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Motivation Background
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Figure: (a)Protein folding/unfolding along energy landscape;
(b)Conformational transition pathways of alanine dipeptide.

Goal: how to find transition pathways (rare events) in a fast and
accurate way?
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How to get the most probable transition pathway?

Minimizing action functional for SDE

aX: = f(Xt)dt+ edL;

e Finite noise: Onsager-Machlup action functional with € > 0.
minz Jy OM(2(t), z(t))dt:
Zm(0) = X0, zm(T) = x1 (Two metastable states: xg, x1)

e Small noise perturbation: Freidlin-Wentzell action functional,
with0 <e <« 1.
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Compensated Poisson process

Consider d-dimensional SDE under a pure Lévy jump process:
dXf = b(Xf)dt+edlf, X§=x. (1)

Function b: R — RY is the drift term. For every & > 0, the
non-Gaussian Lévy process (Lf);o is given by

Lf_// zNi (ds, dz), 2
t Rd\{o} ) (2)

where Nz is a compensated Poisson random measure defined
on a given complete probability space (2,.%#,P). The measure
v has the form

v(dz)=e dz, y>1. (3)
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Freidlin-Wentzell action functional

Consider )

aXf =b(Xf)dt+edLli, X5=x. (4)
where lf: Lévy process with compensated Poisson random
measure.

Define St : C[0, T] — [0, o]

siio2 ot ([ [, (@(s2ng(s.2) —g(s,z>+1)v(dz(><)1s}
5

where reference trajectory ¢(t) satisfies

¢(t):x+/Otb((p(s))dSJr/ot/Rd\{o}z(g(s,z)—1)v(dz)ds. (6)

and Eq.(6) has a unique solution if every positive measure
function g satisfying (A. Budhiraja et al. 2013)

\/()T‘[Rd\{o}(g(s’ Z) |ng(S,Z) _g(s7 Z) + 1 )V(dZ)ds < o0,
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Reformulate constrained Minimization as an optimal control
problem

inf Iloigl = Jy Z(g(s,))dt+n(e(T)),

suectto 9(1) = b(o(1) + 2(a(t.). )
©(0) = xq.
where
Zals. = [, o (9(5:2)ng(s.2)~g(s.2)+ )(e2), (@)
and
29t = [, o (@t:2) - 1)2v(dz), ©

Function n is the terminal cost, and it is defined by

nx)=0, x=xp, (10)
N(x) =oo, otherwise.
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Solution: a supervised learning way

Idea: Construct two neural networks:

ONN(E Wo,bp),  gnn(X, T Wy, byg).

lossy =
A XN (oan(t) — b(@nn(h) — Int. (2(gnn(t,2) — 1)e 1)) " +
71 (o (0) — x1)?,

lossg =

N% YN Int, (g (t, 2) Ingan(t,2) — gnw(t, 2) + 1) 127 +

T2(oan(T) — X2)?,

loss = tloss, + lossg, (11)

where 1 is the weight to balance loss, and lossg.
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Experiment

Consider the Maier Stein system under non-Gaussian Lévy
noise: y
axXf =b(Xf)dt+edLl;, X5=x, (12)

x —x3—Bxy?
—(1+x2)y

where b(x,y)=< > .and v(dx) = exp(—|x|")dXx.

4

This system has two metastable points (£1,0) and one saddle

point (0,0). When 8 =1, the system is a gradient system with

potential V(x,y) = —3x2+ Ix*+ Ty + Jx2y2.
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Experiment results

03

T
030
121
025
2131
020
14
0ls :
1)

005

000
-005

Figure: (a) The most likely transition path for the Maier Stein system
under non-Gaussian Lévy noise from the metastable point (—1,0) to
the metastable point (1,0) within time T =1,5,10,50,100. (b) The
value of rate function for the most likely transition path within the time
T=1,5,10,50,100.
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Maximum Principle

We consider a stochastic differential equation with multiplicative
Gaussian noise in RY

dX(t) = b(X(t))dt+ c(X(t))dB(t), t [0, ], (13)

with initial condition X(0) = xp € RY, where b: RY -+ R% is a
regular function (‘drift’ or ‘vector field’), o : RY — Rk is a d x k
matrix-valued function (‘noise intensity’), and B is a Brownian
motion in RX.
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Onsager-Machlup action functional

