications
Journal papers

q Part 1: An Inertial Newton Algorithm for Deep Learning. C. Castera, J.
Bolte, C. Févotte, and E. Pauwels (2021). In Journal of Machine Learning
Research (JMLR).

q Inertial Newton Algorithms Avoiding Strict Saddle Points. C. Castera
(2021). In arXiv 2111.04596.

q Part 2: Continuous Newton-like Methods featuring Inertia and Variable
Mass. C. Castera, H. Attouch, J. Fadili, P. Ochs (2023). arXiv 2301.08726.

Code repository
INNA is available as a ready-to-use optimizer for Pytorch and Tensorflow.

https://github.com/camcastera/INNA-for-DeepLearning
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