
Second-order Inertial Algorithms for Smooth and
Non-smooth Large-scale Optimization

Camille Castera
University of Tübingen
Faculty of Mathematics

Part 1: Joint work with J. Bolte, C. Févotte, E. Pauwels
Part 2: Joint work with H. Attouch, J. Fadili, and P. Ochs

Dynamical Systems and Semi-algebraic Geometry: Optimization and Deep Learning
Dalat, July 2023

Introduction: Machine Learning &
Optimization for Training Neural
Networks

1. Introduction: Machine Learning & Optimization for Training Neural Networks

1.1 Machine learning and deep learning

1.2 Algorithmic approach

1.3 Training: theoretical aspects

1.4 Motivations and main questions

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

0/27

Machine Learning (ML)

Concept

Predict some output variable y ∈ RD

from an input variable x ∈ RM .

ML Models

Function f , parameterized by θ ∈ RP .
We want f (x , θ) = y .

Neural networks (NN): a class of ML models

Compositional structure in layers (f`)`∈{1,...,L}:

f = fL ◦ fL−1 ◦ . . . ◦ f1.
Typical layer: f1(x , θ1) = g1 (W1x + b1), where,
– W1 is a matrix, b1 a vector,
– g1 is an activation function (non-linear).

Common activation functions

4 3 2 1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sigmoid(t) = 1/(1 + e t)
ReLU(t) = max(0, t)

– Parameter θ ∈ RP of f : coefficients of the
matrices and vectors of the layers.

– Deep learning: ML with neural
networks.

1/27

Training neural networks: an optimization problem

Central question: How to select the parameter θ?

Loss function
– Training dataset: a collection of N examples

(xn, yn)n∈{1,...,N}.

– Loss function: sum of the errors made by a
neural network on the training set, e.g.,

J (θ)
e.g.
=

1
N

N∑
n=1

‖f (xn, θ)− yn‖22.

Training is an optimization problem

We seek θ ∈ RP which minimizes J :

min
θ∈RP

J (θ)
def
= min

θ∈RP

1
N

N∑
n=1

Jn(θ).

Main topic of the talk:
Designing new algorithms to train neural networks, i.e., to minimize J .

Temporary simplification
We first assume that J is twice differentiable.
Denote ∇J and ∇2J its gradient and Hessian matrix. 2/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

1.1 Machine learning and deep learning

1.2 Algorithmic approach

1.3 Training: theoretical aspects

1.4 Motivations and main questions

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

2/27

Basic minimization algorithm

To minimize a function we can follow the direction of steepest descent.

Gradient descent (GD)
Given θ0, γ > 0, for all k ∈ N,

θk+1 = θk − γ∇J (θk).

GD only requires being able to evaluate ∇J .

3/27

A difficult practical optimization problem

Selecting θ ∈ RP that minimizes J (θ) = 1
N

∑N
n=1 Jn(θ) was unachievable for decades.

Drawback: High computational cost
Neural networks:
– Usually have millions of parameters (P
large).
– Are trained on large datasets (N large,
J is the sum of many terms).

Assets
– Modern computers, in particular GPUs.
– The backpropagation (Rumelhart and
Hinton, 1986): efficient way of evaluating
the ∇Jn’s.
Consequences
– Possible but expensive to compute J
and ∇J . Expensive to store ∇J .
– Unreasonable to compute ∇2J .

4/27

Mini-batch algorithms

GD remains expensive, another strategy is preferable.

Mini-batch (MB) sub-sampling

Let B ⊂ {1, . . . ,N} a sub-sample of indices, define

JB =
1

Card(B)

∑
n∈B

Jn and ∇JB =
1

Card(B)

∑
n∈B

∇Jn.

Approximations of J and ∇J with a sub-sample of the training set.

Stochastic gradient descent (SGD)

Given θ0, step-sizes γk > 0 and random mini-batches Bk ⊂ {1, . . . ,N}, for k ∈ N,
θk+1 = θk − γk∇JBk

(θk).

