Second-order Inertial Algorithms for Smooth and Non-smooth Large-scale Optimization

> Camille Castera University of Tübingen Faculty of Mathematics

Part 1: Joint work with J. Bolte, C. Févotte, E. Pauwels Part 2: Joint work with H. Attouch, J. Fadili, and P. Ochs

Dynamical Systems and Semi-algebraic Geometry: Optimization and Deep Learning Dalat, July 2023

Introduction: Machine Learning & Optimization for Training Neural Networks

- 1. Introduction: Machine Learning & Optimization for Training Neural Networks
- 1.1 Machine learning and deep learning
- 1.2 Algorithmic approach
- 1.3 Training: theoretical aspects
- 1.4 Motivations and main questions
- 2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
- 5. References

Machine Learning (ML)

Concept

Predict some **output** variable $y \in \mathbb{R}^D$ from an **input** variable $x \in \mathbb{R}^M$.

ML Models

Function f, parameterized by $\theta \in \mathbb{R}^{P}$. We want $f(x, \theta) = y$.

Neural networks (NN): a class of ML models

Compositional structure in *layers* $(f_{\ell})_{\ell \in \{1,...,L\}}$:

$$f = f_L \circ f_{L-1} \circ \ldots \circ f_1.$$

Typical layer: $f_1(x, \theta_1) = g_1 (W_1 x + b_1)$, where,

- $-W_1$ is a matrix, b_1 a vector,
- $-g_1$ is an activation function (non-linear).

- Parameter $\theta \in \mathbb{R}^{P}$ of f: coefficients of the matrices and vectors of the layers.

Common activation functions

- **Deep learning:** ML with neural networks.

Training neural networks: an optimization problem

Central question: How to select the parameter θ ?

Loss function

- Training dataset: a collection of N examples

 $(x_n, y_n)_{n \in \{1,\ldots,N\}}$.

- Loss function: sum of the errors made by a neural network on the training set, e.g.,

$$\mathcal{J}(\theta) \stackrel{\text{e.g.}}{=} \frac{1}{N} \sum_{n=1}^{N} \|f(x_n, \theta) - y_n\|_2^2.$$

Training is an optimization problem We seek $\theta \in \mathbb{R}^P$ which minimizes \mathcal{J} : $\min_{\theta \in \mathbb{R}^P} \mathcal{J}(\theta) \stackrel{\text{def}}{=} \min_{\theta \in \mathbb{R}^P} \frac{1}{N} \sum_{n=1}^N \mathcal{J}_n(\theta).$

Main topic of the talk:

Designing new algorithms to train neural networks, i.e., to minimize \mathcal{J} .

Temporary simplification

We first assume that ${\mathcal J}$ is twice differentiable.

Denote $\nabla \mathcal{J}$ and $\nabla^2 \mathcal{J}$ its gradient and Hessian matrix.

- 1. Introduction: Machine Learning & Optimization for Training Neural Networks
- 1.1 Machine learning and deep learning
- 1.2 Algorithmic approach
- 1.3 Training: theoretical aspects
- 1.4 Motivations and main questions
- 2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
- 5. References

To minimize a function we can follow the direction of *steepest descent*.

Gradient descent (GD)

Given θ_0 , $\gamma > 0$, for all $k \in \mathbb{N}$,

$$\theta_{k+1} = \theta_k - \gamma \nabla \mathcal{J}(\theta_k).$$

GD only requires being able to evaluate $\nabla \mathcal{J}$.

A difficult practical optimization problem

Selecting $\theta \in \mathbb{R}^{P}$ that minimizes $\mathcal{J}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{J}_{n}(\theta)$ was unachievable for decades.

Drawback: High computational cost

Neural networks:

- Usually have millions of parameters (*P* large).
- Are trained on large datasets (N large,

 ${\mathcal J}$ is the sum of many terms).

Assets

- Modern computers, in particular GPUs.

- The **backpropagation** (Rumelhart and Hinton, 1986): efficient way of evaluating the $\nabla \mathcal{J}_n$'s.

Consequences

– Possible but expensive to compute ${\cal J}$

and $\nabla \mathcal{J}.$ Expensive to store $\nabla \mathcal{J}.$

– Unreasonable to compute $\nabla^2 \mathcal{J}$.

Mini-batch algorithms

GD remains expensive, another strategy is preferable.