The Onsager-Machlup action functional is

S(z,2) = % /O (2= b2)V(2)(z - b(2))T +divb(z) - %R(z)]dt,
(14)

where V(z) = (6(z2)c*(2))~", R(2) is the scalar curvature with
respect to the Riemannian metric induced by V(z), and
bi(z) =b/(z) - 22( '(2))!r} is the i component of b. T; is

the Christoffel symbols associated with this Riemannian metric,
which satisfies

1 0 d d
= EZg'm(Wg/m—l—ngm—Wg/j), (15)
m

where (g7)(z) is the inverse of the Riemannian metric

(95)(2) = V(2).
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Onsager-Machlup action functional

The divergence div b(z) is defined as

divb(z)

_ ,\1(2),2382,- (6VIV@E)I).  (19)

where |V(z)| is the determinate of Riemann metric.

The Onsager-Machlup action functional can be considered as
the integral of a Lagrange

[(z,2) = %[(z —b(2))V(2)(z - b(2))T +divb(z) - %R(z)].
(17)
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Pontryagin’s Maximum Principle

Define the Hamiltonian
H RxRIxRIx O — R,
(t,x,p,0) — H(t,x,p,0) :=p' f(t x,0)—L(tx,6).
We can rewrite the cost functional in terms of the Hamiltonian:
t _
J(6) =/t ((p(t),x (1)) —H(t,x(1),06(1),p(t)))dt+ > (x(%)). (18)
0

Recall Pontryagin’s Maximum Principle:
1) The joint evolution of x* and p* are governed by:

{ X*(t) = VPH(th*(t)7p*(t)79*(t))7 X" (tO) = Xo,

p*(t) = =VxH(t,x*(1),p*(),07(1)), p"(tr) = —Vx®(x"(t)).
(19)

2) For each t, Hamiltonian has a global maximum at 6 = 6%, i.e.,

H(t,x*(t),p*(t),0%(t)) > H(t,x*(t),p"(t),06(t)), VOe€©andtel,t]
(20)
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Reformulate as a deterministic optimal control problem

minimize 1 [162 +divb(z) — LR(2)]dt + &(z(k)),
€

6
subjectto  z(t) = b(z(t)) + o(z(1))6(1), (21)
z(0) = Xo.

Here z: [0, t] — RY is the state and 6 € © is the feedback
control. The function ¢ is the terminal cost, and it is defined by

(X — Xff)z

)= xR

(22)

Solution: Solve Eqg.(21, 22) through Maximum Principle!



Maximum Principle
00000e00000

Algorithm:

Algorithm 1 Back Propagation Based Extended MSA

1: Input: 8° € 8, zp;

ot w

© o N o

: Iterations: for k=0 to K, do;
: build neural network for controller ;

: forward solve i?k =V,H (t w?k,pt ,9’“) ft,xf ,9’“) ng = zy with second-order Runge-

Kuta;

: backward solve p?k = -V H (t mtk,p‘qk 9’“) , pg-k = —de)(a:gf) with second-order Runge-
Kuta; B

: compute the loss function L = —H;

. update 6F to Bf“ = argmaxgeg H (t, ka, Pfkﬁ,ka,Pfk) 4
: train the network for 8 according to back propagation gradient decent;

: after K iterations, the optimal solution is obtained when the loss function converges.
: Output: zj, pf, 6f
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Convergence Study

There exist a hyper parameter p > 0 , a constant M > 0 and a
constant C > 0 satisfying p < 2C. If the above two assumptions
(H1(Lipschitz) — H2(Regularity) ) are satisfied, we summarize
the convergence of neural network and Algorithm in the
following two results:

( o/ ) When the iteration times k — 40, 8% — 0*.