Consequences of mini-batches
– Empirically faster in most large-scale problems (Bottou and Bousquet, 2008).
– Brings new hardships (imprecise update directions, need for using vanishing
step-sizes, etc.).

5/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

1.1 Machine learning and deep learning

1.2 Algorithmic approach

1.3 Training: theoretical aspects

1.4 Motivations and main questions

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

5/27

A possibly difficult optimization problem

Non-convexity
The compositional structure of NNs makes J
non-convex. Critical points need not be minima.

Non-smoothness
Loss function J may be
non-differentiable (e.g., due to ReLU).
Gradient is not always well defined.

Usually easier to minimize this function... than this one!

In deep learning, J is more likely to be similar to right figure.1

1Right figure credited to https://www.cs.umd.edu/~tomg/projects/landscapes/
6/27

https://www.cs.umd.edu/~tomg/projects/landscapes/

1. Introduction: Machine Learning & Optimization for Training Neural Networks

1.1 Machine learning and deep learning

1.2 Algorithmic approach

1.3 Training: theoretical aspects

1.4 Motivations and main questions

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

6/27

Motivation: New algorithms

– SGD is widely used in DL. Two main variations: Momentum and adaptivity.
– ADAM (Kingma and Ba, 2015) combines adaptivity and momentum (106 citations).

Goal: Making use of second-order information. Why?
– Potentially faster training.
– Tuning step-sizes.– And more (escaping saddles, etc.).

Many limitations: High computational cost, non-smoothness (lack of existence of 1st
and 2nd-order derivatives), mini-batch sub-sampling, etc.

Coming next:

– A practical second-order algorithm, built despite the limitations.

– Convergence guarantees in this restrained theoretical framework.

7/27

Overview

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

Part 1: INNA, An Inertial Newton
Algorithm for Deep Learning

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
7/27

ODEs and optimization algorithms

Assume temporarily that J is twice differentiable. Optimization algorithms with small
step-sizes can be modeled by Ordinary Differential Equations (ODEs).

Discrete gradient descent

θk+1 = θk − γ∇J (θk)

⇐⇒ θk+1 − θk
γ

+∇J (θk) = 0

−−−−−−→
γ→0←−−−−−−

discretize

Gradient system

dθ
dt

(t) +∇J (θ(t)) = 0,∀t > 0

The same can be done for Newton’s method

Newton’s method

θk+1 = θk − γ
(
∇2J (θk)

)−1∇J (θk)

−−−−−→
←−−−−−

Continuous Newton’s method

∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0

Strategy
We start from an ODE to build an algorithm. 8/27

ODEs and optimization algorithms

Assume temporarily that J is twice differentiable. Optimization algorithms with small
step-sizes can be modeled by Ordinary Differential Equations (ODEs).

Discrete gradient descent

θk+1 = θk − γ∇J (θk)

⇐⇒ θk+1 − θk
γ

+∇J (θk) = 0

−−−−−−→
γ→0←−−−−−−

discretize

Gradient system

dθ
dt

(t) +∇J (θ(t)) = 0,∀t > 0

The same can be done for Newton’s method

Newton’s method

θk+1 = θk − γ
(
∇2J (θk)

)−1∇J (θk)

−−−−−→
←−−−−−

Continuous Newton’s method

∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0

Strategy
We start from an ODE to build an algorithm. Why not mix both methods? 8/27

An interesting ODE as model
DIN (Alvarez, Attouch, Bolte, and Redont, 2002)

Take two hyper-parameters α ≥ 0 and β > 0. Consider for all t > 0,

d2θ

dt2
(t) + α

dθ
dt

(t) + β∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0. (DIN)

DIN mixes gradient descent, Newton’s method, and an acceleration term
connected to momentum methods (Polyak, 1964).

The solution of DIN are attracted by critical points
The limits (as t →∞) of the solutions of DIN (when they exist) are critical points of
J (Alvarez et al., 2002).

