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Why do we need robustness?
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Robustness meets the adversaries
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Robustness meets the adversaries

Yuan et al. (2019)
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(ICML 2020)
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Today: “Basic” robust machine learning

min
x∈X

max
y∈Y

Φ(x, y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

▶ Adversarial examples and training
▶ Generative adversarial networks
▶ Robust reinforcement learning
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Warm up: Flexibility of the template

Φ⋆ = min
x∈X

max
y∈Y

Φ(x, y) (argmin, argmax→ x⋆, y⋆)

f⋆ = min
x:x∈X

f(x) (argmin→ x⋆)

◦ (eula) In the sequel,

▶ the set X is convex

▶ all convergence characterizations are with feasible iterates xk ∈ X

▶ L-smooth means ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X

▶ ∇ may refer to the generalized subdifferential
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x⋆ ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

◦ A single hidden layer neural network with params x := [X1, X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight

↓[
X1

] input
↓[
a

]
+

bias
↓[

µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[

µ2

]
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x⋆ ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai, bi)}n

i=1, with ai ∈ Rp and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max

δ:∥δ∥≤ϵ
L(hx (ai + δ), bi)

]
︸                                      ︷︷                                      ︸

=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The “deep-learning” problem with a neural network hx(a) is given by

x⋆ ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints and L is a loss function.

Example objectives in different tasks
▶ minx

{
1
n

∑n

i=1

[
maxδ:∥δ∥∞≤ϵ L (hx (ai+δ) , bi)

]}
Adversarial training [11].

▶ minx
{

1
n

∑n

i=1

[
maxδ:∥δ∥2≤ϵ L(hx+δ (ai), bi)

]}
ϵ-stability training [3],

Sharpness-aware minimization [7].
▶ minx maxbc∈[C]

1
nc

∑nc

i=1

[
maxδ:∥δ∥≤ϵ L

(
hx (ai+δ) , bc

i

)]
Class fairness [16].
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Basic questions on solution concepts

◦ Consider the finite sum setting

f⋆ := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}

.

◦ Goal: Find x⋆ such that ∇f(x⋆) = 0.

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk

1. For k = 0, 1, . . .:
obtain the (minibatch) stochastic gradient gk

update xk+1 ← xk − γkgk
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Solving the outer problem: Gradient computation

Adversarial Training
Let hx : Rp → R be a model with parameters x and let {(ai, bi)}n

i=1, with ai ∈ Rp and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max

δ:∥δ∥≤ϵ
L(hx (ai + δ), bi)

]
︸                                      ︷︷                                      ︸

=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the following stochastic gradient (i.e., Ei∇xfi(x) = ∇xfi(x) for i ∼ Uniform{1, . . . , n}):

∇xfi(x) := ∇x

(
max

δ:∥δ∥≤ϵ
L(hx (ai + δ), bi)

)
?

◦ Challenge: It involves differentiating with respect to a maximization.
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Danskin’s Theorem (1966): How do we compute the gradient?

Theorem ([5])
Let S be compact set, Φ : Rp ×S be continuous such that Φ(·, y) is differentiable for all y ∈ S, and ∇xΦ(x, y)
be continuous on Rp × S. Define

f(x) B max
y∈S

Φ(x, y), S⋆(x) B arg max
y∈S

Φ(x, y).

Let γ ∈ Rp, and ∥γ∥2 = 1. The directional derivative Dγf(x̄) of f in the direction γ at x̄ is given by

Dγf(x̄) = max
y∈S⋆(x̄)

⟨γ,∇xΦ(x̄, y)⟩.

An immediate consequence
If δ⋆ ∈ arg maxδ:∥δ∥≤ϵ L(hx (ai + δ), bi) is unique, then we have

∇xfi(x) = ∇xL(hx (ai + δ⋆), bi) .
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Optimized perturbations are typically not unique!
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Figure: (left) Pairwise ℓ2-distances between “optimized” perturbations with different initializations are bounded away from zero.
(right) The losses of multiple perturbations on the same sample concentrate around a value much larger than the clean loss.
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Theoretical foundations

?

unique δ⋆ non-unique δ⋆

∇xΦ(x, δ⋆) ∇xf(x) descent direction [13]

level sets

xk
rf(xk)

pk
xk + D(f, xk)
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A counterexample

f(x) B max
δ∈[−1,1]

xδ = |x| .