Mini-batch (MB) sub-sampling

Let $B \subset \{1, \ldots, N\}$ a sub-sample of indices, define $\mathcal{J}_{B} = \frac{1}{\operatorname{Card}(B)} \sum_{n \in B} \mathcal{J}_{n} \text{ and } \nabla \mathcal{J}_{B} = \frac{1}{\operatorname{Card}(B)} \sum_{n \in B} \nabla \mathcal{J}_{n}.$

Approximations of $\mathcal J$ and $\nabla \mathcal J$ with a *sub-sample* of the training set.

Stochastic gradient descent (SGD)

Given θ_0 , step-sizes $\gamma_k > 0$ and random mini-batches $\mathsf{B}_k \subset \{1, \dots, N\}$, for $k \in \mathbb{N}$, $\theta_{k+1} = \theta_k - \gamma_k \nabla \mathcal{J}_{\mathsf{B}_k}(\theta_k)$.

Consequences of mini-batches

- Empirically faster in most large-scale problems (Bottou and Bousquet, 2008).
- Brings **new hardships** (imprecise update directions, need for using vanishing step-sizes, etc.).

1. Introduction: Machine Learning & Optimization for Training Neural Networks

- 1.1 Machine learning and deep learning
- 1.2 Algorithmic approach
- 1.3 Training: theoretical aspects
- 1.4 Motivations and main questions
- 2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
- 5. References

A possibly difficult optimization problem

Non-convexity

The compositional structure of NNs makes \mathcal{J} **non-convex**. Critical points need not be minima.

Loss function \mathcal{J} may be **non-differentiable** (e.g., due to ReLU). Gradient is not always well defined.

Usually easier to minimize this function...

than this one!

In deep learning, ${\mathcal J}$ is more likely to be similar to right figure.¹

¹Right figure credited to https://www.cs.umd.edu/~tomg/projects/landscapes/

1. Introduction: Machine Learning & Optimization for Training Neural Networks

- 1.1 Machine learning and deep learning
- 1.2 Algorithmic approach
- 1.3 Training: theoretical aspects
- 1.4 Motivations and main questions
- 2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
- 5. References

Motivation: New algorithms

- SGD is widely used in DL. Two main variations: Momentum and adaptivity.
- ADAM (Kingma and Ba, 2015) combines adaptivity and momentum (10^6 citations).

Goal: Making use of second-order information. Why?

- Potentially faster training.
- Tuning step-sizes.- And more (escaping saddles, etc.).

Many limitations: High computational cost, non-smoothness (lack of existence of 1st and 2nd-order derivatives), mini-batch sub-sampling, etc.

Coming next:

- A practical second-order algorithm, built despite the limitations.
- Convergence guarantees in this restrained theoretical framework.

Overview

- 1. Introduction: Machine Learning & Optimization for Training Neural Networks
- 2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass
- 5. References

Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

- 2.2 Dealing with computational cost and non-smoothness
- 2.3 From continuous models to INNA
- 2.4 Convergence analysis of INNA
- 2.5 Additional convergence results
- 2.6 Numerical experiments
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

ODEs and optimization algorithms

Assume temporarily that \mathcal{J} is twice differentiable. Optimization algorithms with small step-sizes can be modeled by Ordinary Differential Equations (ODEs).

Discrete gradient descent
$$\eta \rightarrow 0$$
Gradient system $\theta_{k+1} = \theta_k - \gamma \nabla \mathcal{J}(\theta_k)$ $\eta \rightarrow 0$ $\eta \rightarrow 0$ $\Leftrightarrow \frac{\theta_{k+1} - \theta_k}{\gamma} + \nabla \mathcal{J}(\theta_k) = 0$ $d\theta_{dt}(t) + \nabla \mathcal{J}(\theta(t)) = 0, \forall t > 0$

The same can be done for Newton's method

Newton's method \longrightarrow $\theta_{k+1} = \theta_k - \gamma \left(\nabla^2 \mathcal{J}(\theta_k) \right)^{-1} \nabla \mathcal{J}(\theta_k) \qquad \longleftarrow$

Strategy

We start from an ODE to build an algorithm.

Continuous Newton's method

 $abla^2 \mathcal{J}(\theta(t)) rac{\mathrm{d}\theta}{\mathrm{d}t}(t) +
abla \mathcal{J}(\theta(t)) = 0$

ODEs and optimization algorithms

Assume temporarily that \mathcal{J} is twice differentiable. Optimization algorithms with small step-sizes can be modeled by Ordinary Differential Equations (ODEs).

