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Motivation Background

(a) (b)

Figure: (a)Protein folding/unfolding along energy landscape;
(b)Conformational transition pathways of alanine dipeptide.

Goal: how to find transition pathways (rare events) in a fast and
accurate way?
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How to get the most probable transition pathway?

Minimizing action functional for SDE

dXt = f (Xt)dt + ε dLt

.
• Finite noise: Onsager-Machlup action functional with ε > 0.

minz
∫ T

0 OM(ż(t),z(t))dt :

zm(0) = x0, zm(T ) = x1 (Two metastable states: x0,x1)

• Small noise perturbation: Freidlin-Wentzell action functional,
with 0 < ε ≪ 1.
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Compensated Poisson process

Consider d-dimensional SDE under a pure Lévy jump process:

dX ε
t = b (X ε

t )dt + εdL̃ε
t , X ε

0 = x1. (1)

Function b : Rd → Rd is the drift term. For every ε > 0, the
non-Gaussian Lévy process (L̃ε

t )t≥0 is given by

L̃ε
t =

∫ t

0

∫
Rd\{0}

zÑ
1
ε (ds,dz), (2)

where Ñ
1
ε is a compensated Poisson random measure defined

on a given complete probability space (Ω,F ,P). The measure
ν has the form

ν(dz) = e−|z|γ dz, γ > 1. (3)
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Freidlin-Wentzell action functional

Consider
dX ε

t = b (X ε
t )dt + εdL̃ε

t , X ε

0 = x1. (4)

where L̃ε
t : Lévy process with compensated Poisson random

measure.
Define ST : C[0,T ]−→ [0,∞]

ST (ϕ)≜ inf
ϕ=F (g)

{∫ T

0

∫
Rd\{0}

(g(s,z) lng(s,z)−g(s,z)+1)ν(dz)ds
}

(5)
where reference trajectory ϕ(t) satisfies

ϕ(t) = x +
∫ t

0
b(ϕ(s))ds+

∫ t

0

∫
Rd\{0}

z(g(s,z)−1)ν(dz)ds. (6)

and Eq.(6) has a unique solution if every positive measure
function g satisfying (A. Budhiraja et al. 2013)∫ T

0

∫
Rd\{0}

(g(s,z) lng(s,z)−g(s,z)+1)ν(dz)ds < ∞.
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Reformulate constrained Minimization as an optimal control
problem


inf

g∈U
J [ϕ;g] =

∫ T
0 L (g(s, ·))dt +η(ϕ(T )),

subject to ϕ̇(t) = b(ϕ(t))+Q(g(t , ·)),
ϕ(0) = x1.

(7)

where

L (g(s, ·)) =
∫
Rd\{0}

(
g(s,z) lng(s,z)−g(s,z)+1

)
ν(dz), (8)

and
Q(g(t , ·)) =

∫
Rd\{0}

(g(t ,z)−1)zν(dz). (9)

Function η is the terminal cost, and it is defined by{
η(x) = 0, x = x2,

η(x) = ∞, otherwise.
(10)
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Solution: a supervised learning way

Idea: Construct two neural networks:

ϕNN(t ;wϕ ,bϕ), gNN(x , t ;wg ,bg).

lossϕ =
1

NT
∑

NT
i=1

(
ϕ̇NN(ti)−b(ϕNN(ti))− Intz

(
z(gNN(ti ,z)−1)e−|z|γ))2

+

τ1(ϕNN(0)−x1)
2,

lossg =

1
NT

∑
NT
i=1 Intz

((
gNN(ti ,z) lngNN(ti ,z)−gNN(ti ,z)+1

)
e−|z|γ)+

τ2(ϕNN(T )−x2)
2,

loss = τlossϕ + lossg , (11)

where τ is the weight to balance lossϕ and lossg .
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Experiment

Example
Consider the Maier Stein system under non-Gaussian Lévy
noise:

dX ε
t = b (X ε

t )dt + εdL̃ε
t , X ε

0 = x1, (12)

where b(x,y)=
(

x −x3 −βxy2

−
(
1+x2)y

)
.and ν(dx) = exp(−|x |γ)dx .

