On Structural Stability and First-order Optimization with Time-dependent Adaptive Step Policy

Xiao Wang

Shanghai University of Finance and Economics

07 - 18 - 2023

Xiao Wang

On Structural Stability and First-order Optimi

07-18-2023

Kimon Antonakopoulos EPFL

Panayotis Mertikopoulos CNRS

Ioannis Panageas UC Irvine

Georgios Piliouras SUTD, DeepMind

イロト イヨト イヨト イヨト

2/44

On Structural Stability and First-order Optimi

07-18-2023

12

Background

$$\min_{U \in \mathbb{R}^*} \frac{1}{n} \sum_{i=1} \|f(\mathbf{W}, \mathbf{x}_i) - y_i\|^2$$

3/44

Xiao Wang

On Structural Stability and First-order Optimi

07-18-2023

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Algorithm

Gradient descent and its variants

The most popular algorithm in optimization might be the gradient descent:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$$

Some typical variants:

• SGD

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha g_t \quad \mathbb{E}g_t = \nabla f(\mathbf{x}_t)$$

• Adaptive gradient descent:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{\sqrt{\delta_0^2 + \sum_{s=0}^t \|\nabla f(\mathbf{x}_s)\|^2}} \nabla f(\mathbf{x}_t)$$

4/44

On Structural Stability and First-order Optimi

• • E.

Image: A math a math

Stages of understanding an algorithm

- Convergence: \mathbf{x}_t converges to some fixed point \mathbf{x}^* of the algorithm, i.e., critical point for gradient descent.
- Convergence to local optima: \mathbf{x}^* is a local minimum (**our focus**).
- \bullet Convergence to global optima: \mathbf{x}^* is a global minimum.

Our setup

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x}).$

In the above, $f: \mathbb{R}^d \to \mathbb{R}$ is assumed to be lower bounded and continuously differentiable:

- $\inf_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) > -\infty$
- There exists L > 0 such that

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

• The undesirable critical points is the set of *strict saddle points*,

$$\|\nabla f(\mathbf{x}^*)\| = 0$$
, and $\lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) < 0$.

6/44

4 B

Underlying dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \Gamma_t \nabla f(\mathbf{x}_t)$$

where Γ_t is a time-dependent step policy matrix.

Example

•
$$\Gamma_t = \alpha_t \cdot I$$
, for $\alpha_t \to 0$, e.g., $\alpha_t = \frac{1}{\sqrt{t}}$.

• AdaGrad
$$\Gamma_t = G_t^{-\frac{1}{2}},$$

$$G_t = \delta_0^2 I + \sum_{s=0}^t \nabla f(\mathbf{x}_s) \nabla f(\mathbf{x}_s)^\top.$$

7/44

э

Main Results

Convergence to local minimizers

The deterministic gradient descent (and its variants) with adaptive step policy only converges local minimizers. Or equivalently, non-convergence to spurious critical points, i.e., saddle points.

Example

Apart from gradient descent, many first-order algorithms can be proven convergent to local minimizers, e.g., mirror descent, proximal point method, AdaGrad on manifold and so on.

Mirror descent

Let D be a convex open subset of \mathbb{R}^d , and $M = D \cap A$ for some affine space A. Given a function $f: M \to \mathbb{R}$ and a mirror map Φ , the algorithm is

$$\mathbf{x}_{t+1} = h(\nabla \Phi(\mathbf{x}_t) - \alpha_t \nabla f(\mathbf{x}_t))$$

where

$$h(\mathbf{x}) = \operatorname{argmax}_{z \in M} \{ \langle z, \mathbf{x} \rangle - \Phi(z) \}.$$

A special case of mirror descent is the Multiplicative Weights Update (MWU) that is used in game theory and multi-agent systems.

Exponential map

The exponential map $\operatorname{Exp}_{\mathbf{x}}(\mathbf{v})$ maps $\mathbf{v} \in T_{\mathbf{x}}M$ to $\mathbf{y} \in M$ such that there exists a geodesic $\gamma(t)$ with $\gamma(0) = \mathbf{x}$, $\gamma(1) = \mathbf{y}$ and $\gamma'(0) = \mathbf{v}$.

