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Background

Cat?

min
W∈R∗

1

n

n∑
i=1

‖f(W,xi)− yi‖ 2
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Algorithm

Gradient descent and its variants

The most popular algorithm in optimization might be the gradient descent:

xt+1 = xt − α∇f(xt)

Some typical variants:

SGD
xt+1 = xt − αgt Egt = ∇f(xt)

Adaptive gradient descent:

xt+1 = xt −
1√

δ2
0 +

∑t
s=0 ‖∇f(xs)‖ 2

∇f(xt)
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Stages of understanding an algorithm

Convergence: xt converges to some fixed point x∗ of the algorithm, i.e., critical point
for gradient descent.

Convergence to local optima: x∗ is a local minimum ( our focus).

Convergence to global optima: x∗ is a global minimum.
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Our setup

min
x∈Rd

f(x).

In the above, f : Rd → R is assumed to be lower bounded and continuously differentiable:

infx∈Rd f(x) > −∞
There exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x,y ∈ Rd.

The undesirable critical points is the set of strict saddle points,

‖∇f(x∗)‖ = 0, and λmin(∇2f(x∗)) < 0.
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Underlying dynamics

xt+1 = xt − Γt∇f(xt)

where Γt is a time-dependent step policy matrix.

Example

Γt = αt · I, for αt → 0, e.g., αt = 1√
t
.

AdaGrad Γt = G
− 1

2
t ,

Gt = δ2
0I +

t∑
s=0

∇f(xs)∇f(xs)
>.
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Main Results

Convergence to local minimizers

The deterministic gradient descent (and its variants) with adaptive step policy only
converges local minimizers. Or equivalently, non-convergence to spurious critical points,
i.e., saddle points.

Example

Apart from gradient descent, many first-order algorithms can be proven convergent to
local minimizers, e.g., mirror descent, proximal point method, AdaGrad on manifold and
so on.
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Mirror descent

Let D be a convex open subset of Rd, and M = D ∩A for some affine space A. Given a
function f : M → R and a mirror map Φ, the algorithm is

xt+1 = h(∇Φ(xt)− αt∇f(xt))

where
h(x) = argmaxz∈M{〈z,x〉 − Φ(z)}.

A special case of mirror descent is the Multiplicative Weights Update (MWU) that is used
in game theory and multi-agent systems.
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Exponential map

The exponential map Expx(v) maps v ∈ TxM to y ∈M such that there exists a geodesic
γ(t) with γ(0) = x, γ(1) = y and γ′(0) = v.

Riemannian Gradient Descent with step αt

xt+1 = Expxt
(−αtgradf(xt))
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Overview of the area

Robin Pemantle, 1990

xt+1 = xt − αtF(xt) + ξt, αt → 0, |ξt| → 0
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J.D. Lee, M. Simchowitz, M.I. Jordan, B. Recht, COLT 2016

xk+1 = xk − α�k∇f(xk) + ��ξk

The probability that gradient descent converges to saddle point is zero.

J.D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M.I. Jordan, B. Recht, Math.
programming, 2019

Deterministic (without noise) gradient descent, mirror descent, coordinate descent,
proximal point method, and manifold gradient descent with constant step-size avoid
saddle points.

M.I. Jordan, International Congress of Mathematicians, 2018

”Dynamical, symplectic and stochastic perspectives on gradient-based optimization”,
surveyed on the topic of ”escaping saddle points”.
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Avoid saddle points

Lee et al. 16’

Gradient descent

Lee et al, ’19

Many 1st order methods

PPW, ’19

Classic MWU

PPW, ’19

Vanishing step &

many 1st order methods

FPW, ’22

Accelerated Riemannian GD

Accelerated MWU

AMPW ’22

AdaGrad Family

Escape saddle points

Ge et al. ’15

PGD escapes saddle effectively

Jin et al

Accelerated PGD

Jin et al ’19

PGD

Criscitiello & Boumal ’19

Riemannian PGD

Sun et al ’19

Riemannian PGD

Criscitiello & Boumal ’20

Accelerated

Riemannian PGD

Li et al. ’23

0’th order methods
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Why saddle avoidance important?

Understanding why deep learning works (data, training, generalization), and this area of
research partially answers “why training works”:

Provable convergence to local minimizer is crucial in understanding an algorithm;

Matrix completion has no spurious local minimum (Ge et al. 2016),
Gradient descent finds global minima of deep neural networks (Du et al. 2019);

Heuristically implies that stochastic variants converges to local minimizers.
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Basics of Dynamical System

Discrete-time dynamical system

A smooth dynamical system on a manifold M is a continuous differential function
g : Z×M →M , where g(t,x) = gt(x) satisfies

g0 is the identity function.

gt ◦ gs = gt+s for all t, s ∈ Z.

