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Control of conditional McKean-Vlasov

A problem of conditional mean-field control or control of conditional
McKean-Vlasov equation consists in:

Dynamics (drift α, diffusion β0, β, jump coef. γ0, γ, Brownian motion
B ,common noise B0, compensated Poisson r.m. Ñ , common jump
Ñ0)
Let X u be the solution of the controlled conditional McKean-Vlasov
dynamics

dX (t) = dX u(t) = α(t,X (t), µt , u(t))dt + β0(t,X (t), µt , u(t))dB
0(t)

+ β(t,X (t), µt , u(t))dB(t) +

∫
R∗

γ0(t,X (t−), µt− , u(t), ζ)Ñ
0(dt, dζ)

+

∫
R∗

γ(t,X (t−), µt− , u(t), ζ)Ñ(dt, dζ), X (0) ∼ µ0,

µu
t = µt = L(X (t) | B0)
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Cost function (profit rate f , bequest function g , control u, time
horizon T )

J(u) = E
[ ∫ T

0
f (t,X (t), µt , u(t))dt + g(X (T ), µT )

]
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LQ MFG with Common Noise

Example (Interbank borrowing/lending)
X =log-monetary reserve, u(t)=rate of borrowing/lending to central bank,
population state

dX (t) = [a(E[X (t)|Gt ]− X (t)) + u(t)]dt + σρdB0(t) + σ
√

1 − ρ2dB(t)

+

∫
R
ζÑ0(dt, dζ) +

∫
R
ζÑ1(dt, dζ)

J(u(t)) = E
[ ∫ T

0

(1
2
u(t)2 − qu(t) (E[X (t)|Gt ]− X (t))

+
ϵ

2
(E[X (t)|Gt ]− X (t))2

)
dt +

c

2
(E[X (t)|GT ]− X (T ))2

]
Continuous case [Carmona et al.,2015]
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Pontryagin maximum principle

Metric space of measures
• Wasserstein space: P2(Rd) := {µ ∈ P(Rd) :

∫
Rd |x |2µ(dx) < +∞}

• 2-Wasserstein metric:

W2 (µ1, µ2) = inf{(
∫
Rd |x − y |2 µ(dx , dy))

1
2 : µ ∈ P2(Rd × Rd)

with µ(· × Rd) := µ1, µ(Rd × ·) := µ2}
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Hamiltonian

H(t, x , µ, u, p, q, q0, r(·), r0(·))
= f (t, x , µ, u) + α(t, x , µ, u)p + β0(t, x , µ, u)q0 + β(t, x , µ, u)q

+

∫
R
γ0(t, x , µ, u, ζ)r0(ζ)ν(dζ) +

∫
R
γ(t, x , µ, u, ζ)r(ζ)ν(dζ)

BSDE

dp(t) = −[∂xH(t) + Ẽ [∂µH(t)X̃ (t)]dt + q0(t)dB0(t) + q(t)dB(t)

+

∫
R
r0(t, ζ)Ñ0(dt, dζ) +

∫
R
r(t, ζ)Ñ(dt, dζ),

p(T ) = ∂xg(X (T ), µ(T )) + Ẽ [∂µg(X̃ (T ), µ(T ))X̃ (T )]
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Theorem (Sufficient maximum principle)
Let û be an admissible control with corresponding controlled state and
adjoint processes. Suppose that for each t ∈ [0,T ]

1 (Convexity) The functions

(x , µ, u) 7→ H(t)
(x , µ) 7→ g(x , µ),

are convex dt ⊗ P a.e.
2 (Minimum conditions)

E[Ĥ(t)] = ess inf
u∈A

E[H(t)],

dt ⊗ P a.e. Then û is an optimal control for our problem.
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Adjoint equation

dY (t) = −[aY (t) + bE[Y (t)|B0] + cZ 0(t) + dE[Z 0(t)|B0] +mZ (t)

+ nE[Z (t)|B0] + γ(t)]dt + Z 0(t)dB0(t) + Z (t)dB(t)

Y (T ) = ξ

Question
What is the closed formula for linear BSDE with common noise?