Riemannian Gradient Descent with step α_t

$$\mathbf{x}_{t+1} = \operatorname{Exp}_{\mathbf{x}_t}(-\alpha_t \operatorname{grad} f(\mathbf{x}_t))$$

On Structural Stability and First-order Optimi

A ID > A (P) > A

ъ

07-18-2023

Overview of the area

Robin Pemantle, 1990

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \mathbf{F}(\mathbf{x}_t) + \xi_t, \quad \alpha_t \to 0, \quad |\xi_t| \to 0$$

The Annals of Probability 1990, Vol. 18, No. 2, 698–712

NONCONVERGENCE TO UNSTABLE POINTS IN URN MODELS AND STOCHASTIC APPROXIMATIONS¹

By ROBIN PEMANTLE

Cornell University

A particle in \mathbf{R}^d moves in discrete time. The size of the *n*th step is of order 1/n and when the particle is at a position \mathbf{v} the expectation of the next step is in the direction $\mathbf{F}(\mathbf{v})$ for some fixed vector function \mathbf{F} of class C^2 . It is well known that the only possible points \mathbf{p} where $\mathbf{v}(n)$ may converge are those satisfying $\mathbf{F}(\mathbf{p}) = \mathbf{0}$. This paper proves that convergence

11/44

On Structural Stability and First-order Optimi

J.D. Lee, M. Simchowitz, M.I. Jordan, B. Recht, COLT 2016

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_{\mathbf{k}} \nabla f(\mathbf{x}_k) + \boldsymbol{\xi}_k$$

The probability that gradient descent converges to saddle point is zero.

J.D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M.I. Jordan, B. Recht, *Math. programming*, 2019

Deterministic (without noise) gradient descent, mirror descent, coordinate descent, proximal point method, and manifold gradient descent with *constant step-size* avoid saddle points.

M.I. Jordan, International Congress of Mathematicians, 2018

"Dynamical, symplectic and stochastic perspectives on gradient-based optimization", surveyed on the topic of "escaping saddle points".

A D F A D F A

3 N K 3 N

07-18-2023

• Avoid saddle points

• Escape saddle points

Why saddle avoidance important?

Understanding why deep learning works (data, training, generalization), and this area of research partially answers "why training works":

- Provable convergence to local minimizer is crucial in understanding an algorithm;
- Matrix completion has no spurious local minimum (Ge et al. 2016), Gradient descent finds global minima of deep neural networks (Du et al. 2019);
- Heuristically implies that stochastic variants converges to local minimizers.

14/44

Basics of Dynamical System

Discrete-time dynamical system

A smooth dynamical system on a manifold M is a continuous differential function $g: \mathbb{Z} \times M \to M$, where $g(t, \mathbf{x}) = g_t(\mathbf{x})$ satisfies

- g_0 is the identity function.
- $g_t \circ g_s = g_{t+s}$ for all $t, s \in \mathbb{Z}$.

Fixed points and Stable set

Given a dynamical system $\mathbf{x}_{k+1} = g(k, \mathbf{x}_k)$, the set of fixed points is denoted by \mathcal{X}^* . The **global stable set** $W^s(\mathcal{X}^*)$ of \mathcal{X}^* is the set of initial conditions where the sequence \mathbf{x}_k converges to \mathcal{X}^* . Formally

$$W^{s}(\mathcal{X}^{*}) = \{\mathbf{x}_{0} : \lim_{k \to \infty} \mathbf{x}_{k} \in \mathcal{X}^{*}\}.$$

Stable and unstable fixed points

Focusing on smooth dynamical system $g: M \to M$, we say

- $\mathbf{x}^* \in M$ is stable if eigenvalues of the differential $Dg(\mathbf{x}^*)$ have magnitude less than 1.
- $\mathbf{x}^* \in M$ is unstable if at least one eigenvalue of $Dg(\mathbf{x}^*)$ has magnitude greater than 1.

Gradient descent

Let $M = \mathbb{R}^n$ and $g(k, \mathbf{x}) = \mathbf{x} - \alpha_k \nabla f(\mathbf{x})$. Then strict saddle point \mathbf{x}^* , i.e., $\|\nabla f(\mathbf{x}^*)\| = 0$ and $\lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) < 0$, is an unstable fixed point of g.

16/44

Technical Overview for Constant Step

Structural Stability of Dynamical Systems (Lyapunov, Hadamard, Smale...)