Fixed points and Stable set

Given a dynamical system xk+1 = g(k,xk), the set of fixed points is denoted by X ∗. The
global stable set W s(X ∗) of X ∗ is the set of initial conditions where the sequence xk

converges to X ∗. Formally

W s(X ∗) = {x0 : lim
k→∞

xk ∈ X ∗}.
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Stable and unstable fixed points

Focusing on smooth dynamical system g : M →M , we say

x∗ ∈M is stable if eigenvalues of the differential Dg(x∗) have magnitude less than 1.

x∗ ∈M is unstable if at least one eigenvalue of Dg(x∗) has magnitude greater than 1.

Gradient descent

Let M = Rn and g(k,x) = x− αk∇f(x). Then strict saddle point x∗, i.e., ‖∇f(x∗)‖ = 0
and λmin(∇2f(x∗)) < 0, is an unstable fixed point of g.
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Technical Overview for Constant Step

Structural Stability of Dynamical Systems (Lyapunov, Hadamard, Smale...)

For a diffeomorphism g : M →M , the iteration gn(x0) converges to an unstable fixed
point x∗ only if the initial point x0 is taken from the stable manifold of x∗, x0 ∈W s(x∗).

Unstable: the Jacobian Dg(x∗) has an eigenvalue whose norm is greater or equal to
one.
Stable manifold:
The graph of some function from
stable to unstable space.

Proof of saddle avoidance: Reduc-
tion to the cases where the theorem
can be used.
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Adaptive Steps

Take the AdaGrad as the main example

xt+1 = xt − Γt∇f(xt)

Local argument: in a neighborhood of a saddle point, the points that can be moved
to saddle points by AdaGrad lie on a lower dimensional space (zero measure set);

Global argument: carry the local zero measure set by inverse of AdaGrad, union of
countable zero measure set is till of measure zero.
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Review on Lyapunov-Perron for ODEs

For gradient descent with adaptive step size, the previous stable manifold theorem
does not valid. It is necessary to derive a new version of stable manifold theorem for
the underlying dynamical system of those first-order methods.

The spirit comes from the classic stability theory of ODEs. Consider the ordinary
differential equation

dx

dt
= Ax + η(x)

and the integral operator T defined as follows

Tx(t,a) = U(t)a +

∫ t

0
U(t− s)η(x(s,a))ds−

∫ ∞
t

V (t− s)η(x(s,a))ds
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Stable Manifolds for ODEs

Example (L. Perko)

Consider the nonlinear ODE

dx1

dt
= −x1

dx2

dt
= −x2 + x2

1

dx3

dt
= x3 + x2

1

The only equilibrium is the origin 0.
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The stable-unstable decomposition can be obtained from the Jacobian matrix of the
mapping on the right hand side

Df(0) =

 −1 0 0
0 −1 0
0 0 1


The solution is given by

x1(t) = c1e
−t

x2(t) = c2e
−t + c2

1(e−t − e−2t)

x3(t) = c3e
t +

c2
1

3
(et − e−2t)

where c = x(0) is the initial condition.

Xiao Wang On Structural Stability and First-order Optimization with Time-dependent Adaptive Step Policy07-18-2023 21 / 44



Denote φt(c) the flow defined by the solution, letting limt→∞ φ(c) = 0 and limt→−∞
respectively, we can solve that c = (c1, c2, c3) has to satisfty

c3 = −c
2
1

3
c1 = c2 = 0
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The solution of dx
dt = Ax + η(x) can be written in terms of integral:

x(t,a) = etAa +

∫ t

0
e(t−s)Aη(x(s,a))ds

Denote by P+ and P− the projectors onto the stable, unstable subspaces Es, Eu of
eA. Moreover, abbreviate

a+ = P+a, a− = P−a

and
η+ = P+η, η− = P−η.
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We can express a− as a function of a+ by assuming x(t,a) is a solution. This can be
done by multiplying e−tA on integral solution of x(t,a),

e−tAx(t,a) = a + e−tA
∫ t

0
e(t−s)Aη(x(s,a))ds

projecting out the unstable part and rearranging, we have

a− = e−tAx−(t,a)−
∫ t

0
e−sAη−(x(s,a))ds

Letting t→∞, we have

a− = −
∫ ∞

0
e−sAη−(x(s,a))ds
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In the end, plugging the expression of a− back to the following integral solution,