( B ) When the iteration times k — +o0, J(6Kt1) — J(6%) as
defined in (23) approaches 0, and for every k > 0, At > 0, the
loss function J(6%) satisfies,

T—1 2
IO~ J(69) < ~At ¥ Hh(xF.pf,1,0) + M <H9tk+1 -of| >
t=0
(23)
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A nutrient-phytoplankton-zooplankton system

M —D(No— W)~ F(N)P.
dP
o =af(N)P—diP—g(P)Z — w;P, (24)
O —BAPIZ—oZ w2,
where
b <N
F(N) = 2N, 0<N<a,
b, N > a,
cP
9(P) = 1+dP

Ny is constant input rate of nutrient, D, wy and w» are the
washout rates for nutrient, d; and ad» are the death rates, a and
b are the conversion rates. Let d; + wy = Dy, do + wo = Do.
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Pontryagin’s Maximum Principle associated with problem

b
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Experiments
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Figure: Nutrient-Plankton system—Bistable phenomenon: (1) a stable
equilibrium (green point in the center) and a stable limit cycle (red
curve). (2) The circular curve in blue is the asymptotic solution of this
system.
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Figure 6: Nutrient-Plankton system—The most probable transition pathway in the sense of Onsager-Machlup: Transition time
T = 1. The blue point is the coexisting equilibrium, the green line is the most probable transition pathway, and the red circle
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Deep Reinforcement Learning in Finite-Horizon to Explore the
Most Probable Transition Pathway

Consider the following stochastic differential equation

{dX(t):b(X(t))dt—i—G(X(T))dB(t)v (25)

X(0)=Xp.
The minimization for the Onsager—Machlup action functional

can be reformulated as the following constrained optimal
control problem:

inf 71X, ul = Jo f(t,X(1), u(t)at+g(X(T)),
subject to X(t) = b(X(t))+ o (X(t))u(t), (26)
X(0) =Xo,
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Main Idea

Problems: an agent interacting with an environment, which provides numeric reward signals.
Goal: to learn how to take actions in order to maximize total reward.

State s, Reward r,

Action a,
Next state s, ,

Environment

1
17
16
15
14
13
12
1
10

i
16
15
14
13
12
1, State: Position of all pieces

9 Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Obijective: Win the game!

2ae~
2ae~N®
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Definition

@ State space: The state s; is defined as the coordinates of
X(t) € RY at timestep t.

@ Action space: The action space is defined as
UcCRYa; € U). Attimestep k (k=0,1,--- |N), ax
corresponds to the control term u(kAt) in (26).

@ Cost (Reward): For consistency with the optimal control
problem (26), we will call the cost as running cost in the
following. The running cost r; at timestep t is defined as

re = f(t,s(t),a(t))At.

Our goal is to minimize the summation of running cost and
terminal cost.

@ Transition dynamics: The transition dynamics
corresponding to the optimal control problem (26) can be
expressed as

Sti1 = St+ b(st)At+ o(st)aiAt.
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@ How can the terminal constraints ensure that our agent
reaches the target terminal state?

actor network

actor network
state
—

dynamics

l

state

dynamics
state
dynamics

state

—
dynamics 77
actor network ‘

By the chain rule, we have

0 Lrea(87)  99(8K7)  9g(8K?
0w T dw
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rminal Prediction Deep Deterministic Policy Gradien

actor network ‘

% state state
‘ dynamics dynamics
state | State PR PR
dynamics Oynamics  seeeee T aeee T

actor network

Q(s1, A%(50)) + L2, 4 (W) }7

action a

"' Terminal ‘
“ Prediction ‘ ©

value function ) TD error

( 1'1[1’[ [re + Qo(ste1, a(se1)) — Qn(-‘l-ﬁ(-“t))]z }47

critic network

state X ds(t) = b(t, s(t))dt + ou(t)dt wction a@
s(0) = s
environment
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Algorithm

Algorithm 1: Terminal prediction Deep Deterministic Policy Gradient

Input: Randomly initialize critic network Q (s, a) and actor network A, (s) with weights 6 and w.
Output: Updated network Qy and network A, after K episodes of the algorithm

1 Random run M trajectories, collect samples {D};

2 for n « 0 to episode do

3| so=s(0)
4 Set Qg(sn) =05
5 fort < 0 to N do
6 Select action with exploration noise a, «— A, (s;) +€, € ~ N(0, o',fa) according to the current
policy;
7 Execute action a, and observe running cost r, = % [a% + V- b(s;)]|At, then get new state
Seal  F(sr,a1);
8 Store transition (s;, as, Iy, S141) in Dpy;
9 Sample a minibatch of M transitions {(st, al,rf, sﬁ”))?;’l;
10 Set yy —ri+Qo(s,, - Aw(sy, )
1 Update critic by minimizing the TD loss:
| M
Lo — 537 204 = (Ql(shap)™.
i=1
. L Al d
12 Terminal prediction Lp,eq < g(x'Np” )s
13 Update actor policy using the sampled policy gradient:;
" VorLact = 37 Z2 [VaQo(5.0)| oyt amet - VA @ lscsy + VaLprea - VA (5)l oy |
15 end
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Convergence Analysis