For a diffeomorphism $g: M \to M$, the iteration $g^n(\mathbf{x}_0)$ converges to an *unstable* fixed point \mathbf{x}^* only if the initial point \mathbf{x}_0 is taken from the *stable manifold* of $\mathbf{x}^*, \mathbf{x}_0 \in W^s(\mathbf{x}^*)$.

- Unstable: the Jacobian $Dg(x^*)$ has an eigenvalue whose norm is greater or equal to one.
- Stable manifold: The graph of some function from stable to unstable space.
- *Proof of saddle avoidance*: Reduction to the cases where the theorem can be used.

Adaptive Steps

Take the AdaGrad as the main example

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \Gamma_t \nabla f(\mathbf{x}_t)$$

- Local argument: in a neighborhood of a saddle point, the points that can be moved to saddle points by AdaGrad lie on a lower dimensional space (zero measure set);
- Global argument: carry the local zero measure set by inverse of AdaGrad, union of countable zero measure set is till of measure zero.

18/44

イロト イポト イヨト イヨト

Review on Lyapunov-Perron for ODEs

- For gradient descent with adaptive step size, the previous stable manifold theorem does not valid. It is necessary to derive a new version of stable manifold theorem for the underlying dynamical system of those first-order methods.
- The spirit comes from the classic stability theory of ODEs. Consider the ordinary differential equation

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + \eta(\mathbf{x})$$

and the integral operator T defined as follows

$$T\mathbf{x}(t,\mathbf{a}) = U(t)\mathbf{a} + \int_0^t U(t-s)\eta(\mathbf{x}(s,\mathbf{a}))ds - \int_t^\infty V(t-s)\eta(\mathbf{x}(s,\mathbf{a}))ds$$

Stable Manifolds for ODEs

Example (L. Perko)

Consider the nonlinear ODE

$$\frac{dx_1}{dt} = -x_1$$
$$\frac{dx_2}{dt} = -x_2 + x_1^2$$
$$\frac{dx_3}{dt} = x_3 + x_1^2$$

The only equilibrium is the origin 0.

The stable-unstable decomposition can be obtained from the Jacobian matrix of the mapping on the right hand side

$$Df(0) = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

The solution is given by

$$x_1(t) = c_1 e^{-t}$$

$$x_2(t) = c_2 e^{-t} + c_1^2 (e^{-t} - e^{-2t})$$

$$x_3(t) = c_3 e^t + \frac{c_1^2}{3} (e^t - e^{-2t})$$

where c = x(0) is the initial condition.

21/44

イロト イポト イヨト イヨト

Denote $\phi_t(c)$ the flow defined by the solution, letting $\lim_{t\to\infty} \phi(c) = 0$ and $\lim_{t\to-\infty}$ respectively, we can solve that $c = (c_1, c_2, c_3)$ has to satisfy

$$c_3 = -\frac{c_1^2}{3}$$

 $c_1 = c_2 = 0$

22/44

• The solution of $\frac{d\mathbf{x}}{dt} = A\mathbf{x} + \eta(\mathbf{x})$ can be written in terms of integral:

$$\mathbf{x}(t, \mathbf{a}) = e^{tA}\mathbf{a} + \int_0^t e^{(t-s)A}\eta(\mathbf{x}(s, \mathbf{a}))ds$$

• Denote by P^+ and P^- the projectors onto the stable, unstable subspaces E^s , E^u of e^A . Moreover, abbreviate

$$\mathbf{a}^+ = P^+ \mathbf{a}, \quad \mathbf{a}^- = P^- \mathbf{a}$$

and

$$\eta^+ = P^+\eta, \quad \eta^- = P^-\eta.$$

• We can express \mathbf{a}^- as a function of \mathbf{a}^+ by assuming $\mathbf{x}(t, \mathbf{a})$ is a solution. This can be done by multiplying e^{-tA} on integral solution of $\mathbf{x}(t, \mathbf{a})$,

$$e^{-tA}\mathbf{x}(t,\mathbf{a}) = \mathbf{a} + e^{-tA}\int_0^t e^{(t-s)A}\eta(\mathbf{x}(s,\mathbf{a}))ds$$

projecting out the unstable part and rearranging, we have

$$\mathbf{a}^{-} = e^{-tA}\mathbf{x}^{-}(t, \mathbf{a}) - \int_{0}^{t} e^{-sA}\eta^{-}(\mathbf{x}(s, \mathbf{a}))ds$$