x(t,a) = etAa +

∫ t

0
e(t−s)Aη(x(s,a))ds = etA(a+,a−) +

∫ t

0
e(t−s)Aη(x(s,a))ds

we have that

x(t,a) = etAa+ +

∫ t

0
e(t−s)Aη+(x(s,a))ds−

∫ ∞
t

e(t−s)Aη−(x(s,a))ds

The meaning of above expression is following: the right hand side can be considered
an operator T acting on mappings x(t,a), transforming x(t,a) to a new mapping.
And x(t,a) converges to the saddle point if and only if x(t,a) is a fixed point of the
operator T .
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The previous integral equation can be solved by the method of successive
approximation. Let x(0)(t,a) be the initial mapping, and the (j + 1)-th iterate
provided x(j+1)(t,a) is based on the integral operator:

x(j+1)(t,a) = etAa+ +

∫ t

0
e(t−s)Aη+(x(j)(s,a))ds−

∫ ∞
t

e(t−s)Aη−(x(j)(s,a))ds

With proper topology on the space of mappings x(t,a), this successive approximation
ensures that

lim
j→∞

xj(t,a) = x(t,a)

uniformly for all t ≥ 0 and ‖a‖ small enough.
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An interesting observation: in the successive approximation process, the unstable
components of the initial condition a is not involved in computation,

x(t,a) = etAa+ +

∫ t

0
e(t−s)Aη+(x(s,a))ds−

∫ ∞
t

e(t−s)Aη−(x(s,a))ds

So it is convenience to let them to be all 0’s.

Let t = 0, we have

x(0,a) = a+ + 0−
∫ ∞

0
e−sAη−(x(s, a1, ..., ak, 0, ..., 0))ds

which clearly implies that if a is the initial condition of the solution converging to 0,
then the unstable components of a is a function of the stable components.
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Local theory of stability for AdaGrad

Proposition

Let Γt be one of adaptive step-size policies of AdaGrads. Then the limit of {Γt}t∈N exists
and in particular, the limit is positive definite,

lim
t→∞

Γt = Γ with Γ > 0.
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Local structure of AdaGrad around critical points

xt+1 = (I − Γ∇2f(0))xt − Γθ(xt)− (Γt − Γ)∇f(xt)

where 0 is a critical point.

Trivial:
Γt = Γ + Γt − Γ

xt+1 = xt − Γt∇f(xt) = xt − Γ∇f(xt)− (Γt − Γ)∇f(xt)

Taylor expansion of ∇f(x) at critical point 0:

∇f(x) = ∇2f(0)x + θ(x).
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Denote
η(t, x) = −Γθ(x)− (Γt − Γ)∇f(x),

and then the local form of AdaGrad is the following:

xt+1 =
(
I − Γ∇2f(0)

)
xt + η(t, xt).

Proposition (not used in the talk)

η(t, ·) satisfies the Lipschitz type condition: for any ε > 0, there exists a neighborhood B
of 0 and some large t0, so that for any x, y ∈ B and t > t0, it holds that

‖η(t, x)− η(t, y)‖ ≤ ε ‖x− y‖ .
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Since the Hessian ∇2f(0) is diagonalizable, under a change of coordinates, we only have to
consider the diagonalized dynamics:

xt+1 = (I −H)xt + η(t, xt).

Furthermore, if 0 is a saddle point, H has positive and negative eigenvalues on the
diagonal, denote H = H+ ⊕H−.

For a specific saddle point, the dimensions of positive and negative eigen-spaces are
fixed.

According to the eigen-space decomposition w.r.t. H, η(t, ·) can be decomposed to
η(t, ·)+ and η(t, ·)−, i.e.

η(t, ·) = η(t, ·)+ ⊕ η(t, ·)−.
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Recursively use xt+1 = (I −H)xt + η(t, xt) from x0, we can obtain the “integral”
form of xt+1:

xt+1 = A(t)x0 +

t∑
i=0

A(t− i− 1)η(i, xi)

where A(t) is t-product of (I −H).