Related work (non-exhaustive)
Extensions and properties of DIN further studied by many (Attouch, Peypouquet, and
Redont, 2014, 2016; Boţ, Csetnek, and László, 2021). Link with Nesterov’s method
(Alecsa, László, and Pinţa, 2021; Shi, Du, Jordan, and Su, 2021), etc. 9/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

Landscape of J (level lines)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+ β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

With larger β:

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+ α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+ β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

With larger β:

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

Numerical illustration
d2θ

dt2
(t)︸ ︷︷ ︸

Accel.

+α
dθ
dt

(t)︸ ︷︷ ︸
Friction

+β∇2J (θ(t))
dθ
dt

(t)︸ ︷︷ ︸
Transverse damping

+∇J (θ(t))︸ ︷︷ ︸
Gravity

= 0 (DIN)

With larger α:

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1

0.0

0.5

1.0

1.5

2.0

2

Minimization of J (θ1, θ2) = 100 (θ2 − |θ1|)2 + |1− θ1|
(inspired by H.H. Rosenbrock and Y. Nesterov)

10/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
10/27

How to deal with the Hessian term ∇2J ?
Equivalent form of DIN (Alvarez et al., 2002)

For J twice differentiable, this second-order ODE...
d2θ

dt2
(t) + α

dθ
dt

(t) + β∇2J (θ(t))
dθ
dt

(t) +∇J (θ(t)) = 0, (DIN)

can be rewritten into an equivalent first-order system with no explicit Hessian
term! dθ

dt (t) + (α− 1
β)θ(t) + 1

βψ(t) + β∇J (θ(t)) = 0
dψ
dt (t) + (α− 1

β)θ(t) + 1
βψ(t) = 0

(g-DIN)

Computational cost is now affordable
For differentiable functions we could discretize g-DIN, and incorporate mini-batches.
Remark: g-DIN was also used by others at a similar time (Chen and Luo, 2019;
Attouch, Chbani, Fadili, and Riahi, 2020).

Main challenge: how to adapt this to non-differentiable loss functions?
11/27

Handling non-smoothness

From now on, J is not assumed to be differentiable anymore.

– However, J is locally Lipschitz continuous hence differentiable almost everywhere
(by Rademacher’s theorem).
– Let θ ∈ RP , for convex function, the sub-differential of J at θ is,{

v ∈ RP
∣∣∣∀ψ ∈ RP ,J (ψ)− J (θ) ≥ 〈v , ψ − θ〉

}
.

– Not suited for some non-convex functions (e.g., t ∈ R 7→ −|t|).
Sub-differential suited for deep learning: Clarke sub-differential (Clarke, 1990)

Denote R the set of points where J is differentiable. For θ ∈ RP ,

∂J (θ)
def
= conv

{
v ∈ RP | ∃(θk)k∈N ∈ RN, s.t. θk −−−→

k→∞
θ and ∇J (θk) −−−→

k→∞
v

}
.

This is formally the convex hull of the limits of all neighboring gradients.

Next step: mini-batch sub-sampling for sub-differentials.
12/27

Non-smooth mini-batch sub-sampling
Sum of sub-differentials of two functions g1, g2 (dom(g1) = dom(g2) = R)
Convex case: ∂(g1 + g2) = ∂g1 + ∂g2.
Non-convex case: ∂(g1 + g2)⊂ ∂g1 + ∂g2.

Example

g : t ∈ R 7→ |t| − |t| = 0. Clearly ∂g(0) = {0}, whereas,
∂(|0|) + ∂(−|0|) = [−1, 1] + [−1, 1] = [−2, 2] ⊃ {0}.

Consequence: ∂J not suited for mini-batch sub-sampling!

– Ideally we would approximate ∂J = ∂
(

1
N

∑N
n=1 Jn

)
.

– Unfortunately we can only approximate DJ def
= 1

N

∑N
n=1 ∂Jn.

