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Computational Optimisation

minimise
x∈C

φ(x)

C ⊂ Rm

minimise
x∈Rm

φ(x) + δC(x),

where

δC(x) =

{
0 x ∈ C,
+∞ otherwise.

Efficient solvers for (strongly) convex cost
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Computational Optimisation

minimise
x∈C

φ(x)

C ⊂ Rm

Algorithm Principles: Given xk

1. Find a (good) descent direction dk at xk (expensive)

φ′(xk; dk) < 0

2. Follow the descent direction as far as possible
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A nonconvex optimization problem

We will focus on the nonconvex optimization problem

(P) minimize
x∈Rm

g(x)− h(x) =: φ(x),

where g, h : Rm → R ∪ {+∞} are convex functions with

inf
x∈Rm

φ(x) > −∞.

The objective function φ is a DC function, i.e., a difference of convex
functions.

The following assumptions are made:

WLOG g and h are strongly convex with modulus ρ > 0
(otherwise, take g̃(x) := g(x) + ρ

2 ‖x‖
2 and h̃(x) := h(x) + ρ

2 ‖x‖
2).

g is continuously differentiable on an open set containing dom h.
h is subdifferentiable at every point in dom h; i.e., ∂h(x) 6= ∅ for all
x ∈ dom h.
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An example in Biochemistry

+

H2 O2 H2O

2 H2︸︷︷︸
c1

+ O2︸︷︷︸
c2


 2 H2O︸︷︷︸
c3

(c1, c2, c3) ∈ R3
>0 denotes molecular species concentrations.

The net reaction rate quantifies the rate of a chemical reaction:

net reaction rate = kf c2
1c2 − krc2

3

kf , kr ∈ R≥0 are the kinetic parameters.
The stoichiometric matrices are defined as

F :=

 2
1
0

 and R :=

 0
0
2


The dynamical equation for time evolution of molecular species is

dc
dt

= (R− F)(kf c2
1c2 − krc2

3)

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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A function arising from a biochemical network

Consider a biochemical network with:
m molecular species, n reversible elementary reactions;
F,R ∈ Zm×n

≥0 denote the forward and reverse stoichiometric
matrices;
We assume constant non-negative elementary kinetic
parameters kf , kr ∈ Rn

≥0;
c ∈ Rm

>0 is the vector of molecular species concentrations;
The dynamical equation of molecular species concentration is

dc
dt

= (R− F)
(

exp(ln(kf ) + FT ln(c))− exp(ln(kr) + RT ln(c))
)
;

If we transform the right-hand side into logarithmic scale, we get

f (x) := [F,R] exp(p + [F,R]Tx)− [R,F] exp(p + [F,R]Tx),

where x := ln(c), p := [ln(kf )
T , ln(kr)

T ]T and [·, ·] is the horizontal
concatenation operator.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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A simple biochemical network

A

B C

f (x) := ([F,R]− [R,F]) exp([F,R]Tx)

F :=

 0 0 1
1 0 0
0 1 0

 and R :=

 1 0 0
0 1 0
0 0 1

 ,

Thus, for any x := (x1, x2, x3)T ∈ R3 we have

f (x) =

 2ex1 − ex2 − ex3

−ex1 + 2ex2 − ex3

−ex1 − ex2 + 2ex3

 .

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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A DC problem in biochemistry

We are interested in finding zeroes of

f (x) := [F,R] exp(p + [F,R]Tx)− [R,F] exp(p + [F,R]Tx).

Setting

p(x) := [F,R] exp(p + [F,R]Tx) and c(x) := [R,F] exp(p + [F,R]Tx)

we have an equivalent system of equations

p(x) = c(x) x ∈ Rm (1)

Solving (1) is equivalent to minimising the function

‖p(x)− c(x)‖2 = 2
(
‖p(x)‖2 + ‖c(x)‖2)− ‖p(x) + c(x)‖2

All the components of p(x) and c(x) are nonnegative convex
functions. Hence, g(x) := 2

(
‖p(x)‖2 + ‖c(x)‖2

)
and

h(x) := ‖p(x) + c(x)‖2 are nonnegative convex functions.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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First-order necessary optimality condition and critical points

(P) minimize
x∈Rm

φ(x) := g(x)− h(x), with g smooth and h convex

Fact (First-order necessary optimality condition)

If x∗ ∈ domφ is an optimal solution of (P)⇒ ∂h(x∗) = {∇g(x∗)} .