Continuous time counterpart:

x(t,a) = etAa +

∫ t

0
e(t−s)Aη(x(s,a))ds
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Note that the negative eigenvalue of H corresponds to the eigenvalue less than 1 in
(I −H), and then A(t) = B(t)⊕ C(t), so the expression of xt+1 can be further
decomposed to

x+
t+1 = B(t)x+

0 +

t∑
i=0

B(t− i− 1)η+(i, xi)

x−t+1 = C(t)x−0 +

t∑
i=0

C(t− i− 1)η−(i, xi)
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Multiplying C(t)−1 to both sides of x−t+1:

C(t)−1x−t+1 = C(t)−1C(t)x−0 + C(t)−1
t∑

i=0

C(t− i− 1)η−(i, xi),

or equivalently:

x−0 = C(t)−1x−t+1 − C(t)−1
t∑

i=0

C(t− i− 1)η−(i, xi)

Now suppose {xt}t∈N is a sequence generated by AdaGrad with initial condition x0

and xt → 0, then of course x−t+1 → 0. Since C(t) is diagonal and has eigenvalues > 1,
the inverse C(t)−1 → 0 as t→ 0. So the term C(t)−1x−t+1 vanishes.

Xiao Wang On Structural Stability and First-order Optimization with Time-dependent Adaptive Step Policy07-18-2023 34 / 44



Let t→ 0, we have the identity:

x−0 = lim
t→∞

C(t)−1
t∑

i=0

C(t− i− 1)η−(i, xi)

whose ODE counterpart is

a− = −
∫ ∞

0
e−sAη−(x(s,a))ds

Consider xi as function of x0 = (x+
0 , x

−
0 ) since it is generated from x0, i.e.,

xi = xi(x
+
0 , x

−
0 ).

The identity is nothing but an implicit function (proof needed) of x+
0 and x−0 :

x−0 = F (x+
0 , x

−
0 ).
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Theorem (informal)

If dynamical system
xt+1 = (I −H)xt + η(t, xt)

converges to a saddle point with initial condition x0, then the components x+
0 and x−0 lie

on the hypersurface defined by the equation

x−0 = F (x+
0 , x

−
0 )

If the function F is good (differentiable), then the hypersurface is a lower dimensional
space, so of measure 0.
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Global stability of AdaGrad

Diffeomorphism

An invertible map ϕ : Rd → Rd is a diffeomorphism if both ϕ and ϕ−1 are differentiable.

Property we actually use:

The image and pre-image of a zero measure set under diffeomorphism is of measure zero.

Recall that we assume δ0 is large enough so that δ0 > L.

AdaNorm:
1√

δ2
0 +

∑t
s=0 ‖∇f(xs)‖ 2

→ 0 as δ0 →∞.
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Limitations: saddle avoidance with inequality constraints

Compared to unconstrained settings, much less is known.

Maher Nouiehed, Jason Lee and Meisam Razaviyayn. Convergence to second-order
stationarity for constrained non-convex optimization, 2018.

They provide an counter-example where the projected gradient descent might
converge to strict saddle points with positive probability.
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min f(x, y) = −xye−x2−y2 + 1
2y

2, s.t. x+ y ≤ 0.

If projected gradient descent has at least two repelling directions at saddle point,
does it avoid saddle points?
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From function approximation to PDE solving

Using neural network to approximate some solution of a PDE follows the same steps
as function approximation.

Suppose the neural network has the form of

f(W,a,x) =
1√
m

m∑
r=1

arσ(wrx)

where the activation can be chosen so that it has differentiability, e.g.

σ(x) =
1

`!
x` if x ≥ 0 and σ(x) = 0 if x < 0.
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We compute the partial derivatives of the neural network.

∂f

∂xi
=

∂

∂xi

(
1√
m

m∑
k=1

akσ(wkx)

)
=

1√
m

m∑
k=1

ak
∂σ(wkx)

∂xi

=
1√
m

m∑
k=1

akσ
′(wkx)wki,

Consider the very simple first-order PDE given as follows,

∂f

∂x1
+ ...+

∂f

∂xd
= h(x)
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The approximation problem regarding the linear PDE:

∑ ∂f

∂xi
=

1√
m

m∑
k=1

ak

(
d∑

s=1

wks

)
σ′(wkx) ≈ h(x)

Denote

bk = ak

(
d∑

s=1

wks

)
the above approximation problem is actually an classic neural network approximation
with constraints.

The complexity of these constraints depends on the non-linearity and order of the
PDE.
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Take-home msg

We were happy with many first-order learning algorithms, and we can stay happy
(even for algorithms to be discovered);

Challenges come from inequality constraints. Almost everything is open on saddle
avoidance/escaping.
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Cám o’n !
Thank you !
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