– This models what practitioners do (often unconsciously).
So we use DJ in place of ∂J to keep theory close to practice.

Mini-batch sub-sampling: for B ⊂ {1, . . . ,N}, DJB
def
= 1

Card(B)
∑

n∈B ∂Jn.
13/27

On computing DJ and ∂Jn

Simplification
Here I am assuming that computing elements of each Clarke subdifferential ∂Jn is
“easy” so that DJB = 1

Card(B)
∑

n∈B ∂Jn is also easy to evaluate.

It is not!

Reality
In practice ∂Jn is replaced by the output of automatic
differentiation: the PyTorch/Tensorflow implementation
of backpropagation.
Can be taken into account in convergence analyses
(Bolte and Pauwels, 2020a,b).

But not today

14/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
14/27

The INNA algorithm
Incorporate DJ into g-DIN: new differential inclusiondθ

dt (t) +(α− 1
β)θ(t) + 1

βψ(t) + β∇J (θ(t)) = 0
dψ
dt (t) +(α− 1

β)θ(t) + 1
βψ(t) = 0

, for all t ∈ (0,+∞).

Finally: explicit Euler discretization and non-smooth mini-batch sub-sampling.

INNA: an Inertial Newton Algorithm

Choose hyper-parameters α ≥ 0, β > 0, a sequence of step-sizes (γk)k∈N, nonempty
mini-batches (Bk)k∈N i.i.d uniformly at random, and an initialization
(θ0, ψ0) ∈ RP × RP .

Iterate for k = 0, . . .,


vk ∈ DJBk

(θk) =
∑

n∈Bk
∂J (θk)

θk+1 = θk + γk

(
−(α− 1

β)θk − 1
βψk − βvk

)
ψk+1 = ψk + γk

(
−(α− 1

β)θk − 1
βψk

)

15/27

The INNA algorithm
Incorporate DJ into g-DIN: new differential inclusiondθ

dt (t) +(α− 1
β)θ(t) + 1

βψ(t) + βDJ (θ(t))3 0
dψ
dt (t) +(α− 1

β)θ(t) + 1
βψ(t) = 0

, for a.e. t ∈ (0,+∞).

Finally: explicit Euler discretization and non-smooth mini-batch sub-sampling.

INNA: an Inertial Newton Algorithm

Choose hyper-parameters α ≥ 0, β > 0, a sequence of step-sizes (γk)k∈N, nonempty
mini-batches (Bk)k∈N i.i.d uniformly at random, and an initialization
(θ0, ψ0) ∈ RP × RP .

Iterate for k = 0, . . .,


vk ∈ DJBk

(θk) =
∑

n∈Bk
∂J (θk)

θk+1 = θk + γk

(
−(α− 1

β)θk − 1
βψk − βvk

)
ψk+1 = ψk + γk

(
−(α− 1

β)θk − 1
βψk

)

15/27

The INNA algorithm
Incorporate DJ into g-DIN: new differential inclusiondθ

dt (t) +(α− 1
β)θ(t) + 1

βψ(t) + βDJ (θ(t))3 0
dψ
dt (t) +(α− 1

β)θ(t) + 1
βψ(t) = 0

, for a.e. t ∈ (0,+∞).

Finally: explicit Euler discretization and non-smooth mini-batch sub-sampling.

INNA: an Inertial Newton Algorithm

Choose hyper-parameters α ≥ 0, β > 0, a sequence of step-sizes (γk)k∈N, nonempty
mini-batches (Bk)k∈N i.i.d uniformly at random (e.g., with fixed cardinality), and an
initialization (θ0, ψ0) ∈ RP × RP .