Definition

We say that x is a critical point of (P) if ∇g(x) ∈ ∂h(x).

Example

Consider the DC function φ : Rm → R defined
for x ∈ Rm by

φ(x) :=

(
‖x‖2 +

m∑
i=1

xi

)
−

(
m∑

i=1

|xi|

)
.

Then, φ has 2m critical points (any x ∈ {−1, 0}m),
and only one point x∗ := (−1, . . . ,−1) satisfying
∂h(x∗) = {∇g(x∗)}, which is the global minimum
of φ.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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Previous works: linearizing the nonconvex part
Fukushima–Mine’81

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

In 1981 Fukushima and Mine introduced two algorithms to
minimize a composite function g− h, where g is (strictly) convex
(possibly nonsmooth) and h is smooth (possibly nonconvex).

If x? is a local minimum⇒ ∇h(x?) ∈ ∂g(x?) (critical point).

ALGORITHM 1 (FM’81): Fix some parameters α > 0 and 0 < β < 1.
Let x0 be any initial point and set k := 0.

1. Find the solution yk of

(Pk) minimize
y∈Rm

g(y)− 〈∇h(xk), y〉.

and set dk := yk − xk. If dk = 0⇒ stop and return xk.
2. (Armijo - backtracking) Set λk := 1.

while φ(xk + λkdk) > φ(xk)− αλk‖dk‖2 do λk := βλk.
3. Set xk+1 := xk + λkdk, k := k + 1 and go to Step 1.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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Previous works: linearizing the nonconvex part
Le Thi–Pham Dinh–El Bernoussi’86: DC algorithm

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

In 1986 Pham Dinh and Souad introduced an algorithm to
minimize a DC functions g− h, where g and h are both convex
(possibly nonsmooth). This was further developed by Pham
Dinh, Le Thi and their collaborators.

If x? is a local minimum⇒ ∂h(x?) ⊂ ∂g(x?)

⇒ ∂h(x?)∩∂g(x?) 6= ∅.

ALGORITHM 2 (DCA): Let x0 be any initial point and set k := 0.

1. Choose uk ∈ ∂h(xk)

⇔ xk ∈ (∂h)−1(uk) = ∂h∗(uk)⇔ uk is a solution of
(Dk) minimize

u∈Rm
h∗(u)− 〈xk, u〉.

2.

(Pk) minimize
y∈Rm

g(y)− 〈y, uk〉.
3. If yk = xk ⇒ stop. Otherwise, set xk+1 := yk, k := k+1 and go to Step 1.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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FM’81 and DCA when h is smooth?
ALGORITHM 2 (DCA): Let x0 be any initial point and set k := 0.

1. Find the solution yk of
(Pk) minimize

y∈Rm
g(y)− 〈∇h(xk), y〉.

2. If yk = xk ⇒ stop. Otherwise, set xk+1 := yk, k := k+1 and go to Step 1.

ALGORITHM 1 (FM’81): Fix some parameters α > 0 and 0 < β < 1.
Let x0 be any initial point and set k := 0.

1. Find the solution yk of
(Pk) minimize

y∈Rm
g(y)− 〈∇h(xk), y〉.

and set dk := yk − xk. If dk = 0⇒ stop and return xk.
2. (Armijo - backtracking) Set λk := 1.

while φ(xk + λkdk) > φ(xk)− αλk‖dk‖2 do λk := βλk.
3. Set xk+1 := xk + λkdk = λyk + (1− λ)xk, k := k + 1 and go to Step 1.

Proposition

If g and h are strongly convex with constant ρ > 0,
then

φ(yk) ≤ φ(xk)− ρ‖dk‖2 ∀k ∈ N.

⇒ If 0 < α ≤ ρ, the
iterations of FM’81 and
DCA coincide.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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FM’81 and DCA

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

uk ∈ ∂h(xk), yk ∈ ∂g∗(uk)

FM’81 is based on the fact that dk := yk − xk is a descent
direction at xk: it holds φ′(xk; dk) ≤ −ρ‖dk‖2.
DCA works thanks to

φ(yk) = (g− h)(yk) ≤ (h∗ − g∗)(uk)−
ρ

2
‖dk‖2 ≤ φ(xk)− ρ‖dk‖2.