◦ We have S B [−1, 1] and Φ(x, δ) = xδ.

◦ At x = 0, we have S⋆(0) = [−1, 1].

◦ We can choose δ = 1 ∈ S⋆(0): Φ(x, 1) = x.

▶ −∇xΦ(0, 1) = −1 , 0.

▶ Is −1 a descent direction at x = 0?
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Our understanding [Latorre, Krawczuk, Dadi, Pethick, Cevher, ICLR (2023)]

◦ The corollary in [13] is false (it is subtle!).

◦ We constructed a counter example & proposed an alternative way (DDi) of computing “the gradient”:

unique δ⋆ non-unique δ⋆

∇xΦ(x, δ⋆) ∇xf(x) could be ascent direction!
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Figure: Left and middle pane: comparison DDi and PGD ([13]) on a synthetic problem. Right pane: DDi vs PGD on CIFAR10.
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Comparison with the state-of-the-art
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Figure: (left) PGD vs DDi on CIFAR10, in a setting covered by theory. (right) An ablation testing the effect of adding back the
elements not covered by theory (BN,ReLU,momentum).

DDi + Graduate Student Descent may improve things (performance or catastrophic overfitting)?
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Another minimax example: Generative adversarial networks (GANs)
◦ Ingredients:
▶ fixed noise distribution pΩ (e.g., normal)
▶ target distribution µ̂n (natural images)
▶ X parameter class inducing a class of functions (generators)
▶ Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [1]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN training problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)

. (1)

This problem is already captured by the template minx∈X maxy∈Y Φ(x, y). Note that the original problem is a
direct non-smooth minimization problem and the Rubinstein-Kantarovic duality results in the minimax template.

Remarks: ◦ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
◦ Scalability, mode collapse, catastrophic forgetting. Heuristics galore!
◦ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [1, 9, 15].
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Abstract minmax formulation

Minimax formulation

min
x∈X

max
y∈Y

Φ(x, y), (2)

where
▶ Φ is differentiable and nonconvex in x and nonconcave in y,
▶ The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?
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Solving the minimax problem: Solution concepts

◦ Consider the unconstrained setting:

Φ⋆ = min
x

max
y

Φ(x, y)

◦ Goal: Find an LNE point (x⋆, y⋆).

Definition (Local Nash Equilibrium)
A pure strategy (x⋆, y⋆) is called a local Nash equilibrium if

Φ (x⋆, y) ≤ Φ (x⋆, y⋆) ≤ Φ (x, y⋆) (LNE)

for all x and y within some neighborhood of x⋆ and y⋆, i.e.,
∥x− x⋆∥ ≤ ε and ∥y− y⋆∥ ≤ ε for some ε > 0.
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Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x, y), (3)

where
▶ Φ is differentiable and nonconvex in x and nonconcave in y,
▶ The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [6]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x, y), define V (z) = [∇xΦ(x, y),−∇yΦ(x, y)] with z = [x, y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
▶ Gradient Descent Ascent (GDA)
▶ Proximal point method (PPM) [18, 8]
▶ Extra-gradient (EG) [12]
▶ Optimistic GDA (OGDA) [19, 14]
▶ Reflected-Forward-Backward-Splitting (RFBS) [4]

◦ EG and OGDA are approximations of the PPM
▶ zk+1 = zk − αV (zk).
▶ zk+1 = zk − αV (zk+1).
▶ zk+1 = zk − αV (zk − αV (zk)).
▶ zk+1 = zk − α[2V (zk)− V (zk−1)].
▶ zk+1 = zk − αV (2zk − zk−1).
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Where do the algorithms converge?

◦ Recall: Given minx∈X maxy∈Y Φ(x, y), define V (z) = [∇xΦ(x, y),−∇yΦ(x, y)] with z = [x, y].

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

▶ U(z, ζ) is a bias term,

▶ We often have unbiasedness: EU(z, ζ) = 0,

▶ The bias term can have bounded moments,

▶ We often have bounded variance: P (∥U(z, ζ) ∥ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk − αkV (zk, ζk).