Discrete gradient descent
$$\gamma \rightarrow 0$$
Gradient system $\theta_{k+1} = \theta_k - \gamma \nabla \mathcal{J}(\theta_k)$ $\langle \gamma \rightarrow 0$ $\langle \frac{\gamma \rightarrow 0}{\text{discretize}}$ $\frac{d\theta}{dt}(t) + \nabla \mathcal{J}(\theta(t)) = 0, \forall t > 0$

The same can be done for Newton's method

Strategy

We start from an ODE to build an algorithm. Why not mix both methods?

An interesting ODE as model

DIN (Alvarez, Attouch, Bolte, and Redont, 2002)

Take two hyper-parameters $\alpha \geq 0$ and $\beta > 0$. Consider for all t > 0,

$$\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}}(t) + \alpha \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + \beta \nabla^{2} \mathcal{J}(\theta(t)) \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + \nabla \mathcal{J}(\theta(t)) = 0.$$
(DIN)

DIN mixes gradient descent, Newton's method, and an acceleration term connected to momentum methods (Polyak, 1964).

The solution of DIN are attracted by critical points

The limits (as $t \to \infty$) of the solutions of DIN (when they exist) are critical points of \mathcal{J} (Alvarez et al., 2002).

Related work (non-exhaustive)

Extensions and properties of DIN further studied by many (Attouch, Peypouquet, and Redont, 2014, 2016; Boţ, Csetnek, and László, 2021). Link with Nesterov's method (Alecsa, László, and Pinţa, 2021; Shi, Du, Jordan, and Su, 2021), etc.

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

2.2 Dealing with computational cost and non-smoothness

- 2.3 From continuous models to INNA
- 2.4 Convergence analysis of INNA
- 2.5 Additional convergence results
- 2.6 Numerical experiments
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

How to deal with the Hessian term $\nabla^2 \mathcal{J}$?

Equivalent form of DIN (Alvarez et al., 2002)

For ${\mathcal J}$ twice differentiable, this second-order ODE...

$$\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}}(t) + \alpha \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + \beta \nabla^{2} \mathcal{J}(\theta(t)) \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + \nabla \mathcal{J}(\theta(t)) = 0, \qquad (\mathsf{DIN})$$

can be rewritten into an equivalent first-order system with **no explicit Hessian** term!

$$\begin{cases} \frac{d\theta}{dt}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) + \beta\nabla\mathcal{J}(\theta(t)) &= 0\\ \frac{d\psi}{dt}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) &= 0 \end{cases}$$
(g-DIN)

Computational cost is now affordable

For **differentiable** functions we could discretize g-DIN, and incorporate mini-batches. Remark: g-DIN was also used by others at a similar time (Chen and Luo, 2019; Attouch, Chbani, Fadili, and Riahi, 2020).

Main challenge: how to adapt this to non-differentiable loss functions?

Handling non-smoothness

From now on, ${\mathcal J}$ is not assumed to be differentiable anymore.

- However, \mathcal{J} is locally Lipschitz continuous hence **differentiable almost everywhere** (by Rademacher's theorem).
- Let $\theta \in \mathbb{R}^{P}$, for convex function, the sub-differential of \mathcal{J} at θ is,

$$\left\{ \mathbf{v} \in \mathbb{R}^{P} \middle| \forall \psi \in \mathbb{R}^{P}, \mathcal{J}(\psi) - \mathcal{J}(\theta) \geq \langle \mathbf{v}, \psi - \theta \rangle
ight\}.$$

– Not suited for some non-convex functions (e.g., $t \in \mathbb{R} \mapsto -|t|).$

Sub-differential suited for deep learning: Clarke sub-differential (Clarke, 1990) Denote R the set of points where \mathcal{J} is differentiable. For $\theta \in \mathbb{R}^{P}$, $\partial \mathcal{J}(\theta) \stackrel{\text{def}}{=} \operatorname{conv} \left\{ v \in \mathbb{R}^{P} \mid \exists (\theta_{k})_{k \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \text{ s.t. } \theta_{k} \xrightarrow[k \to \infty]{} \theta \text{ and } \nabla \mathcal{J}(\theta_{k}) \xrightarrow[k \to \infty]{} v \right\}.$ This is formally the convex hull of the limits of all neighboring gradients.

Next step: mini-batch sub-sampling for sub-differentials.

