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Feature/variable selection in supervised learning settings

• Given sequence of data {(X (i),Y (i)}ni=1 where X is composed
of p features

X = (X1,X2, . . . ,Xp)

• Question: Which features of X actually influence the outcome
Y ?



Feature/variable selection

• Create better model. Reduce computational cost.

• Prediction accuracy

• Model explainability



Feature selection: modern machine learning

• Deep learning: double descent phenomenon

• Big Models: PaLM (540B parameters), ViT-G/14 (2B)

• Model explainability has become increasingly more important

Belkin, Mikhail, et al. Proceedings of the National Academy of Sciences 116.32 (2019): 15849-15854.



Looking through the black box

• some AIs were found to be picking up on the text font that
certain hospitals used to label the scans

• patients scanned while lying down were more seriously ill→
the AI learned to predict serious covid risk from a person’s
position

• some dataset contained chest scans of healthy children as
negative examples → the AIs learned to identify kids

Roberts, Michael, et al. Nature Machine Intelligence 3.3 (2021): 199-217.



Looking through the black box

Google Vision (2020).



Research: Integrated explainable AI

Joint works with Lam Ho (Dalhousie) and Cuong Nguyen (Florida International University)



Some other learning contexts

• Predicting walking activity post-stroke*
• features: clinical measures of physical function, other clinical

and demographic variables
• question: which test/practice should be pursued for

rehabilitation?

• Stem-cell origin of colon cancer
• features: gene expression data from patients with/without

different mutations
• question: which component of a biological pathway causes the

difference in the behavior of normal/cancer cells?

*Miller, A. E., Russell, E., Reisman, D. S., Kim, H. E., & Dinh, V. (2022). A machine learning approach to
identifying important features for achieving step thresholds in individuals with chronic stroke. Plos One, 17(6),
e0270105.



Question: Can we do feature selection with deep neural
networks?



Linear feature selection and Adaptive Lasso



Linear model and Lasso

• Linear model

Y = β(0) + β(1)X (1) + β(2)X (2) + . . . β(p)X (p) + ϵ

• If β(j) = 0, then the feature X (j) has no influence on the
output

• Lasso

β̂Lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|



Lasso’s alternative form

• Standard form

β̂Lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

|β(j)|

• Alternative form

min
β

∥Y− Xβ∥22

subject to

p∑
j=1

|β(j)| ≤ s



Lasso vs ridge regression



When Lasso fails (p = 2)

• correlated features

• strong non-linearity



Irrepresentable condition

• Necessary condition for Lasso’s selection consistency: There
exists some sign vector s such that

|C21C
−1
11 s| ≤ 1

where C is the (block) covariance matrix of X (1 and 2
correspond to the group of significant features and
insignificant ones, respectively)

Zhao, Peng, and Bin Yu. ”On model selection consistency of Lasso.” The Journal of Machine Learning Research 7
(2006): 2541-2563.



Irrepresentable condition

• Classical example: Covariance matrix
1 −a −a b
−a 1 −a b
−a −a 1 b

b b b 1


for appropriate a, b > 0

• In high-dimension, pathologies happen when there are strong
collinearity with“conflicting” correlational relations among the
variables



Adaptive Lasso

• Adaptive Lasso

β̂Adaptive−Lasso = min
β

∥Y− Xβ∥22 + λ

p∑
j=1

1

|β̂(j)|γ
|β(j)|

where β̂ is a base estimator and γ > 0

• Idea: If β̂ is consistent with quantifiable convergence rate,
then Adaptive Lasso is selection consistent with appropriate
regularization

Zou, Hui. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101.476
(2006): 1418-1429.



Consistent feature selection for analytic deep networks

Dinh and Ho. Consistent feature selection for analytic deep neural networks. Advances in Neural Information
Processing Systems 33 (2020): 2420-2431.

Ho and Dinh. Searching for minimal optimal neural networks. Statistics & Probability Letters (2022): 109353.



neural network = linear model + non-linear activation

If the weight of an input is zero, then it does nor influence the
output node



Mathematical formulation

Given an input x that belongs to be a bounded open set X ⊂ Rd0 ,
the output map fα(x) with α = (P, p,S ,Q, q) is defined by

• input layer:
h1(x) = P · x + p

• hidden layers:

hj(x) = ϕj−1(S , hj−1(x), hj−2(x), . . . , h1(x))

• output layer:

fα(x) = hL(x) = Q · hL−1(x) + q

where ϕ1, ϕ2, . . . , ϕL−2 are analytic functions parameterized by the
hidden layers’ parameter S .



Model-based settings for regression

Assumption

Data {(Xi ,Yi )}ni=1 are independent and identically distributed
(i.i.d ) samples generated from P∗

X ,Y such that

• the input density pX is positive and continuous on its domain
X and

• Yi = fα∗(Xi ) + ϵi where ϵi ∼ N (0, σ2)

Limit setting: the network is assumed to be fixed, while n → ∞.