The dessert section in the buffet of negative results: [10]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.
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Minimax is more difficult than just optimization [10]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [2].

▶ For optimization, {attracting ICT} ≡ {solutions}

▶ For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + ϵϕ(x), ϕ(x) =
1
2

x2 −
1
4

x4
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◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+ϕ(y)−ϕ(x), ϕ(u) =
1
4

u2−
1
2

u4+
1
6

u6

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Stable critical point 6.4

4.8

3.2

1.6

0.0

1.6

3.2

4.8

6.4

8.0

Challenges in Robust Machine Learning | Volkan Cevher; volkan.cevher@epfl.ch Slide 22/ 37



Minimax is more difficult than just optimization [10]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [2].

▶ For optimization, {attracting ICT} ≡ {solutions}

▶ For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + ϵϕ(x), ϕ(x) =
1
2

x2 −
1
4
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◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+ϕ(y)−ϕ(x), ϕ(u) =
1
4
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When do the algorithms converge?

Assumption (weak Minty variational inequality)
For some ρ ∈ R, weak MVI implies

⟨V (z), z− z⋆⟩ ⩾ ρ∥V (z)∥2, for all z ∈ Rn. (4)

◦ A variant EG+ converges when ρ > − 1
8L

▶ Diakonikolas, Daskalakis, Jordan, AISTATS 2021.
◦ It still cannot handle the examples of [10].

z⋆z

−V(z)

Figure: The operator V (z) is allowed to point away from
the solution by some amount when ρ is negative.

◦ Complete picture under weak MVI (ICLR’22 and ’23)
▶ Pethick, Lalafat, Patrinos, Fercoq, and Cevher.
▶ constrained and regularized settings with ρ > − 1

2L

▶ matching lower bounds
▶ stochastic variants handling the examples of [10]
▶ adaptive variants handling the examples of [10]
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GANs with SEG+ [17]

Figure: A performance comparison of GAN training by Adam, EG with stochastic gradients, and SEG+.
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Robustness of the worst-performing class [16]
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Figure: Robust test accuracy of (a) Empirical Risk Minimization and (b) the class focused online learning.

Code: https://github.com/LIONS-EPFL/class-focused-online-learning-code

Challenges in Robust Machine Learning | Volkan Cevher; volkan.cevher@epfl.ch Slide 25/ 37

https://github.com/LIONS-EPFL/class-focused-online-learning-code


Out of the frying pan into the fire
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Original Formulation of Adversarial Training (I)

minx E

 max
δ:∥δ∥≤ϵ

L(x, a + δ, b)


which loss L?
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Original Formulation of Adversarial Training (II)

minx E

 max
δ:∥δ∥≤ϵ

L01(x, a + δ, b)


minx E

 max
δ:∥δ∥≤ϵ

LCE(x, a + δ, b)
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Surrogate-based optimization for Risk Minimization

E [L01(x⋆, a, b)] ≤ minx E [LCE(x, a, b)]
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Adversary maximizes an upper bound (I)

L01(x, a + δ⋆, b) ≤ max
δ:∥δ∥≤ϵ

LCE(x, a + δ, b)
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Adversary maximizes an upper bound (II)
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Why maximizing cross-entropy leads to weak adversaries

+

+

=

=

  🐶    🐱   🐸   🤡
(.49, .51,    0,    0)

(.26, .24,  .25,  .25)

🐶

🐶
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Adversary’s problem can be “solved” without using surrogates

Theorem (Reformulation of the Adversary’s problem)

δ⋆ ∈ arg max
δ:∥δ∥≤ϵ

max
j,b

hx(a + δ)j − hx(a + δ)b ⇒

δ⋆ ∈ arg max
δ:∥δ∥≤ϵ

L01(x, a + δ, b)
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Bilevel Optimization [Robey,∗ Latorre,∗ Pappas, Hassani, Cevher(2023)]1