Non-smooth mini-batch sub-sampling

Sum of sub-differentials of two functions g_1, g_2 $(dom(g_1) = dom(g_2) = \mathbb{R})$

Convex case: $\partial(g_1 + g_2) = \partial g_1 + \partial g_2$. Non-convex case: $\partial(g_1 + g_2) \subset \partial g_1 + \partial g_2$.

Example

$$g: t \in \mathbb{R} \mapsto |t| - |t| = 0$$
. Clearly $\partial g(0) = \{0\}$, whereas,
 $\partial(|0|) + \partial(-|0|) = [-1, 1] + [-1, 1] = [-2, 2] \supset \{0\}$.

Consequence: $\partial \mathcal{J}$ not suited for mini-batch sub-sampling!

- Ideally we would approximate $\partial \mathcal{J} = \partial \left(\frac{1}{N} \sum_{n=1}^{N} \mathcal{J}_n \right)$.
- Unfortunately we can only approximate $D\mathcal{J} \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \partial \mathcal{J}_n$.
- This models what practitioners do (often unconsciously). So we use $D\mathcal{J}$ in place of $\partial \mathcal{J}$ to keep theory close to practice.

Mini-batch sub-sampling: for $B \subset \{1, \ldots, N\}$, $D\mathcal{J}_B \stackrel{\text{def}}{=} \frac{1}{\operatorname{Card}(B)} \sum_{n \in B} \partial \mathcal{J}_n$.

On computing $D\mathcal{J}$ and $\partial \mathcal{J}_n$

Simplification

Here I am assuming that computing elements of each Clarke subdifferential $\partial \mathcal{J}_n$ is "easy" so that $D\mathcal{J}_B = \frac{1}{\operatorname{Card}(B)} \sum_{n \in B} \partial \mathcal{J}_n$ is also easy to evaluate.

It is not!

Reality

In practice $\partial \mathcal{J}_n$ is replaced by the output of **automatic differentiation**: the PyTorch/Tensorflow implementation of backpropagation.

Can be taken into account in convergence analyses (Bolte and Pauwels, 2020a,b).

But not today

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

- 2.2 Dealing with computational cost and non-smoothness
- 2.3 From continuous models to INNA
- 2.4 Convergence analysis of INNA
- 2.5 Additional convergence results
- 2.6 Numerical experiments
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

The INNA algorithm

Incorporate $D\mathcal{J}$ into g-DIN: new differential inclusion

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)+\beta\nabla\mathcal{J}(\theta(t))=0\\ \frac{\mathrm{d}\psi}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)=0 \end{cases} , \quad \text{for all } t\in(0,+\infty).$$

The INNA algorithm

/

Incorporate $D\mathcal{J}$ into g-DIN: new differential inclusion

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)+\beta \mathcal{D}\mathcal{J}(\theta(t)) \ni 0\\ \frac{\mathrm{d}\psi}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)=0 \end{cases}, \quad \text{for a.e. } t \in (0,+\infty). \end{cases}$$

The INNA algorithm

Incorporate $D\mathcal{J}$ into g-DIN: new differential inclusion

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)+\beta \mathcal{DJ}(\theta(t)) \ni 0\\ \frac{\mathrm{d}\psi}{\mathrm{d}t}(t) & +(\alpha-\frac{1}{\beta})\theta(t)+\frac{1}{\beta}\psi(t)=0 \end{cases}, \quad \text{for a.e. } t \in (0,+\infty).$$

Finally: explicit Euler discretization and non-smooth mini-batch sub-sampling.

INNA: an Inertial Newton Algorithm

Choose hyper-parameters $\alpha \geq 0$, $\beta > 0$, a sequence of step-sizes $(\gamma_k)_{k \in \mathbb{N}}$, nonempty mini-batches $(\mathsf{B}_k)_{k \in \mathbb{N}}$ i.i.d uniformly at random (e.g., with fixed cardinality), and an initialization $(\theta_0, \psi_0) \in \mathbb{R}^P \times \mathbb{R}^P$.

Iterate for
$$k = 0, ..., \begin{cases} v_k \in D\mathcal{J}_{\mathsf{B}_k}(\theta_k) = \frac{1}{\operatorname{Card}(\mathsf{B}_k)} \sum_{n \in \mathsf{B}_k} \partial \mathcal{J}_n(\theta_k) \\ \theta_{k+1} = \theta_k + \gamma_k \left(-(\alpha - \frac{1}{\beta})\theta_k - \frac{1}{\beta}\psi_k - \beta v_k \right) \\ \psi_{k+1} = \psi_k + \gamma_k \left(-(\alpha - \frac{1}{\beta})\theta_k - \frac{1}{\beta}\psi_k \right) \end{cases}$$

1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

- 2.2 Dealing with computational cost and non-smoothness
- 2.3 From continuous models to INNA

2.4 Convergence analysis of INNA

- 2.5 Additional convergence results
- 2.6 Numerical experiments
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

Convergence of INNA for tame functions

The loss function \mathcal{J} is tame

Functions are tame when their graph can be described with a finite number of polynomials, logarithms, exponentials, etc. (extension of semi-algebraic functions).