Model-based settings for regression



The set of risk minimizers

• Define
R(α) = E(X ,Y )∼P∗

X ,Y
[(fα(X )− Y )2]

and
H∗ = {α : R(α) = R(α∗)}

• A “good” estimator will converge to H∗ when n → ∞.

• Under appropriate regularity conditions, we also have

H∗ = {α ∈ W : fα = fα∗}



Group Lasso for neural networks

• parameters correspond to an input node are grouped together

• only parameters of the input layer should be penalized



Group Lasso

• A simple GL estimator for neural networks is thus defined by

α̂n := argmin
α=(u,v ,b1,b2,S ,Q,q)

1

n

n∑
i=1

ℓ(α,Xi ,Yi ) + λnL(α)

where

L(α) =

d0∑
k=1

∥u[:,k]∥

ℓ(α, x , y) = (y − fα(x))
2 is the square-loss, λn > 0, ∥ · ∥ is the

standard Euclidean norm and u[:,k] is the vector of parameters
associated with k-th input.

• Group Lasso (and its variants) are very popular in the field.

• No theoretical support in terms of feature selection



Example: Boston housing dataset

• Dataset consists of 506 observations of house prices and 13
predictors

• 13 random Gaussian noise predictors are added

• Question: Can Group Lasso eliminate the noise predictors?



Failure of Group Lasso



Adaptive Group Lasso

• Adaptive group Lasso (GL+AGL)

α̃n := argmin
α

1

n

n∑
i=1

(Yi − fα(Xi ))
2+ζn

(
d0∑
k=1

1

∥û[:,k]n ∥γ
∥u[:,k]∥

)
,

where ûn denotes the Group Lasso estimate.
• Hope:

• GL estimation of a significant input stay away from zero
• GL estimation of an insignificant input converges to zero with

a quantifiable convergence rate



Geometric properties of shallow and irreducible neural networks



Shallow networks with tanh activation



Unidenitifiability

For tanh activation function, the input-output map of a neural
network does not change if

• two hidden nodes are swapped

• the weights associated with a hidden node (inward and
outward) are multiplied by -1

• a node is cloned and their outward weights are divided by 2



Irreducible network with one hidden layer

A feed-forward model fu,v ,w ,b1,b2 is irreducible if

(i) (u[i ,:], v [i ,:]) ̸= 0 and w [i ] ̸= 0 for all i .

(ii) For any two different indices i and j

(u[i ,:], v [i ,:], b
[i ]
1 ) ̸= ±(u[j ,:], v [j ,:], b

[j]
1 ).

Theorem
For an “irreducible” single-output feed-forward neural network with
one hidden layer and hyperbolic tangent activation function,
functionally equivalence are compositions of node interchange and
sign flip equivalence.

Kurkova and Kainen. Neural Computation 6.3 (1994): 543-558



The set of risk minimizers

Assumption

Data {(Xi ,Yi )}ni=1 are independent and identically distributed
(i.i.d ) samples generated from P∗

X ,Y such that

• the input density pX is positive and continuous on its domain
X and

• Yi = fα∗(Xi ) + ϵi where ϵi ∼ N (0, σ2)

Recall that

H∗ = {α : R(α) = R(α∗)} = {α ∈ W : fα = fα∗}



Geometry of H∗



Geometry of the risk function near H∗

Lemma (Information bound)

For any α ∈ H∗, there exist c2(α) > 0 and a neighborhood Uα

such that
R(β)− R(α) ≥ c2∥β − α∥2

for all β ∈ Uα.



Uncertainty bound

Lemma
For any δ > 0, there exist c1(δ) > 0 such that∣∣∣∣∣1n

n∑
i=1

(Yi − fα(Xi ))
2 − R(α)

∣∣∣∣∣ ≤ c1
log n√

n
, ∀α ∈ W.

with probability at least 1− δ.



Convergence of Group Lasso

Theorem
Assuming that λn → 0. For any δ > 0, there exist Cδ > 0, Nδ > 0
such that for all n ≥ Nδ,

min
α∈H∗

∥α̂n − α∥ ≤ Cδ

(
log n√

n
+ λ2

n

)1/2

with probability at least 1− δ.



Feature selection consistency of Adaptive Group Lasso

Theorem
For γ > 0, µ ∈ (0, γ/4) and ζn = Ω(n−γ/4+µ), then GL+AGL is
consistent for feature selection.
That is, for any δ > 0, there exists Nδ such that for n > Nδ,

• (consistently recovers the significant features)

ũ
[:,k]
n ̸= 0, ∀k = 1, . . . , ns , and

• (consistently eliminates the insignificant features)

ṽ
[:,k]
n = 0, ∀k = 1, . . . , nz

with probability at least 1− δ.