Advantages: Simplicity, works well in practice, does not require
any line search.
Drawbacks: It can be very slow. Can it be accelerated?
Yes, if g is smooth, thanks to the fact that

φ′(yk; dk) ≤ −ρ‖dk‖2.
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DCA can be slow and get easily trapped by critical points

Example (Revisited)

Consider the DC function φ : R2 → R defined as φ := g− h, where

g(x) =
3
2
(
x2

1 + x2
2

)
+ x1 + x2 and h(x) = |x1|+ |x2|+

1
2
(
x2

1 + x2
2

)
.

φ′(y0; d0) ≤ −ρ‖d0‖2
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The Boosted DC Algorithm

φ(x) := g(x)− h(x), uk ∈ ∂h(xk), yk ∈ ∂g∗(uk)

Proposition
If g is differentiable, then φ′(yk; dk) ≤ −ρ‖dk‖2.

Proof
Pick any v ∈ ∂h(yk) 6= ∅. The one-sided directional derivative φ′(yk; dk) is given by

φ′(yk; dk) = lim
t↓0

g(yk + tdk)− g(yk)

t
− lim

t↓0

h(yk + tdk)− h(yk)

t

≤ 〈∇g(yk), dk〉 − 〈v, dk〉 ,

by convexity of h. As yk is the solution of (Pk), we have

∇g(yk) = uk ∈ ∂h(xk).

Since ∂h is strongly monotone with constant ρ and v ∈ ∂h(yk),

〈uk − v, xk − yk〉 ≥ ρ‖xk − yk‖2 = ρ‖dk‖2.

Hence
φ′(yk; dk) ≤ 〈∇g(yk)− v, dk〉 = 〈uk − v, yk − xk〉 ≤ −ρ‖dk‖2. �
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The Boosted DC Algorithm

BDCA (Boosted DC Algorithm)

Fix α > 0 and 0 < β < 1. Let x0 be any initial point and set k := 0.
1 Select uk ∈ ∂h(xk) and find the unique solution yk of the problem

(Pk) minimize
x∈Rm

g(x)− 〈uk, x〉.

2 Set dk := yk − xk. If dk = 0⇒ stop and return xk.
3 Choose any λk ≥ 0. Set λk := λk.

while φ(yk + λkdk) > φ(yk)− αλ2
k‖dk‖2 do λk := βλk.

4 Set xk+1 := yk + λkdk, k := k + 1, and go to Step 1.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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DCA vs BDCA
Example (Revisited)

Consider the DC function φ : R2 → R defined as φ := g− h, where

g(x) =
3
2

(
x2

1 + x2
2

)
+ x1 + x2 and h(x) = |x1|+ |x2|+

1
2

(
x2

1 + x2
2

)
.
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2

?(y0 + 6d0)

(−1,−1) (−1, 0) (0,−1) (0, 0)
DCA 249,763 249,841 250,204 250,192

BDCA 996,104 1,922 1,974 0

Table: For one million random starting points in [−1.5, 1.5]2, we count the
sequences converging to each of the four stationary points.
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Why to restrict to the case where g is differentiable?
Example (Failure of BDCA when g is not differentiable)

Consider the following modification of the previous example

g(x) = −
5
2

x1 + x2
1 + x2

2 + |x1|+ |x1| and h(x) =
1
2

(
x2

1 + x2
2

)
,

so h is differentiable but g is not. Let x0 = (0.5, 1). The point generated by DCA is
y0 = (1, 0) and d0 = y0 − x0 = (0.5,−1) is not a descent direction for φ at y0:

-0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

DCA

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

?(y0 + 6d0)

Proposition

Let φ = g− h, where g : R→ R and h : R→ R are convex and h is differentiable.
If 0 6∈ ∂Cφ(yk), then φ′(yk; yk − xk) < 0.
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Convergence of BDCA

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

Our convergence results follow the ideas from

H. Attouch, J. Bolte: On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features. Math. Program. 116
(2009), 5–16.

which in turn were adapted from Łojasiewicz’s original ideas.

Theorem

For any x0 ∈ Rm, either BDCA returns a critical point of (P) or it gen-
erates an infinite sequence such that the following holds.

1 φ(xk) is monotonically decreasing and convergent to some φ∗.

2 Any limit point of {xk} is a critical point of (P). If in addition, φ is
coercive then there exits a subsequence of {xk} which converges
to a critical point of (P).