Theorem (C., Bolte, Févotte, Pauwels, 2019)

If each \mathcal{J}_n is locally Lipschitz continuous, tame, if $\gamma_k = o(1/\log k)$ and $\sum_k \gamma_k = +\infty$. Assume that the iterates are bounded almost surely. Then, a sequence

 $(heta_k,\psi_k)_{k\in\mathbb{N}}$ generated by INNA is such that almost surely,

- any accumulation point $(ar{ heta},ar{\psi})$ is such that $0\in D\mathcal{J}(ar{ heta})$,
- the sequence $(\mathcal{J}(\theta_k))_{k\in\mathbb{N}}$ of values of the loss function converges.

Why does it work?

Formally, when the step-size $\gamma_k \xrightarrow[k \to \infty]{k \to \infty} 0$, "INNA behaves like g-DIN" (Benaïm, 1999; Benaïm, Hofbauer, and Sorin, 2005).

Proof sketch 1/2: connecting discrete and continuous dynamics

Let $(\theta_k, \psi_k)_{k \in \mathbb{N}}$ generated by INNA, with step-sizes $(\gamma_k)_{k \in \mathbb{N}}$ and mini-batches $(\mathsf{B}_k)_{k \in \mathbb{N}}$.

INNA

$$\begin{cases} \mathbf{v}_{k} \in D\mathcal{J}_{\mathsf{B}_{k}}(\theta_{k}) \\ \frac{\theta_{k+1}-\theta_{k}}{\gamma_{k}} = -(\alpha - \frac{1}{\beta})\theta_{k} - \frac{1}{\beta}\psi_{k} - \beta\mathbf{v}_{k} \\ \frac{\psi_{k+1}-\theta_{k}}{\gamma_{k}} = -(\alpha - \frac{1}{\beta})\theta_{k} - \frac{1}{\beta}\psi_{k} \end{cases}$$

We compare the solutions of g-DIN with INNA by **interpolating** the iterations.

g-DIN

$$\frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) + \beta D\mathcal{J}(\theta(t)) \ni 0$$
$$\frac{\mathrm{d}\psi}{\mathrm{d}t}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) = 0$$

Main elements to connect the dynamics

- By assumption $(\theta_k, \psi_k)_{k \in \mathbb{N}}$ is **bounded**, $\gamma_k = o(1/\log k)$ and $\sum_{k \in \mathbb{N}} \gamma_k = \infty$.
- The mini-batches are chosen so that $\forall k \in \mathbb{N}$, $\mathbb{E}[v_k \mid B_{k-1}, \dots, B_0] \in D\mathcal{J}(\theta_k)$.
- Interpolated INNA behaves asymptotically like solutions of g-DIN (it is a *bounded perturbed solution* of g-DIN, Benaïm et al. (2005, Thm. 1.3&1.4)).

Proof sketch 2/2: Lyapunov analysis and limit

Lyapunov function

Let (θ, ψ) solution of g-DIN. Define for t > 0,

$$E(heta(t),\psi(t)) = (1+lphaeta)\mathcal{J}(heta(t)) + rac{1}{2}\|(lpha-rac{1}{eta}) heta(t)+rac{1}{eta}\psi(t)\|^2.$$

By differentiating $E(\theta, \psi)$ (chain rule for tame functions, see Davis et al. (2020)), we show that for a.e. t > 0, $E(\theta(t), \psi(t)) \leq E(\theta(0), \psi(0))$ with strict inequality if $(\theta(0), \psi(0)) \notin S = \left\{ (\tilde{\theta}, \tilde{\psi}) \in \mathbb{R}^P \times \mathbb{R}^P \mid 0 \in D\mathcal{J}(\tilde{\theta}), \tilde{\psi} = (1 - \alpha\beta)\tilde{\theta} \right\}.$

Sard's lemma (based on Bolte, Daniilidis, Lewis, and Shiota 2007)

The loss function \mathcal{J} is tame so has a finite number of D-critical values. Since $E \equiv (1 + \alpha \beta)\mathcal{J}$ on S, E(S) is finite.