• Letting $t \to \infty$, we have

$$\mathbf{a}^{-} = -\int_{0}^{\infty} e^{-sA} \eta^{-}(\mathbf{x}(s, \mathbf{a})) ds$$

24/44

イロト イポト イヨト イヨト

• In the end, plugging the expression of \mathbf{a}^- back to the following integral solution,

$$\mathbf{x}(t, \mathbf{a}) = e^{tA}\mathbf{a} + \int_0^t e^{(t-s)A}\eta(\mathbf{x}(s, \mathbf{a}))ds = e^{tA}(\mathbf{a}^+, \mathbf{a}^-) + \int_0^t e^{(t-s)A}\eta(\mathbf{x}(s, \mathbf{a}))ds$$

we have that

$$\mathbf{x}(t,\mathbf{a}) = e^{tA}\mathbf{a}^+ + \int_0^t e^{(t-s)A}\eta^+(\mathbf{x}(s,\mathbf{a}))ds - \int_t^\infty e^{(t-s)A}\eta^-(\mathbf{x}(s,\mathbf{a}))ds$$

• The meaning of above expression is following: the right hand side can be considered an operator T acting on mappings $\mathbf{x}(t, \mathbf{a})$, transforming $\mathbf{x}(t, \mathbf{a})$ to a new mapping. And $\mathbf{x}(t, \mathbf{a})$ converges to the saddle point if and only if $\mathbf{x}(t, \mathbf{a})$ is a fixed point of the operator T.

25/44

• The previous integral equation can be solved by the method of successive approximation. Let $\mathbf{x}^{(0)}(t, \mathbf{a})$ be the initial mapping, and the (j + 1)-th iterate provided $\mathbf{x}^{(j+1)}(t, \mathbf{a})$ is based on the integral operator:

$$\mathbf{x}^{(j+1)}(t,\mathbf{a}) = e^{tA}\mathbf{a}^{+} + \int_{0}^{t} e^{(t-s)A}\eta^{+}(\mathbf{x}^{(j)}(s,\mathbf{a}))ds - \int_{t}^{\infty} e^{(t-s)A}\eta^{-}(\mathbf{x}^{(j)}(s,\mathbf{a}))ds$$

• With proper topology on the space of mappings $\mathbf{x}(t, \mathbf{a})$, this successive approximation ensures that

$$\lim_{j \to \infty} \mathbf{x}^j(t, \mathbf{a}) = \mathbf{x}(t, \mathbf{a})$$

uniformly for all $t \ge 0$ and $\|\mathbf{a}\|$ small enough.

26/44

• An interesting observation: in the successive approximation process, the unstable components of the initial condition **a** is not involved in computation,

$$\mathbf{x}(t,\mathbf{a}) = e^{tA}\mathbf{a}^+ + \int_0^t e^{(t-s)A}\eta^+(\mathbf{x}(s,\mathbf{a}))ds - \int_t^\infty e^{(t-s)A}\eta^-(\mathbf{x}(s,\mathbf{a}))ds$$

So it is convenience to let them to be all 0's.

• Let t = 0, we have

$$\mathbf{x}(0,\mathbf{a}) = \mathbf{a}^{+} + 0 - \int_{0}^{\infty} e^{-sA} \eta^{-}(\mathbf{x}(s,a_{1},...,a_{k},0,...,0)) ds$$

which clearly implies that if \mathbf{a} is the initial condition of the solution converging to 0, then the unstable components of \mathbf{a} is a function of the stable components.

07-18-2023

Local theory of stability for AdaGrad

Proposition

Let Γ_t be one of adaptive step-size policies of AdaGrads. Then the limit of $\{\Gamma_t\}_{t\in\mathbb{N}}$ exists and in particular, the limit is positive definite,

 $\lim_{t \to \infty} \Gamma_t = \Gamma \quad \text{with} \quad \Gamma > 0.$

28/44

Local structure of AdaGrad around critical points

$$\mathbf{x}_{t+1} = (I - \Gamma \nabla^2 f(0))\mathbf{x}_t - \Gamma \theta(x_t) - (\Gamma_t - \Gamma) \nabla f(\mathbf{x}_t)$$

where 0 is a critical point.