3
∑+∞

k=0 ‖dk‖2 < +∞. Further, if there is some λ such that λk ≤ λ
for all k, then

∑+∞
k=0 ‖xk+1 − xk‖2 < +∞.
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Outline

1 Introduction

2 The Boosted DC Algorithm
The algorithm: Adding a line search step to DCA
Convergence under the Kurdyka–Łojasiewicz property

3 Numerical experiments
A DC problem in biochemistry
The Minimum Sum-of-Squares Clustering Problem
The Multidimensional Scaling Problem

4 References
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The Kurdyka–Łojasiewicz property

Definition
Let f : Rm → R be a locally Lipschitz function. We say that f satisfies
the strong Kurdyka–Łojasiewicz inequality at x∗ ∈ Rm if there exist
η ∈ ]0,+∞[, a neighborhood U of x∗, and a concave function
ϕ : [0, η]→ [0,+∞[ such that:

1 ϕ(0) = 0;
2 ϕ is of class C1 on ]0, η[;
3 ϕ′ > 0 on ]0, η[;
4 for all x ∈ U with f (x∗) < f (x) < f (x∗) + η we have

ϕ′(f (x)− f (x∗)) dist (0, ∂Cf (x)) ≥ 1.

Here ∂Cf stands for the Clarke subdifferential

∂Cf (x) = co
{

lim
x→x, x 6∈Ωf

∇f (x)

}
,

where co stands for the convex hull and Ωf denotes the set of
Lebesgue measure zero where f fails to be differentiable.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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Convergence under the Kurdyka–Łojasiewicz property

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

Theorem (Convergence)

Let {xk} be the sequence generated by the BDCA. Suppose that {xk}
has a cluster point x∗, that ∇g is locally Lipschitz around x∗ and that φ
satisfies the strong Kurdyka–Łojasiewicz inequality at x∗.
Then {xk} converges to x∗, which is a critical point of (P).

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

Theorem (Convergence)

Let {xk} be the sequence generated by the BDCA. Suppose that {xk}
has a cluster point x∗, that ∇g is locally Lipschitz around x∗ and that φ
satisfies the strong Kurdyka–Łojasiewicz inequality at x∗.
Then {xk} converges to x∗, which is a critical point of (P).

Proof
Technical but “standard”.
λk can be zero or unbounded!
We either need Clarke’s subdifferential or to assume that −φ
satisfies the Kurdyka–Łojasiewicz inequality:

∇g(yk)−∇g(xk) ∈ ∂h(xk)−∇g(xk) = ∂C (−φ(xk)) = −∂Cφ(xk)
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Convergence under the Kurdyka–Łojasiewicz property

(P) minimize
x∈Rm

φ(x) := g(x)− h(x)

Theorem (Convergence)

Let {xk} be the sequence generated by the BDCA. Suppose that {xk}
has a cluster point x∗, that ∇g is locally Lipschitz around x∗ and that φ
satisfies the strong Kurdyka–Łojasiewicz inequality at x∗.
Then {xk} converges to x∗, which is a critical point of (P).

Theorem (Rate)

Suppose that the sequence {xk} generated by the BDCA has the limit
point x∗, that ∇g is locally Lipschitz continuous around x∗ and φ satis-
fies the strong Kurdyka–Łojasiewicz inequality at x∗ with ϕ(t) = Mt1−θ

for some M > 0 and 0 ≤ θ < 1. Then:
1 if θ = 0, then {xk} converges in a finite number of steps to x∗;

2 if θ ∈
]
0, 1

2

]
, then {xk} converges linearly to x∗;

3 if θ ∈
] 1

2 , 1
[
, then ∃η > 0 s.t. ‖xk − x∗‖ ≤ ηk−

1−θ
2θ−1 for all large k.
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How to choose the trial step size λk?
BDCA (Boosted DC Algorithm)

Fix α > 0 and 0 < β < 1. Let x0 be any initial point and set k := 0.
1 Select uk ∈ ∂h(xk) and yk ∈ ∂g∗(uk).
2 Set dk := yk − xk. If dk = 0⇒ stop and return xk.
3 Choose any λk ≥ 0. Set λk := λk.

while φ(yk + λkdk) > φ(yk)− αλ2
k‖dk‖2 do λk := βλk.

4 Set xk+1 := yk + λkdk, k := k + 1, and go to Step 1.

One possibility would be to set λk = λ for all k.

Instead, we propose:
Self-adaptive trial step size

Fix γ > 1. Set λ0 := 0. Choose some λ1 > 0 and obtain λ1 by BDCA.
For any k ≥ 2:

1 if λk−2 = λk−2 and λk−1 = λk−1 then set λk := γλk−1;
else set λk := λk−1.