Finally combine (Benaïm et al., 2005, Theorem 3.6&3.27)

 $- E(\theta, \psi)$ is a Lyapunov function \implies the limit set L of bounded perturbed solutions is in S (so any accumulation point is D-critical). - E(S) is finite $\implies E(L)$ is a singleton, and $E \equiv (1 + \alpha\beta)\mathcal{J}$ on S. 1. Introduction: Machine Learning & Optimization for Training Neural Networks

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

- 2.2 Dealing with computational cost and non-smoothness
- 2.3 From continuous models to INNA
- 2.4 Convergence analysis of INNA
- 2.5 Additional convergence results
- 2.6 Numerical experiments
- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

More guarantees

Rates of convergence

Linear or Sub-linear rates of convergence for the solutions of the differential inclusion (g-DIN). Based on the **Kurdyka-Łojasiewicz** (KL) inequality (Bolte, Daniilidis, Lewis, and Shiota, 2007). We provide a recipe to extend this to a large class of dynamical systems.

Escape of strict saddles

Almost sure convergence to minimizers of \mathcal{J} , under stronger assumptions (smooth, deterministic setting) (Castera, 2021). Not true for usual Newton's methods (Dauphin et al., 2014), but also holds for a few of them (Truong et al., 2020).

2. Part 1: INNA, An Inertial Newton Algorithm for Deep Learning

2.1 The ODE paradigm

- 2.2 Dealing with computational cost and non-smoothness
- 2.3 From continuous models to INNA
- 2.4 Convergence analysis of INNA
- 2.5 Additional convergence results

2.6 Numerical experiments

- 3. Conclusions on INNA
- 4. Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

5. References

Many tricks and tuning hidden behind DL problems (NN, dataset, batchnorm, weight decay, hyper-parameter tuning, etc.).

It is hardly possible to accurately benchmark optimizers in DL (Sivaprasad et al., 2019).

Results for image classification on CIFAR-100

Classification of images in 100 categories with NiN (moderately large network, Lin et al. 2014).

More experiments in the paper

- Comparisons on more problems.
- Hyper-parameters sensitivity.
- Faster convergence with slower step-size schedule.

Conclusions on INNA

Take-home messages

- A second-order algorithm for training neural networks.
- Convergence guarantees in a stochastic non-smooth non-convex framework.
- Promising experiments and good generalization on DL problems.

- In the experiments, the gap of performance is satisfying but not tremendous.
- What should we improve? Is DIN the right ODE? Is our discretization good?

Let's go back to the smooth setting to find out.

Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass

Let us take a step back

More favorable framework for optimization than deep learning

- Usual optimization notations: $\theta \to x$, $\mathcal{J} \to f$.
- Assume f to be strongly convex and smooth (C^2) .
- Consider (for now) only the ODE framework.

Recall DIN?

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) + \alpha \quad \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \beta \nabla^2 f(x(t)) \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \nabla f(x(t)) = 0, \qquad (\mathsf{DIN}$$

Typically $\alpha(t) = 3/t$ (Nesterov, 1983; Su et al., 2014).

Observation

DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence compared to first-order methods.

This raises an important question

Are DIN-like ODEs really Newton-like methods?

Let us take a step back

More favorable framework for optimization than deep learning

- Usual optimization notations: $\theta \to x$, $\mathcal{J} \to f$.
- Assume f to be strongly convex and smooth (C^2) .
- Consider (for now) only the ODE framework.

Recall DIN? Here is a popular extension

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) + \alpha(t) \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \beta \nabla^2 f(x(t)) \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \nabla f(x(t)) = 0, \qquad (\mathsf{DIN-AVD})$$

Typically $\alpha(t) = 3/t$ (Nesterov, 1983; Su et al., 2014).

Observation

DIN-like ODEs feature a Newtonian term, yet no guarantee of faster convergence compared to first-order methods.

This raises an important question

Are DIN-like ODEs really Newton-like methods?

A new system VM-DIN-AVD

Introduce an additional parameter $\varepsilon(t)$ in front of the acceleration

$$\varepsilon(t)\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) + \alpha(t)\frac{\mathrm{d}x}{\mathrm{d}t}(t) + \beta\nabla^2 f(x(t))\frac{\mathrm{d}x}{\mathrm{d}t}(t) + \nabla f(x(t)) = 0, \qquad (\mathsf{VM}-\mathsf{DIN}-\mathsf{AVD})$$

where ε and α are two non-negative functions of $[0, +\infty[$.