Iterate for k = 0, . . .,


vk ∈ DJBk

(θk) = 1
Card(Bk)

∑
n∈Bk

∂Jn(θk)

θk+1 = θk + γk

(
−(α− 1

β)θk − 1
βψk − βvk

)
ψk+1 = ψk + γk

(
−(α− 1

β)θk − 1
βψk

)
15/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
15/27

Convergence of INNA for tame functions
The loss function J is tame
Functions are tame when their graph can be described with a finite number of
polynomials, logarithms, exponentials, etc. (extension of semi-algebraic functions).

Theorem (C., Bolte, Févotte, Pauwels, 2019)

If each Jn is locally Lipschitz continuous, tame, if γk = o(1/ log k) and∑
k γk = +∞. Assume that the iterates are bounded almost surely. Then, a sequence

(θk , ψk)k∈N generated by INNA is such that almost surely,

• any accumulation point (θ̄, ψ̄) is such that 0 ∈ DJ (θ̄),

• the sequence (J (θk))k∈N of values of the loss function converges.

Why does it work?
Formally, when the step-size γk −−−→

k→∞
0, “INNA behaves like g-DIN” (Benaïm, 1999;

Benaïm, Hofbauer, and Sorin, 2005).
16/27

Proof sketch 1/2: connecting discrete and continuous dynamics
Let (θk , ψk)k∈N generated by INNA, with step-sizes (γk)k∈N and mini-batches (Bk)k∈N.

INNA
vk ∈ DJBk

(θk)
θk+1−θk

γk
= −(α− 1

β)θk − 1
βψk − βvk

ψk+1−θk
γk

= −(α− 1
β)θk − 1

βψk

We compare the solutions of g-DIN with
INNA by interpolating the iterations.

g-DINdθ
dt (t) + (α− 1

β)θ(t) + 1
βψ(t) + βDJ (θ(t))3 0

dψ
dt (t) + (α− 1

β)θ(t) + 1
βψ(t) = 0

θk+1

θk

θk−1

θk−2

θk+3

θk+2

θk−3

Main elements to connect the dynamics

– By assumption (θk , ψk)k∈N is bounded, γk = o(1/ log k) and
∑

k∈N γk =∞.
– The mini-batches are chosen so that ∀k ∈ N, E [vk | Bk−1, . . . ,B0] ∈ DJ (θk).
– Interpolated INNA behaves asymptotically like solutions of g-DIN (it is a bounded
perturbed solution of g-DIN, Benaïm et al. (2005, Thm. 1.3&1.4)). 17/27

Proof sketch 2/2: Lyapunov analysis and limit
Lyapunov function

Let (θ, ψ) solution of g-DIN. Define for t > 0,

E (θ(t), ψ(t)) = (1 + αβ)J (θ(t)) +
1
2
‖(α− 1

β
)θ(t) +

1
β
ψ(t)‖2.

By differentiating E (θ, ψ) (chain rule for tame functions, see Davis et al. (2020)), we
show that for a.e. t > 0, E (θ(t), ψ(t))≤E (θ(0), ψ(0)) with strict inequality if

(θ(0), ψ(0)) 6∈ S =
{

(θ̃, ψ̃) ∈ RP × RP | 0 ∈ DJ (θ̃), ψ̃ = (1− αβ)θ̃
}
.

Sard’s lemma (based on Bolte, Daniilidis, Lewis, and Shiota 2007)
The loss function J is tame so has a finite number of D-critical values. Since
E ≡ (1 + αβ)J on S, E (S) is finite.

Finally combine (Benaïm et al., 2005, Theorem 3.6&3.27)

– E (θ, ψ) is a Lyapunov function =⇒ the limit set L of bounded perturbed solutions
is in S (so any accumulation point is D-critical).
– E (S) is finite =⇒ E (L) is a singleton, and E ≡ (1 + αβ)J on S. 18/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
18/27

More guarantees

Rates of convergence
Linear or Sub-linear rates of convergence for the solutions of the differential
inclusion (g-DIN). Based on the Kurdyka-Łojasiewicz (KL) inequality (Bolte,
Daniilidis, Lewis, and Shiota, 2007). We provide a recipe to extend this to a large
class of dynamical systems.