• Trivial:

$$\Gamma_t = \Gamma + \Gamma_t - \Gamma$$

۲

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \Gamma_t \nabla f(\mathbf{x}_t) = x_t - \Gamma \nabla f(\mathbf{x}_t) - (\Gamma_t - \Gamma) \nabla f(\mathbf{x}_t)$$

• Taylor expansion of $\nabla f(\mathbf{x})$ at critical point 0:

$$\nabla f(\mathbf{x}) = \nabla^2 f(0)\mathbf{x} + \theta(\mathbf{x}).$$

-

Denote

$$\eta(t, x) = -\Gamma\theta(x) - (\Gamma_t - \Gamma)\nabla f(x),$$

and then the local form of AdaGrad is the following:

$$x_{t+1} = \left(I - \Gamma \nabla^2 f(0)\right) x_t + \eta(t, x_t).$$

Proposition (not used in the talk)

 $\eta(t, \cdot)$ satisfies the Lipschitz type condition: for any $\epsilon > 0$, there exists a neighborhood \mathbb{B} of 0 and some large t_0 , so that for any $x, y \in \mathbb{B}$ and $t > t_0$, it holds that

$$\left\|\eta(t,x)-\eta(t,y)\right\|\,\leq\epsilon\left\|x-y\right\|.$$

07-18-2023 30 / 44

Since the Hessian $\nabla^2 f(0)$ is diagonalizable, under a change of coordinates, we only have to consider the diagonalized dynamics:

$$x_{t+1} = (I - H)x_t + \eta(t, x_t).$$

Furthermore, if 0 is a saddle point, H has positive and negative eigenvalues on the diagonal, denote $H = H^+ \oplus H^-$.

- For a specific saddle point, the dimensions of positive and negative eigen-spaces are fixed.
- According to the eigen-space decomposition w.r.t. H, $\eta(t, \cdot)$ can be decomposed to $\eta(t, \cdot)^+$ and $\eta(t, \cdot)^-$, i.e.

$$\eta(t,\cdot) = \eta(t,\cdot)^+ \oplus \eta(t,\cdot)^-.$$

• Recursively use $x_{t+1} = (I - H)x_t + \eta(t, x_t)$ from x_0 , we can obtain the "integral" form of x_{t+1} :

$$x_{t+1} = A(t)x_0 + \sum_{i=0}^{t} A(t-i-1)\eta(i,x_i)$$

where A(t) is t-product of (I - H).

• Continuous time counterpart:

$$\mathbf{x}(t, \mathbf{a}) = e^{tA}\mathbf{a} + \int_0^t e^{(t-s)A}\eta(\mathbf{x}(s, \mathbf{a}))ds$$

32/44

イロト イポト イヨト イヨト

• Note that the negative eigenvalue of H corresponds to the eigenvalue less than 1 in (I - H), and then $A(t) = B(t) \oplus C(t)$, so the expression of x_{t+1} can be further decomposed to

$$x_{t+1}^{+} = B(t)x_{0}^{+} + \sum_{i=0}^{t} B(t-i-1)\eta^{+}(i,x_{i})$$
$$x_{t+1}^{-} = C(t)x_{0}^{-} + \sum_{i=0}^{t} C(t-i-1)\eta^{-}(i,x_{i})$$

Xiao Wang

On Structural Stability and First-order Optimi

07-18-2023 33 / 44

イロト イポト イヨト イヨト

• Multiplying $C(t)^{-1}$ to both sides of x_{t+1}^- :

$$C(t)^{-1}x_{t+1}^{-} = C(t)^{-1}C(t)x_{0}^{-} + C(t)^{-1}\sum_{i=0}^{t}C(t-i-1)\eta^{-}(i,x_{i}),$$

or equivalently:

$$x_0^- = C(t)^{-1} x_{t+1}^- - C(t)^{-1} \sum_{i=0}^t C(t-i-1) \eta^-(i,x_i)$$

• Now suppose $\{x_t\}_{t\in\mathbb{N}}$ is a sequence generated by AdaGrad with initial condition x_0 and $x_t \to 0$, then of course $x_{t+1}^- \to 0$. Since C(t) is diagonal and has eigenvalues > 1, the inverse $C(t)^{-1} \to 0$ as $t \to 0$. So the term $C(t)^{-1}x_{t+1}^-$ vanishes.