This system has two metastable points (±1,0) and one saddle
point (0,0). When β = 1, the system is a gradient system with
potential V (x ,y) =−1

2x2 + 1
4x4 + 1

2y2 + 1
2x2y2.
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Experiment results

(a) (b)

Figure: (a) The most likely transition path for the Maier Stein system
under non-Gaussian Lévy noise from the metastable point (−1,0) to
the metastable point (1,0) within time T = 1,5,10,50,100. (b) The
value of rate function for the most likely transition path within the time
T = 1,5,10,50,100.
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Maximum Principle

We consider a stochastic differential equation with multiplicative
Gaussian noise in Rd

dX (t) = b̃(X (t))dt +σ(X (t))dB(t), t ∈ [0, tf ], (13)

with initial condition X (0) = x0 ∈ Rd , where b̃ : Rd → Rd is a
regular function (‘drift’ or ‘vector field’), σ : Rd → Rd×k is a d ×k
matrix-valued function (‘noise intensity’), and B is a Brownian
motion in Rk .
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Onsager-Machlup action functional

The Onsager-Machlup action functional is

S(z, ż) =
1
2

∫ tf

0
[(ż −b(z))V (z)(ż −b(z))T +divb(z)− 1

6
R(z)]dt ,

(14)

where V (z) = (σ(z)σ∗(z))−1, R(z) is the scalar curvature with
respect to the Riemannian metric induced by V (z), and
bi(z) = b̃i(z)− 1

2 ∑
l ,j
(V−1(z))ljΓi

lj is the i component of b. Γi
lj is

the Christoffel symbols associated with this Riemannian metric,
which satisfies

Γi
lj =

1
2 ∑

m
g im(

∂

∂x j glm +
∂

∂x l gjm − ∂

∂xm glj), (15)

where (g ij)(z) is the inverse of the Riemannian metric
(gij)(z) = V (z).
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Onsager-Machlup action functional

The divergence divb(z) is defined as

divb(z) =
1√

|V (z)| ∑i

∂

∂zi

(
bi(z)

√
|V (z)|

)
, (16)

where |V (z)| is the determinate of Riemann metric.

The Onsager-Machlup action functional can be considered as
the integral of a Lagrange

L(z, ż) =
1
2
[(ż −b(z))V (z)(ż −b(z))T +divb(z)− 1

6
R(z)].

(17)
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Pontryagin’s Maximum Principle

Define the Hamiltonian

H : R×Rd ×Rd ×Θ−→ R,
(t ,x ,p,θ) 7−→ H(t ,x ,p,θ) := p⊤f (t ,x ,θ)−L(t ,x ,θ).

We can rewrite the cost functional in terms of the Hamiltonian:

J(θ) =
∫ tf

t0
(⟨p(t), ẋ(t)⟩−H(t ,x(t),θ(t),p(t)))dt+Φ(x (tf )) . (18)

Recall Pontryagin’s Maximum Principle:
1) The joint evolution of x∗ and p∗ are governed by:{

ẋ∗(t) = ∇pH (t ,x∗(t),p∗(t),θ ∗(t)) , x∗ (t0) = x0,
ṗ∗(t) =−∇xH (t ,x∗(t),p∗(t),θ ∗(t)) , p∗ (tf ) =−∇xΦ(x∗ (tf )) .

(19)
2) For each t , Hamiltonian has a global maximum at θ = θ ∗, i.e.,

H (t ,x∗(t),p∗(t),θ ∗(t))≥H (t ,x∗(t),p∗(t),θ(t)) , ∀ θ ∈Θ and t ∈ [t0, tf ] .
(20)
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Reformulate as a deterministic optimal control problem


minimize

θ∈Θ
1
2
∫ tf

0 [θ 2 +divb(z)− 1
6R(z)]dt +Φ(z(tf )),

subject to ż(t) = b̃(z(t))+σ(z(t))θ(t),
z(0) = x0.

(21)

Here z : [0, tf ]→ Rd is the state and θ ∈Θ is the feedback
control. The function Φ is the terminal cost, and it is defined by

Φ(x) =
(x −xtf )

2

(x −xtf )
2 +1

. (22)

Solution: Solve Eq.(21, 22) through Maximum Principle!