The total error: * — 7, where f = the output of our model. Define:
@ f, = best approximation to f* in <7

o 7‘,,7,,7 = "when using only the dataset S, the best approximation to
f*in "
Decomposition of the error

appr. estim. optim.

@ f* — fp,= approximation error, due entirely to the choice of the
hypothesis space

® fy— fom = estimation error - sample error due to the fact that we
only have a finite dataset

[+ 7,,.,,, —f= optimization error - training error caused by the choice
of optimizer
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Convergence Analysis

The estimation error:
For n=0,1,--- N —1, the following holds

(N=n+1)[[fl«+ 9l
vM

+16([f1L+nMyM+[g]L

Eefst <(v2+16)
(28)

pm—ppy " ) oy
1—pum VM’

The estimation error measures how closely the selected
estimator (e.g., the mean square estimate) approximates a
certain quantity (e.g., the conditional expectation). Obviously,
we anticipate that the estimation to become more accurate
when the size of the training set is sufficiently large.
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Convergence Analysis

Since the class of neural networks <7 is not dense in the set A% of
all Borelian functions, we consider the approximation error as a
measure of how accurately the neural network function in set .7,
approximates the regression function.

The approximation error:

Forn=0,1,---,N—1, the following holds

approx _
inf
M1 = acay

+ 2By || @n(Xns AX0)) + GOXT*) —~ Onl(Xn, @ (X0 }-
(29)

e {2[f]LAtEM HA(X”) — a"p‘(Xn)H
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Convergence Analysis

Theorem. Assume there exists an optimal feedback control
(a%*(Xk))p_, for the control problem with the optimal state-action
value Qi fork=1,2,---,n. Then, as M — oo,

AgiﬁMEMHOMXmA(xn)Hg(Xﬁ'A)— Qn(Xn, %! (X)|

_ ﬁ]p((ﬁ” Kirloo(M) ) 35 (1 \/%(M ( pw—ppy " )7

M+ 91
1

nA opt 2n
e it int - (B[O A0 + 907 - QX a® (X))

+U<Zlir; 1Aé"j/ (]EMHA(Xk a%!(Xy) |])2” + (\Qo Xo,80(X0)) — Qo(Xp, & Xn)\)gl
where E), denotes the expectation conditioned by the training set

used to estimate the optimal policies (&x)j_. The notation

Zy = Op(ym) as M — oo stands for that there exists ¢ > 0 such that

P(|zy| > clym|) — 0 as M goes to infinity.
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Experiments

Consider the Maier—Stein system in R? that

{dx, = b(X;)dt + edB;, (31)

Xo = (—1,0),X7 = (1,0) € R?,

where

_( x—x*—Bxy?
o= ("8 )

and the ¢ is a positive constant representing the noise intensity.
Onsager—Machlup action functional

SOM(X, X) = / [lue?+V - b(X))]ot
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Experiments
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Figure 4: Maier-Stein system with 8 = 10, noise intensity £ = 0.2, and 7 = 10.
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Experiements

Example (Lactose Operon Model (Yildirim and Mackey,
2004))

oM _ 14 Ki(etA)
dt B aMK+ K1 (e—M‘L'MATM)n - VMM-l-SdBt,
g = OCBefllTBMTB — ¥gB+¢€dB;, (32)
L A )
= 0aBr T ~PaBre 4 —TAA+edBy,

Denote M as mRNA concentration, B as the galactosidase
concentration, and A represents the concentration of
allolactose. Onsager-Machlup action functional

SOM(X, X) = / [Juel? + V- b(X:)]dt
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Experiement results
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Conclusion
Take home message

1. Transition pathway through optimal control: Non-Gaussian
Lévy noise, multiplicative noise

2. Deep learning methods: supervised learning (~ 2 hours);
Maximum principle (~ 30 mins); Reinforcement Learning (~ 5
mins)
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