Escape of strict saddles
Almost sure convergence to minimizers of J , under stronger assumptions (smooth,
deterministic setting) (Castera, 2021).
Not true for usual Newton’s methods (Dauphin et al., 2014), but also holds for a few
of them (Truong et al., 2020).

19/27

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

2.5 Additional convergence results

2.6 Numerical experiments

3. Conclusions on INNA

4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References
19/27

Important disclaimer

Many tricks and tuning hidden behind DL problems (NN,
dataset, batchnorm, weight decay, hyper-parameter

tuning, etc.).

It is hardly possible to accurately benchmark optimizers
in DL (Sivaprasad et al., 2019).

19/27

Results for image classification on CIFAR-100
Classification of images in 100 categories with NiN (moderately large network, Lin et al. 2014).

Training loss (lower is better)

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80
Tr

ai
ni

ng
:

lo
g 1

0
(J

(θ
))

Test accuracy (higher is better)

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.10

0.20

0.30

0.40

0.50

Te
st

A
cc

ur
ac

y

0 25 50 75 100 125 150 175 200
Epochs

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

Tr
ai

ni
ng

:
lo

g 1
0
(J

(θ
))

SGD
ADAM

ADAGRAD
INNA,
(α, β)=(0.5,0.1)

INNA,
(α, β)=(0.5,0.5)

More experiments in the paper
– Comparisons on more problems.
– Hyper-parameters sensitivity.
– Faster convergence with slower step-size schedule. 20/27

Conclusions on INNA

Take-home messages

• A second-order algorithm for training neural networks.

• Convergence guarantees in a stochastic non-smooth
non-convex framework.

• Promising experiments and good generalization on DL
problems.

20/27

What’s next?

• In the experiments, the gap of performance is
satisfying but not tremendous.

• What should we improve? Is DIN the right ODE? Is
our discretization good?

Let’s go back to the smooth setting to find out.

20/27

Part 2: Continuous Newton-like
Methods featuring Inertia and
Variable Mass

Let us take a step back
More favorable framework for optimization than deep learning
– Usual optimization notations: θ → x , J → f .
– Assume f to be strongly convex and smooth (C 2).
– Consider (for now) only the ODE framework.

Recall DIN?

d2x

dt2
(t) + α

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (DIN)

Typically α(t) = 3/t (Nesterov, 1983; Su et al., 2014).

Observation
DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence
compared to first-order methods.

This raises an important question
Are DIN-like ODEs really Newton-like methods? 21/27

Let us take a step back
More favorable framework for optimization than deep learning
– Usual optimization notations: θ → x , J → f .
– Assume f to be strongly convex and smooth (C 2).
– Consider (for now) only the ODE framework.

Recall DIN? Here is a popular extension

d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (DIN-AVD)

Typically α(t) = 3/t (Nesterov, 1983; Su et al., 2014).

Observation
DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence
compared to first-order methods.

This raises an important question
Are DIN-like ODEs really Newton-like methods? 21/27

A new system VM-DIN-AVD
Introduce an additional parameter ε(t) in front of the acceleration

ε(t)
d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0, (VM-DIN-AVD)

where ε and α are two non-negative functions of [0,+∞[.

Intuition

β∇2f (xN(t))
dxN
dt

(t) +∇f (xN(t)) = 0. (CN)

α(t)
dxLM
dt

(t) + β∇2f (xLM(t))
dxLM
dt

(t) +∇f (xLM(t)) = 0. (LM)

When ε(t) and α(t) vanish asymptotically, the solution x of (VM-DIN-AVD) should
get close either to xN or xLM .

22/27

Prior work: a partial answer (Alvarez et al., 2002)

Setting and Notation

We fix initial conditions x(0) = x0, dx
dt (0) = ẋ0.