Motivation Supervised Learning Maximum Principle Reinforcement Learning Conclusion

Algorithm:
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Convergence Study

Theorem
There exist a hyper parameter ρ > 0 , a constant M > 0 and a
constant C > 0 satisfying ρ < 2C. If the above two assumptions
( H1(Lipschitz)−H2(Regularity) ) are satisfied, we summarize
the convergence of neural network and Algorithm in the
following two results:
( A ) When the iteration times k →+∞, θ k → θ ∗.
( B ) When the iteration times k → +∞, J(θ k+1)−J(θ k ) as
defined in (23) approaches 0, and for every k ≥ 0, ∆t > 0, the
loss function J(θ k ) satisfies,

J(θ k+1)−J(θ k )≤−∆t
T−1

∑
t=0

Ht

(
xθ

t ,p
θ

t+1,θt

)
+M

(∥∥∥θ
k+1
t −θ

k
t

∥∥∥2
)∥∥xθ

t
∥∥2

.

(23)
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A nutrient-phytoplankton-zooplankton system

Example 

dN
dt

= D (N0 −N)− f (N)P,

dP
dt

= αf (N)P −d1P −g(P)Z −w1P,

dZ
dt

= βg(P)Z −d2Z −w2Z ,

(24)

where

f (N) =

{
b
a N, 0 ⩽ N ⩽ a,
b, N > a,

g(P) =
cP

1+dP
.

N0 is constant input rate of nutrient, D, w1 and w2 are the
washout rates for nutrient, d1 and d2 are the death rates, a and
b are the conversion rates. Let d1 +w1 = D1, d2 +w2 = D2.
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Pontryagin’s Maximum Principle associated with problem
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Experiments

Figure: Nutrient-Plankton system–Bistable phenomenon: (1) a stable
equilibrium (green point in the center) and a stable limit cycle (red
curve). (2) The circular curve in blue is the asymptotic solution of this
system.
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Figure
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Deep Reinforcement Learning in Finite-Horizon to Explore the
Most Probable Transition Pathway

Consider the following stochastic differential equation{
dX (t) = b(X (t))dt +σ(X (t))dB(t) ,
X (0) = X0 .

(25)

The minimization for the Onsager–Machlup action functional
can be reformulated as the following constrained optimal
control problem:

inf
u∈A

J [X ,u] =
∫ T

0 f (t ,X (t),u(t))dt +g(X (T )) ,

subject to Ẋ (t) = b(X (t))+σ(X (t))u(t) ,
X (0) = X0 ,

(26)
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Main Idea
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Definition

State space: The state st is defined as the coordinates of
X (t) ∈ Rd at timestep t .
Action space: The action space is defined as
U ⊂ Ru(at ∈ U). At timestep k (k = 0,1, · · · ,N), ak
corresponds to the control term u(k∆t) in (26).
Cost (Reward): For consistency with the optimal control
problem (26), we will call the cost as running cost in the
following. The running cost rt at timestep t is defined as

rt = f (t ,s(t),a(t))∆t .

Our goal is to minimize the summation of running cost and
terminal cost.
Transition dynamics: The transition dynamics
corresponding to the optimal control problem (26) can be
expressed as

st+1 = st +b(st)∆t +σ(st)at∆t .
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Terminal Prediction

How can the terminal constraints ensure that our agent
reaches the target terminal state?

state
dynamics sk+2sksk sk+1

actor network

state
dynamics

............state
dynamicssN ......

actor network

sN-1
state

dynamics

actor network

By the chain rule, we have

∂Lpred(ŝ
k ,â
N )

∂ω
=

∂g(ŝk ,â
N )

∂ω
=

∂g(ŝk ,â
N )

∂ â
· ∂ â

∂ω
.
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Terminal Prediction Deep Deterministic Policy Gradien

Terminal
Prediction

environment

state dynamics

TD error

+

actor network

state
dynamicssk

actor network

state
dynamics

............state
dynamics ......

actor network

state
dynamics

actor network

critic network
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Algorithm
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Convergence Analysis

The total error: f ∗− f̂ , where f̂ = the output of our model. Define:

fm = best approximation to f ∗ in AM

f̃n,m = "when using only the dataset S, the best approximation to
f ∗ in AM "

Decomposition of the error

f ∗− f̂ = f ∗− fm︸ ︷︷ ︸
appr .

+ fm − f̃n,m︸ ︷︷ ︸
estim.

+ f̃n,m − f̂︸ ︷︷ ︸
optim.