Intuition

$$\beta \nabla^2 f(x_N(t)) \frac{\mathrm{d}x_N}{\mathrm{d}t}(t) + \nabla f(x_N(t)) = 0.$$
 (CN)

$$\frac{\alpha(t)}{\mathrm{d}t}\frac{\mathrm{d}x_{LM}}{\mathrm{d}t}(t) + \beta \nabla^2 f(x_{LM}(t))\frac{\mathrm{d}x_{LM}}{\mathrm{d}t}(t) + \nabla f(x_{LM}(t)) = 0.$$
(LM)

When $\varepsilon(t)$ and $\alpha(t)$ vanish asymptotically, the solution x of (VM-DIN-AVD) should get close either to x_N or x_{LM} .

Prior work: a partial answer (Alvarez et al., 2002)

Setting and Notation

We fix initial conditions $x(0) = x_0$, $\frac{dx}{dt}(0) = \dot{x}_0$.

Prior work: fixed ε and $\alpha = 0$ (Alvarez et al., 2002)

$$\varepsilon \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) + \alpha \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \beta \nabla^2 f(x(t)) \frac{\mathrm{d}x}{\mathrm{d}t}(t) + \nabla f(x(t)) = 0. \qquad (\varepsilon \text{-DIN})$$

There exists C > 0 such that for all $0 \le \varepsilon \le 1$ and for all $t \ge 0$,

 $\|x(t)-x_N(t)\|\leq C\sqrt{\varepsilon}.$

Can we say more? What about $\alpha \neq 0$, $\varepsilon(t)$, $\alpha(t)$, etc.?

Convergence to CN under moderate viscous damping

Theorem (C., Attouch, Fadili, Ochs, 2023)

In the case $\varepsilon(t) \ge \alpha(t)$:

Under mild assumptions, there exist C_0 , C_1 , $C_2 \ge 0$ s.t. $\forall (\varepsilon, \alpha)$ for which the assumptions hold the solution x of (VM-DIN-AVD) is s.t. $\forall t \ge 0$,

$$\|x(t) - x_N(t)\| \leq C_0 e^{-rac{t}{eta}} arepsilon_0 \|\dot{x}_0\| + C_1 \sqrt{arepsilon(t)} + C_2 \int_{s=0}^t e^{rac{1}{eta}(s-t)} \sqrt{arepsilon(s)} \, \mathrm{d}s.$$

Corollary: simpler bound

$$\|x(t)-x_N(t)\| \leq C_0 e^{-\frac{t}{\beta}} \varepsilon_0 \|\dot{x}_0\| + C_3 \sqrt{\varepsilon(t)}.$$

NB: The case $\varepsilon(t) < \alpha(t)$ is also covered but is more involved.

Illustration: a control perspective

Illustration of the result on a 2D quadratic function in the case $\varepsilon(t) \ge \alpha(t)$ 25/27

New understanding

$$\varepsilon(t)\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) + \alpha(t)\frac{\mathrm{d}x}{\mathrm{d}t}(t) + \beta\nabla^2 f(x(t))\frac{\mathrm{d}x}{\mathrm{d}t}(t) + \nabla f(x(t)) = 0 \qquad (\mathsf{VM-DIN-AVD})$$

Conclusion & Perspective

- VM-DIN-AVD is really a second-order method, that we can control.
- This paves the way to the design of new algorithms.
- But: finding the right trade-off between cheap and efficient discretization is (extremely) challenging. I am currently working on it.

Associated publications

Journal papers

- Part 1: An Inertial Newton Algorithm for Deep Learning. C. Castera, J. Bolte, C. Févotte, and E. Pauwels (2021). In *Journal of Machine Learning Research (JMLR)*.
- Inertial Newton Algorithms Avoiding Strict Saddle Points. C. Castera (2021). In arXiv 2111.04596.
- Part 2: Continuous Newton-like Methods featuring Inertia and Variable Mass. C. Castera, H. Attouch, J. Fadili, P. Ochs (2023). arXiv 2301.08726.