Prior work: fixed ε and α = 0 (Alvarez et al., 2002)

ε
d2x

dt2
(t) +

�
�
�
�

α
dx
dt

(t) + ��β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0. (ε-DIN)

There exists C > 0 such that for all 0 ≤ ε ≤ 1 and for all t ≥ 0,

‖x(t)− xN(t)‖ ≤ C
√
ε.

Can we say more? What about α 6= 0, ε(t), α(t), etc.?

23/27

Convergence to CN under moderate viscous damping

Theorem (C., Attouch, Fadili, Ochs, 2023)

In the case ε(t) ≥ α(t):
Under mild assumptions, there exist C0,C1,C2 ≥ 0 s.t. ∀(ε, α) for which the
assumptions hold the solution x of (VM-DIN-AVD) is s.t. ∀t ≥ 0,

‖x(t)− xN(t)‖ ≤ C0e
− t

β ε0 ‖ẋ0‖+ C1
√
ε(t) + C2

∫ t

s=0
e

1
β
(s−t)√

ε(s) ds.

Corollary: simpler bound

‖x(t)− xN(t)‖ ≤ C0e
− t

β ε0 ‖ẋ0‖+ C3
√
ε(t).

NB: The case ε(t) < α(t) is also covered but is more involved.

24/27

Illustration: a control perspective

Initialization x0
Continuous Newton
Continuous gradient descent
DIN-AVD
Minimizer x of f
Level lines of f

fa
st

 d
ec

ay
slo

w
de

ca
y

De
ca

y
sp

ee
d

of

(t)

Illustration of the result on a 2D quadratic function in the case ε(t) ≥ α(t) 25/27

New understanding

ε(t)
d2x

dt2
(t) + α(t)

dx
dt

(t) + β∇2f (x(t))
dx
dt

(t) +∇f (x(t)) = 0 (VM-DIN-AVD)

= 0 (t) 0 > 0 constant
Viscous damping

=
0

(t)
0

>
0

co
ns

t.
Va

ria
bl

e
m

as
s

0 0 0

(t)
(t)

max(
(t)

, (t)
)

max(
,)

(Alvarez et al.)

26/27

Conclusion & Perspective

• VM-DIN-AVD is really a second-order method, that
we can control.

• This paves the way to the design of new algorithms.

• But: finding the right trade-off between cheap and
efficient discretization is (extremely) challenging. I am
currently working on it.

26/27

Associated publications
Journal papers

q Part 1: An Inertial Newton Algorithm for Deep Learning. C. Castera, J.
Bolte, C. Févotte, and E. Pauwels (2021). In Journal of Machine Learning
Research (JMLR).

q Inertial Newton Algorithms Avoiding Strict Saddle Points. C. Castera
(2021). In arXiv 2111.04596.

q Part 2: Continuous Newton-like Methods featuring Inertia and Variable
Mass. C. Castera, H. Attouch, J. Fadili, P. Ochs (2023). arXiv 2301.08726.

Code repository
INNA is available as a ready-to-use optimizer for Pytorch and Tensorflow.

https://github.com/camcastera/INNA-for-DeepLearning

27/27

https://github.com/camcastera/INNA-for-DeepLearning

References

References i

References

Alecsa, C. D., S. C. László, and T. Pinţa (2021). An extension of the second order dynamical system
that models Nesterov’s convex gradient method. Applied Mathematics & Optimization 84(2),
1687–1716.

Alvarez, F., H. Attouch, J. Bolte, and P. Redont (2002). A second-order gradient-like dissipative
dynamical system with Hessian-driven damping: Application to optimization and mechanics. Journal
de Mathématiques Pures et Appliquées 81(8), 747–779.

Attouch, H., Z. Chbani, J. Fadili, and H. Riahi (2020). First-order optimization algorithms via inertial
systems with Hessian driven damping. Mathematical Programming .

Attouch, H., J. Peypouquet, and P. Redont (2014). A dynamical approach to an inertial
forward-backward algorithm for convex minimization. SIAM Journal on Optimization 24(1),
232–256.