Geometric properties of deep neural networks risk functions



Unidenitifiability: deep networks

For tanh activation function, the input-output map of a neural
network does not change if

• two hidden nodes are swapped

• the weights associated with a hidden node (inward and
outward) are multiplied by -1

• a node is cloned and the outward weights are adjusted
accordingly

A bigger problem: are they the only sources of unidentifiability of
the networks?



Unidenitifiability

A bigger problem: are they the only sources of unidentifiability of
the networks?
→ no definite answer

Existing results (for tanh activation and irreducible networks)

• There is no other equivalent graph transformation outside the
span of node interchange and sign flip

• Generically, functionally equivalence are compositions of node
interchange and sign flip equivalence.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. Neural Computation, 5(6):910–927, 1993.
Charles Fefferman and Scott Markel. Advances in Neural Information Processing Systems, pages 335–342, 1994



Unidenitifiability: deep networks

• Existing results cannot be used for statistical consistency

• The model is degenerate when the data-generating network
α∗ is not irreducible

• H∗ is a high-dimensional algebraic set (that we cannot fully
characterize)

• the Hessian of the risk function at an optimum is singular



Characterizing the set of risk minimizers

Lemma

(i) There exists c0 > 0 such that ∥u[:,k]α ∥ ≥ c0 for all α ∈ H∗ and
k = 1, . . . , ns (i.e., for significant features).

(ii) For α ∈ H∗, the vector ϕ(α), obtained from α be setting its
insignificant components to zero, also belongs to H∗.

Note: the base estimator must be Group Lasso to kill off the
insignificant components



Lojasiewicz’s inequality

Lemma
There exist c2, ν > 0 and such that R(β)− R(α∗) ≥ c2d(β,H∗)ν

for all β ∈ W.

Note:

• generically, ν = 2

• when H∗ is finite, this reduces to the standard Taylor’s
inequality around a local optimum, with ν = 2 if the Hessian
matrix at the optimum is non-singular



Convergence of Group Lasso

Theorem
For any δ > 0, there exist Cδ,C

′ > 0 and Nδ > 0 such that for all
n ≥ Nδ,

d(α̂n,H∗) ≤ Cδ

(
λ
ν/(ν−1)
n +

log n√
n

)1/ν

and

∥v̂n∥ ≤ 4c1
log n

λn
√
n
+ C ′ d(α̂n,H∗)



Feature selection consistency of GL+AGL

Theorem
Let γ > 0, ϵ > 0, λn ∼ n−1/4, and ζn = Ω(n−γ/(4ν−4)+ϵ), then the
GroupLasso+AdaptiveGroupLasso is feature selection consistent.



GL vs. GL+AGL



Some open questions



Characterizing equivalent networks

• Known: shallow networks with tanh activation

• Partially known: deep networks with tanh activation

• ReLU network: open



Morse-Bott properties around risk minimizers

• Morse-Bott: Hessian at local minimizers are non-degenerate in
the normal direction to the level set

• For matrix factorization using shallow and linear networks
with Dropout, the risk function is Morse-Bott around global
minimizers

• It has been conjectured that the risk function for ReLU
network is also Morse-Bott.

Mianjy, Arora, and Vidal. International Conference on Machine Learning (ICML 2018)

Poggio, T., A. Banburski, and Q. Liao (2020). Proceedings of the National Academy of Sciences 117(48),
30039–30045.



Morse-Bott properties around risk minimizers

Lemma
If g is Morse–Bott function on an open neighborhood U of a
critical point p in a Banach space, then it obeys a first Lojasiewicz
inequality with the (optimal) exponent 2.
That is, there exists constant C > 0 and a neighborhood V ⊂ U of
p such that

∥g(x)− g(H)∥ ≥ C dist(x ,H)2 ∀x ∈ V

Feehan, P. (2019). Resolution of singularities and geometric proofs of the Lojasiewicz inequalities. Geometry &
Topology 23(7), 3273–3313.
Feehan, P. M. (2020). On the Morse–Bott property of analytic functions on Banach spaces with Lojasiewicz
exponent one half. Calculus of Variations and Partial Differential Equations 59(2), 1–50.



Morse-Bott properties around risk minimizers

• Morse-Bott: Hessian at local minimizers are non-degenerate in
the normal direction to the level set

• For shallow, irreducible, tanh networks, the global minimizers
of R(α) are isolated with positive-definite Hessian

• Conjecture: For reducible generating networks, the risk
function is Morse-Bott around local minimizers and the
Lojasiewicz exponent of the risk function is optimal



Other directions

• High-dimensional setting (n ≪ p)

• ReLU and other non-analytic activations

• Local feature importance

• Conjecture: Group Lasso is inconsitent for neural networks