34/44

• Let $t \to 0$, we have the identity:

$$x_0^- = \lim_{t \to \infty} C(t)^{-1} \sum_{i=0}^t C(t-i-1)\eta^-(i,x_i)$$

whose ODE counterpart is

$$\mathbf{a}^{-} = -\int_{0}^{\infty} e^{-sA} \eta^{-}(\mathbf{x}(s, \mathbf{a})) ds$$

• Consider x_i as function of $x_0 = (x_0^+, x_0^-)$ since it is generated from x_0 , i.e.,

$$x_i = x_i(x_0^+, x_0^-).$$

• The identity is nothing but an implicit function (proof needed) of x_0^+ and x_0^- :

$$x_0^- = F(x_0^+, x_0^-).$$

35/44

On Structural Stability and First-order Optimi

A D A A B A A B A A B

Theorem (informal) If dynamical system

$$x_{t+1} = (I - H)x_t + \eta(t, x_t)$$

converges to a saddle point with initial condition x_0 , then the components x_0^+ and x_0^- lie on the hypersurface defined by the equation

$$x_0^- = F(x_0^+, x_0^-)$$

If the function F is good (differentiable), then the hypersurface is a lower dimensional space, so of measure 0.

36/44

Global stability of AdaGrad

Diffeomorphism

An invertible map $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism if both φ and φ^{-1} are differentiable.

Property we actually use:

The image and pre-image of a zero measure set under diffeomorphism is of measure zero.

- Recall that we assume δ_0 is large enough so that $\delta_0 > L$.
- AdaNorm:

$$\frac{1}{\sqrt{\delta_0^2 + \sum_{s=0}^t \|\nabla f(x_s)\|^2}} \to 0 \quad \text{as} \quad \delta_0 \to \infty.$$

Limitations: saddle avoidance with inequality constraints

Compared to unconstrained settings, much less is known.

- Maher Nouiehed, Jason Lee and Meisam Razaviyayn. Convergence to second-order stationarity for constrained non-convex optimization, 2018.
- They provide an counter-example where the projected gradient descent might converge to strict saddle points with positive probability.

38 / 44

• If projected gradient descent has at least two repelling directions at saddle point, does it avoid saddle points?

39/44

From function approximation to PDE solving

- Using neural network to approximate some solution of a PDE follows the same steps as function approximation.
- Suppose the neural network has the form of

$$f(\mathbf{W}, \mathbf{a}, \mathbf{x}) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \sigma(\mathbf{w}_r \mathbf{x})$$

where the activation can be chosen so that it has differentiability, e.g.

$$\sigma(x) = \frac{1}{\ell!} x^{\ell}$$
 if $x \ge 0$ and $\sigma(x) = 0$ if $x < 0$.

• We compute the partial derivatives of the neural network.

$$\frac{\partial f}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{1}{\sqrt{m}} \sum_{k=1}^m a_k \sigma(\mathbf{w}_k \mathbf{x}) \right) = \frac{1}{\sqrt{m}} \sum_{k=1}^m a_k \frac{\partial \sigma(\mathbf{w}_k \mathbf{x})}{\partial x_i}$$
$$= \frac{1}{\sqrt{m}} \sum_{k=1}^m a_k \sigma'(\mathbf{w}_k \mathbf{x}) w_{ki},$$

• Consider the very simple first-order PDE given as follows,

$$\frac{\partial f}{\partial x_1} + \ldots + \frac{\partial f}{\partial x_d} = h(\mathbf{x})$$

41/44

A D > A D > A

3 N K 3 N

• The approximation problem regarding the linear PDE:

$$\sum \frac{\partial f}{\partial x_i} = \frac{1}{\sqrt{m}} \sum_{k=1}^m a_k \left(\sum_{s=1}^d w_{ks} \right) \sigma'(\mathbf{w}_k \mathbf{x}) \approx h(\mathbf{x})$$

• Denote

$$b_k = a_k \left(\sum_{s=1}^d w_{ks}\right)$$

the above approximation problem is actually an classic neural network approximation with constraints.

• The complexity of these constraints depends on the non-linearity and order of the PDE.

42/44

A D > A D > A

3 N K 3 N

Take-home msg

- We were happy with many first-order learning algorithms, and we can stay happy (even for algorithms to be discovered);
- Challenges come from inequality constraints. Almost everything is open on saddle avoidance/escaping.

Cám o'n ! Thank you !

Xiao Wang

On Structural Stability and First-order Optimi

07-18-2023

イロト イボト イヨト イヨト

44 / 44

э