27/27

References ii

Attouch, H., J. Peypouquet, and P. Redont (2016). Fast convex optimization via inertial dynamics
with Hessian driven damping. Journal of Differential Equations 261(10), 5734–5783.

Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités
XXXIII, pp. 1–68. Springer.

Benaïm, M., J. Hofbauer, and S. Sorin (2005). Stochastic approximations and differential inclusions.
SIAM Journal on Control and Optimization 44(1), 328–348.

Bolte, J., A. Daniilidis, A. Lewis, and M. Shiota (2007). Clarke subgradients of stratifiable functions.
SIAM Journal on Optimization 18(2), 556–572.

Bolte, J. and E. Pauwels (2020a). Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming , 1–33.

Bolte, J. and E. Pauwels (2020b). A mathematical model for automatic differentiation in machine
learning. In Advances in Neural Information Processing Systems (NIPS).

Boţ, R. I., E. R. Csetnek, and S. C. László (2021). Tikhonov regularization of a second order
dynamical system with Hessian driven damping. Mathematical Programming 189(1), 151–186.

27/27

References iii

Bottou, L. and O. Bousquet (2008). The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems (NIPS), pp. 161–168.

Castera, C. (2021). Inertial Newton algorithms avoiding strict saddle points. preprint arXiv:2111.04596 .

Chen, L. and H. Luo (2019). First order optimization methods based on Hessian-driven Nesterov
accelerated gradient flow. arXiv preprint:1912.09276 .

Clarke, F. H. (1990). Optimization and nonsmooth analysis. SIAM.

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio (2014). Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in
Neural Information Processing Systems (NIPS), Volume 27.

Davis, D., D. Drusvyatskiy, S. Kakade, and J. D. Lee (2020). Stochastic subgradient method
converges on tame functions. Foundations of Computational Mathematics 20(1), 119–154.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR).

27/27

References iv

Lin, M., Q. Chen, and S. Yan (2014). Network in Network. In Proceedings of the International
Conference on Learning Representations (ICLR).

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). In Doklady an USSR, Volume 269, pp. 543–547.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics 4(5), 1–17.

Rumelhart, D. E. and G. E. Hinton (1986). Learning representations by back-propagating errors.
Nature 323(9), 533–536.

Shi, B., S. S. Du, M. I. Jordan, and W. J. Su (2021). Understanding the acceleration phenomenon via
high-resolution differential equations. Mathematical Programming .

Sivaprasad, P. T., F. Mai, T. Vogels, M. Jaggi, and F. Fleuret (2019). Optimizer benchmarking needs
to account for hyperparameter tuning. arXiv preprint:1910.11758 .

27/27

References v

Su, W., S. Boyd, and E. Candes (2014). A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights. In Advances in Neural Information Processing Systems
(NIPS), pp. 2510–2518.

Truong, T. T., T. D. To, T. H. Nguyen, T. H. Nguyen, H. P. Nguyen, and M. Helmy (2020). A fast
and simple modification of Newton’s method helping to avoid saddle points. arXiv preprint
arXiv:2006.01512 .

27/27

Second-order Inertial Algorithms for Smooth and
Non-smooth Large-scale Optimization

Camille Castera
University of Tübingen
Faculty of Mathematics

Part 1: Joint work with J. Bolte, C. Févotte, E. Pauwels
Part 2: Joint work with H. Attouch, J. Fadili, and P. Ochs

Dynamical Systems and Semi-algebraic Geometry: Optimization and Deep Learning
Dalat, July 2023

	Introduction: Machine Learning & Optimization for Training Neural Networks
	Machine learning and deep learning
	Algorithmic approach
	Training: theoretical aspects
	Motivations and main questions

	Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
	The ODE paradigm
	Dealing with computational cost and non-smoothness
	From continuous models to INNA
	Convergence analysis of INNA
	Additional convergence results
	Numerical experiments

	Conclusions on INNA
	Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
	References
	References
	Appendix