◦ Best targeted attack (BETA) optimization formulation:

min
x∈x

1
n

n∑
i=1

LCE(x, ai + δ⋆
i,j⋆, bi)

such that δ⋆
i,j ∈ arg max

δ: ∥δ∥≤ϵ
hx(ai + δ)j − hx(ai + δ)bi

j⋆ ∈ arg max
j∈[K]−{bi}

hx(ai + δi,j⋆)j − hx(ai + δi,j⋆)bi

1https://infoscience.epfl.ch/record/302995 or https://tinyurl.com/33yup77v
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Practical Consequences of the Bilevel Formulation (I)

Figure: Learning curves of PGD10-AT (Left) and BETA10-AT

(Right). Robust accuracy estimated with PGD20
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Practical Consequences of the Bilevel Formulation (I)

Training
algorithm

Test accuracy

Clean BETA10 APGD

Best Last Best Last Best Last

FGSM 81.96 75.43 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 44.31 40.97 43.34 41.33
MART10 78.80 77.20 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 46.91 45.90 45.27 45.25

Table 1: Estimated `1 robustness (robust test accuracy). BETA+RMSprop (ours) vs APGD-targeted
(APGD-T) vs AutoAttack (AA). CIFAR-10. BETA and APGD-T use 30 iterations + single restart.
✏ = 8/255. AA uses 4 different attacks with 100 iterations and 5 restarts.

Model BETA APGD-T AA BETA/AA gap Architecture

Wang et al. [53] 70.78 70.75 70.69 0.09 WRN-70-16
Wang et al. [53] 67.37 67.33 67.31 0.06 WRN-28-10
Rebuffi et al. [54] 66.75 66.71 66.58 0.17 WRN-70-16
Gowal et al. [55] 66.27 66.26 66.11 0.16 WRN-70-16
Huang et al. [56] 65.88 65.88 65.79 0.09 WRN-A4
Rebuffi et al. [54] 64.73 64.71 64.64 0.09 WRN-106-16
Rebuffi et al. [54] 64.36 64.27 64.25 0.11 WRN-70-16
Gowal et al. [55] 63.58 63.45 63.44 0.14 WRN-28-10
Pang et al. [57] 63.38 63.37 63.35 0.03 WRN-70-16

as RobustBench [27, 36]. In brief, AutoAttack comprises a collection of four disparate attacks:248

APGD-CE, APGD-T, FAB, and Square Attack. AutoAttack also involves several heuristics, including249

multiple restarts and variable stopping conditions. In Table 1, we compare the performance of the top-250

performing models on RobustBench against AutoAttack, APGD-T, and BETA with RMSprop. Both251

APGD-T and BETA used thirty steps, whereas we used the default implementation of AutoAttack,252

which runs for 100 iterations. We also recorded the gap between AutoAttack and BETA. Notice253

that the 30-step BETA—a heuristic-free algorithm derived from our bilevel formulation of AT—254

performs almost identically to AutoAttack, despite the fact that AutoAttack runs for significantly more255

iterations and uses five restarts, which endows AutoAttack with an unfair computational advantage.256

That is, excepting for a negligible number of samples, BETA matches the robustness estimate of257

AutoPGD-targeted and AutoAttack, despite using an off-the-shelf optimizer.258

6 Related work259

Robust overfitting. Several recent papers (see, e.g., [26, 54, 58–61]) have attempted to explain and260

resolve robust overfitting [34]. However, none of these works point to a fundamental limitation of261

adversarial training as the cause of robust overfitting. Rather, much of this past work has focused262

on proposing heuristics for algorithms specifically designed to reduce robust overfitting, rather than263

to improve adversarial training. In contrast, we posit that the lack of guarantees of the zero-sum264

surrogate-based AT paradigm [20] is at fault, as this paradigm is not designed to maximize robustness265

8

Figure: Adversarial performance on CIFAR-10.
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Take home messages

◦ Even the simplified view of robust & adversarial ML is challenging

◦ min-max-type has spurious attractors with no equivalent concept in min-type

◦ Not all step-size schedules are considered in our work: Possible to “converge” under some settings

◦ Other successful attempts1 consider “mixed Nash” concepts2

◦ Existing theory and methods for adversarial training is wrong!

... SAM too...

1Y-P. Hsieh, C. Liu, and V. Cevher, “Finding mixed Nash equilibria of generative adversarial networks,” International Conference on Machine Learning, 2019.
2K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics,” NeurIPS, 2020.
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