(27)

f ∗− fm= approximation error, due entirely to the choice of the
hypothesis space

fm − f̃n,m = estimation error - sample error due to the fact that we
only have a finite dataset

f̃n,m − f̂ = optimization error - training error caused by the choice
of optimizer
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Convergence Analysis

The estimation error:
For n = 0,1, · · · ,N −1, the following holds

Eε
esti
n+1 ≤(

√
2+16)

(N −n+1)∥f∥∞ +∥g∥∞√
M

+16
(
[f ]L +ηMγM +[g]L

ρM −ρ
N−n+1
M

1−ρM

)
γM√
M

.

(28)

The estimation error measures how closely the selected
estimator (e.g., the mean square estimate) approximates a
certain quantity (e.g., the conditional expectation). Obviously,
we anticipate that the estimation to become more accurate
when the size of the training set is sufficiently large.
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Convergence Analysis

Since the class of neural networks AM is not dense in the set AX of
all Borelian functions, we consider the approximation error as a
measure of how accurately the neural network function in set AM
approximates the regression function.
The approximation error:
For n = 0,1, · · · ,N −1, the following holds

ε
approx
n+1 ≤ inf

A∈AM

{
2[f ]L∆tEM

[∣∣∣A(Xn)−aopt(Xn)
∣∣∣]

+2EM

[∣∣∣Q̂n(Xn,A(Xn))+g(X n,A
N )−Qn(Xn,aopt(Xn))

∣∣∣]} .
(29)
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Convergence Analysis

Theorem. Assume there exists an optimal feedback control
(aopt(Xk ))

n
k=1 for the control problem with the optimal state-action

value Qk for k = 1,2, · · · ,n. Then, as M → ∞,

inf
A∈AM

EM

[∣∣∣Q̂n(Xn ,A(Xn))+g(Xn,A
N )−Qn(Xn ,aopt (Xn)

∣∣∣]

= OP

((
γ

4
M

KM log(M)

M

) 1
2n +

(
γM
√
log(M)√
M

(
ηM γM +[g]L

ρM −ρ
N−n+1
M

1−ρM

)) 1
2n

+ sup
1≤k≤n

inf
A∈AM

inf
Φ∈QM

(
EM
[∣∣Φ(Xk ,A(Xk ))+g(Xn,A

N )−Qk (Xk ,a
opt (Xk ))

∣∣]) 1
2n

+ sup
0≤k≤n−1

inf
A∈AM

(
EM
[∣∣A(Xk )−aopt (Xk )

∣∣]) 1
2n +

(∣∣Q̂0(X0 , â0(X0))−Q0(X0,a
opt (X0)

∣∣) 1
2n ,

(30)

where EM denotes the expectation conditioned by the training set
used to estimate the optimal policies (âk )

n
k=1. The notation

zM = OP(yM) as M → ∞ stands for that there exists c > 0 such that
P(|zM |> c|yM |)→ 0 as M goes to infinity.
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Experiments

Consider the Maier–Stein system in R2 that{
dXt = b(Xt)dt + εdBt ,

X0 = (−1,0),XT = (1,0) ∈ R2 ,
(31)

where

b(Xt) =

(
x −x3 −βxy2

−(1+x2)y

)
,

and the ε is a positive constant representing the noise intensity.
Onsager–Machlup action functional

SOM(X , Ẋ ) =
1
2

∫ T

0
[|ut |2 +∇ ·b(Xt)]dt .
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Experiments



Motivation Supervised Learning Maximum Principle Reinforcement Learning Conclusion

Experiements

Example (Lactose Operon Model (Yildirim and Mackey,
2004))

dM
dt

= αM
1+K1(e−µτM AτM )

n

K +K1(e−µτM AτM )
n − γ̃MM + εdBt ,

dB
dt

= αBe−µτB MτB − γ̃BB+ εdBt ,

dA
dt

= αAB
L

KL +L
−βAB

A
KA +A

− γ̃AA+ εdBt ,

(32)

Denote M as mRNA concentration, B as the galactosidase
concentration, and A represents the concentration of
allolactose. Onsager-Machlup action functional

SOM(X , Ẋ ) =
1
2

∫ T

0
[|ut |2 +∇ ·b(Xt)]dt
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Experiement results
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Take home message

1. Transition pathway through optimal control: Non-Gaussian
Lévy noise, multiplicative noise

2. Deep learning methods: supervised learning (∼ 2 hours);
Maximum principle (∼ 30 mins); Reinforcement Learning (∼ 5
mins)
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