2 Obtain λk from λk by the backtracking step of BDCA.

Phan Tu Vuong (University of Southampton) The Boosted Difference of Convex functions Algorithm (BDCA)
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1 Select uk ∈ ∂h(xk) and yk ∈ ∂g∗(uk).
2 Set dk := yk − xk. If dk = 0⇒ stop and return xk.
3 Choose any λk ≥ 0. Set λk := λk.

while φ(yk + λkdk) > φ(yk)− αλ2
k‖dk‖2 do λk := βλk.

4 Set xk+1 := yk + λkdk, k := k + 1, and go to Step 1.

One possibility would be to set λk = λ for all k. Instead, we propose:
Self-adaptive trial step size

Fix γ > 1. Set λ0 := 0. Choose some λ1 > 0 and obtain λ1 by BDCA.
For any k ≥ 2:

1 if λk−2 = λk−2 and λk−1 = λk−1 then set λk := γλk−1;
else set λk := λk−1.

2 Obtain λk from λk by the backtracking step of BDCA.
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Experiment 1: Finding steady states of biochemical networks

We were interested in finding a solution to the problem

minimize
x∈Rm

φ(x) := ‖p(x)− c(x)‖2

= 2
(
‖p(x)‖2 + ‖c(x)‖2

)
− ‖p(x) + c(x)‖2,

where

p(x) := [F,R] exp
(

p + [F,R]T x
)

and c(x) := [R,F] exp
(

p + [F,R]T x
)
,

and F,R ∈ Zm×n
≥0 (m molecular species, n reversible elementary reactions).

It is not difficult to prove that f is real analytic
⇒ f satisfies the Łojasiewicz property with some exponent θ ∈ [0, 1).

We can then apply BDCA to the functions

g(x) := 2
(
‖p(x)‖2 + ‖c(x)‖2

)
+
ρ

2
‖x‖2 and h(x) := ‖p(x)+c(x)‖2+

ρ

2
‖x‖2,

for any ρ > 0. Our results guarantee the convergence of the sequence
generated by BDCA, as long as the sequence is bounded.
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Finding steady states of biochemical networks
A boring table of computational results. . .

Taking ρ := 100, λk := 50 (constant), β := 0.5 and α := 0.4, we obtain:
DATA ALGORITHMS: Time Spent (seconds) RATIO (avg.)

Model Name m n BDCA DCA DCA/BDCA
min. max. avg. min. max. avg. iter. time

Ecoli core 72 94 16 26 20 68 105 87 4.9 4.4
L lactis MG1363 486 615 2926 4029 3424 14522 18212 16670 5.2 4.9
Sc thermophilis 349 444 291 553 358 1302 2004 1611 4.9 4.5
T Maritima 434 554 1333 2623 1920 5476 12559 8517 4.7 4.4
iAF692 466 546 1677 2275 1967 8337 11187 9466 5.3 4.8
iAI549 307 355 177 254 209 665 1078 913 4.9 4.4
iAN840m 549 840 3229 6939 4721 16473 28957 21413 5.0 4.5
iCB925 416 584 1831 2450 2133 7358 11465 9887 5.0 4.6
iIT341 425 504 1925 2883 2302 9434 20310 12262 5.7 5.3
iJR904 597 915 6363 9836 7623 24988 43640 33621 4.4 4.8
iMB745 528 652 2629 5091 4252 16438 25172 20269 5.0 4.8
iSB619 462 598 2407 5972 3323 8346 25468 13967 4.3 4.2
iTH366 587 713 3310 5707 4464 13613 30044 20715 5.0 4.6
iTZ479 v2 435 560 1211 2656 2216 7368 12592 10120 4.9 4.6

For each model, we selected a random kinetic parameter p ∈ [−1, 1]2n and 10 initial random points x0 ∈ [−2, 2]m.
BDCA was run 1000 iterations, DCA was run until it reached the same value obtained by BDCA.
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Finding steady states of biochemical networks
Comparison of the constant and self-adaptive trial step size strategy for BDCA

Ecoli core

L lactis M
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T Maritim

a
iAF692

iAI549
iAN840m
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time DCA

time adaptive BDCA
time DCA

time constant BDCA
time constant BDCA
time adaptive BDCA
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Applications to Biochemistry
Nature Protocols (2019)
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The Minimum Sum-of-Squares Clustering Problem

Clustering is an unsupervised technique for data analysis whose objective is
to group a collection of objects into clusters based on similarity.