Code repository

INNA is available as a ready-to-use optimizer for Pytorch and Tensorflow. https://github.com/camcastera/INNA-for-DeepLearning References

References i

References

- Alecsa, C. D., S. C. László, and T. Pința (2021). An extension of the second order dynamical system that models Nesterov's convex gradient method. *Applied Mathematics & Optimization 84*(2), 1687–1716.
- Alvarez, F., H. Attouch, J. Bolte, and P. Redont (2002). A second-order gradient-like dissipative dynamical system with Hessian-driven damping: Application to optimization and mechanics. *Journal de Mathématiques Pures et Appliquées 81*(8), 747–779.
- Attouch, H., Z. Chbani, J. Fadili, and H. Riahi (2020). First-order optimization algorithms via inertial systems with Hessian driven damping. *Mathematical Programming*.
- Attouch, H., J. Peypouquet, and P. Redont (2014). A dynamical approach to an inertial forward-backward algorithm for convex minimization. *SIAM Journal on Optimization* 24(1), 232–256.

References ii

- Attouch, H., J. Peypouquet, and P. Redont (2016). Fast convex optimization via inertial dynamics with Hessian driven damping. *Journal of Differential Equations 261*(10), 5734–5783.
- Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités XXXIII, pp. 1–68. Springer.
- Benaïm, M., J. Hofbauer, and S. Sorin (2005). Stochastic approximations and differential inclusions. *SIAM Journal on Control and Optimization* 44(1), 328–348.
- Bolte, J., A. Daniilidis, A. Lewis, and M. Shiota (2007). Clarke subgradients of stratifiable functions. *SIAM Journal on Optimization 18*(2), 556–572.
- Bolte, J. and E. Pauwels (2020a). Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. *Mathematical Programming*, 1–33.
- Bolte, J. and E. Pauwels (2020b). A mathematical model for automatic differentiation in machine learning. In *Advances in Neural Information Processing Systems (NIPS)*.
- Boţ, R. I., E. R. Csetnek, and S. C. László (2021). Tikhonov regularization of a second order dynamical system with Hessian driven damping. *Mathematical Programming* 189(1), 151–186.

References iii

- Bottou, L. and O. Bousquet (2008). The tradeoffs of large scale learning. In *Advances in Neural Information Processing Systems (NIPS)*, pp. 161–168.
- Castera, C. (2021). Inertial Newton algorithms avoiding strict saddle points. preprint arXiv:2111.04596.
- Chen, L. and H. Luo (2019). First order optimization methods based on Hessian-driven Nesterov accelerated gradient flow. *arXiv preprint:1912.09276*.
- Clarke, F. H. (1990). Optimization and nonsmooth analysis. SIAM.
- Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural Information Processing Systems (NIPS), Volume 27.
- Davis, D., D. Drusvyatskiy, S. Kakade, and J. D. Lee (2020). Stochastic subgradient method converges on tame functions. *Foundations of Computational Mathematics* 20(1), 119–154.
- Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization. In *Proceedings of the International Conference on Learning Representations (ICLR)*.

References iv

- Lin, M., Q. Chen, and S. Yan (2014). Network in Network. In *Proceedings of the International Conference on Learning Representations (ICLR)*.
- Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$. In *Doklady an USSR*, Volume 269, pp. 543–547.
- Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics 4(5), 1–17.
- Rumelhart, D. E. and G. E. Hinton (1986). Learning representations by back-propagating errors. *Nature 323*(9), 533–536.
- Shi, B., S. S. Du, M. I. Jordan, and W. J. Su (2021). Understanding the acceleration phenomenon via high-resolution differential equations. *Mathematical Programming*.
- Sivaprasad, P. T., F. Mai, T. Vogels, M. Jaggi, and F. Fleuret (2019). Optimizer benchmarking needs to account for hyperparameter tuning. *arXiv preprint:1910.11758*.

- Su, W., S. Boyd, and E. Candes (2014). A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights. In Advances in Neural Information Processing Systems (NIPS), pp. 2510–2518.
- Truong, T. T., T. D. To, T. H. Nguyen, T. H. Nguyen, H. P. Nguyen, and M. Helmy (2020). A fast and simple modification of Newton's method helping to avoid saddle points. *arXiv preprint arXiv:2006.01512*.

Second-order Inertial Algorithms for Smooth and Non-smooth Large-scale Optimization

> Camille Castera University of Tübingen Faculty of Mathematics

Part 1: Joint work with J. Bolte, C. Févotte, E. Pauwels Part 2: Joint work with H. Attouch, J. Fadili, and P. Ochs

Dynamical Systems and Semi-algebraic Geometry: Optimization and Deep Learning Dalat, July 2023