Let A = {a1, . . . , an} be a finite set of points in Rm, which represent the
data points to be grouped.

The goal is to partition A into k disjoint subsets A1, . . . ,Ak, called
clusters, such that a clustering criterion is optimized.

The Minimum Sum-of-Squares Clustering criterion, one tries to minimize the
Euclidean distance of each data point to the centroid of its clusters, denoted
by X := (x1, . . . , xk) ∈ Rm×k:

minimize
X∈Rm×k

φ(X) :=
1
n

n∑
i=1

min
j=1,...,k

‖xj − ai‖2

= g(X)− h(X),

where

g(X) :=
1
n

n∑
i=1

k∑
j=1

∥∥∥xj − ai
∥∥∥2

+
ρ

2
‖X‖2, (strongly convex and smooth)

h(X) :=
1
n

n∑
i=1

max
j=1,...,k

k∑
t=1,t 6=j

∥∥∥xt − ai
∥∥∥2

+
ρ

2
‖X‖2. (strongly convex but nonsmooth).
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Experiment 2: Clustering the Spanish cities in the peninsula

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the
peninsula with more than 500 residents1.

8 6 4 2 0 2 4

36

38

40

42

44
DCA
BDCA

ai, i = 1, , 4001

1The data can be retrieved from the Spanish National Center of Geographic
Information at http://centrodedescargas.cnig.es
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Experiment 2: Clustering the Spanish cities in the peninsula

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the
peninsula with more than 500 residents1.
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Experiment 2: Clustering the Spanish cities in the peninsula
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peninsula with more than 500 residents1.
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Experiment 2: Clustering the Spanish cities in the peninsula

PROBLEM: Find a partition into 5 clusters of the 4001 Spanish cities in the
peninsula with more than 500 residents1.
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1The data can be retrieved from the Spanish National Center of Geographic
Information at http://centrodedescargas.cnig.es
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Experiment 2: Clustering the Spanish cities in the peninsula

PROBLEM: Find a partition into k clusters of the 4001 Spanish cities in the
peninsula with more than 500 residents, with k ∈ {5, 10, 15, 20, 25, 50, 75, 100}.

For 100 random starting points, BDCA was stopped when the relative error
of φ was smaller than 10−3. Then, DCA was run from the same starting point
until the same value of the objective function was reached (which did not
happen in 31 instances).
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Figure: Comparison between DCA and BDCA. We represent the ratios of
running time (left) and number of iterations (right) between DCA and BDCA.
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Experiment 3: Clustering random points in an m-dimensional box
We took n random points in Rm (normal distribution), with n ∈ {500, 1000, 5000, 10000}
and m ∈ {2, 5, 10, 20}. For each (n,m), 10 random starting points were chosen. Then:

BDCA was run to solve the k-clustering, with k ∈ {5, 10, 15, 20, 25, 50, 75, 100}.
DCA was run until the same value of φ was reached (it failed in 123 instances).
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Average: BDCA was 13.7 times faster.
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The Multidimensional Scaling Problem
Suppose that we have a table of distances between some objects, known as
the dissimilarity matrix. If the objects are n points x1, x2, . . . , xn in Rq, the
dissimilarity matrix can be defined by the Euclidean distance between them:

δij = ‖xi − xj‖ := dij(X),

where we denote by X the n× q matrix whose rows are x1, x2, . . . , xn.

Given a target dimension p ≤ q, the MDS problem consists in finding n points
in Rp, which are represented by an n× p matrix X∗, such that

Stress(X∗) :=
∑
i<j

wij (dij(X∗)− δij)
2

is smallest, where wij ≥ 0 are weights (wij = 0 if δij is missing).
This can be equivalently formulated as a DC problem by setting

g(X) :=
1
2

∑
i<j

wijd2
ij(X) +

ρ

2
‖X‖2,

h(X) :=
∑
i<j

wijδijdij(X) +
ρ

2
‖X‖2,

for some ρ ≥ 0. Moreover, it is clear that g is differentiable while h is not, but
∂h can be explicitly computed.
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Experiment 4: MDS for Spanish cities

Consider the dissimilarity matrix defined by the distances between the 4155
Spanish cities with more than 500 residents, including this time those outside
the peninsula. ⇒ The optimal value of this MDS problem is zero.
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Figure: Running time (left) and number of iterations (right) of DCA and BDCA
for 100 random instances.
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