Non-common noise [Agram et al. 2022]
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Weighted Sobolev space M is the pre-Hilbert space of random measures µ
on Rn equipped with the norm

∥µ∥2
M := E[

∫
Rn

|µ̂(y)|2e−y2
dy ],

µ̂(y) :=

∫
Rn

e−ixyµ(dx); y ∈ Rn,

where xy = x · y = x1y1 + x2y2 + ...+ xnyn is the scalar product in Rn.
If µ, η ∈ M:

⟨µ, η⟩M = E[
∫
∫
Rn

Re(µ̂(y)η̂(y))|y |2e−y2
dy ],

where, Re(z) denotes the real part and z̄ denotes the complex conjugate of
the complex number z .
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Fokker Planck SPIDE

Fokker Planck equation:

dµt = A∗
0µtdt + A∗

1µtdB
0(t) +

∫
Rk

A∗
2µtÑ

0(dt, dζ)

where

A∗
0µ = −D[αµ] +

1
2
D[((β0)2 + β2)µ]

+
2∑

ℓ=1

∫
R

{
µ(γ(ℓ)) − µ+ D[γ(ℓ)(s, ·, ζ)µ]

}
νℓ (dζ)

and

A∗
1µ = −D[β0µ], A∗

2µ = µ(γ(0)) − µ
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Dynamic programming

dY (t) = F (Y (t))dt + G (Y (t))dB(t) +

∫
Rk

H(Y (t−), ζ)Ñ(dt, dζ)

:=

 dt
dX (t)
dµt

 =

 1
α(Y (t))
A∗

0µt

 dt +

 01×m

β(Y (t))
A∗

1µt , 0, 0..., 0

 dB(t)

+

∫
Rk

 01×k

γ(Y (t−), z)
A∗

2µt , 0, 0, ..., 0

 Ñ(dt, dz)

J(y) = Ey
[ ∫ T

0
f (s + t,X (t), µt , u(t))dt + g(X (T ), µT )

]
More details [Agram et al. 2024]
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Hamilton-Jacobi-Bellman equation

f (y , û(y)) + Lû(y)φ̂(y) = 0, φ̂(T , x , µ) = g(x , µ)

Here

Lφ =
∂φ

∂s
+

d∑
j=1

αj
∂φ

∂xj
+ ⟨∇µφ,A

∗
0µ⟩+ 1

2

d∑
j,n=1

(ββT )j,n
∂2φ

∂xj∂xn

+ 1
2

d∑
j=1

βj,1
∂

∂xj
⟨∇µφ,A

∗
1µ⟩+ 1

2 ⟨A
∗
1µ, ⟨D2

µφ,A
∗
1µ⟩⟩

+

∫
Rk

{
φ(s, x + γ(1), µ+ A∗

2µ)− φ(s, x , µ)−
d∑

j=1

γ
(1)
j

∂
∂xj

φ(s, x , µ)− ⟨A∗
2µ,Dµφ⟩

}
ν1(dz)

+
k∑

ℓ=2

∫
Rk

{
φ(s, x + γ(ℓ), µ))− φ(s, x , µ)−

d∑
j=1

γ
(ℓ)
j

∂
∂xj

φ(s, x , µ)
}
νℓ(dz)
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Interbank Systemic Risk Model - borrowing/lending

Example (Interbank borrowing/lending)
X =log-monetary reserve, u(t)=rate of borrowing/lending to central bank,
population state

dX (t) = [a(E[X (t)|B0]− X (t)) + u(t)]dt + σρdB0(t) + σ
√

1 − ρ2dB(t)

+ γ

∫
R
ζÑ(dt, dζ)

The goal is to minimize

J(u) = E
[ ∫ T

0

(1
2
u(t)2 − qu(t))

(
E[X (t)|B0]− X (t)

)
+

ϵ

2
(E[X (t)|B0]− X (t))2

)
dt +

c

2
(E[X (t)|B0]− X (T ))2

]
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An optimal consumption/harvesting problem

dX (t) = E[X (t)|B0]
[
(ρ (t)− c(t)) dt + θdB0(t) + σ0 (t) dB (t)

+

∫
R
γ0 (t, ζ) Ñ (dt, dζ)

]

J (c) = E

[∫ T

0
ln
(
c(t)E[X (t)|B0]

)
dt + λ ln

(
E
[
X (T ) |B0])]
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• The value function has a special form (ansatz):

φ (s, x , µ) = κ0 (s) + κ1 (s) lnµ

κ0 (s) , κ1 (s) are C 1 deterministic functions
• Hamilton-Jacobi-Bellman equation:

µ+ κ′
0 (s) + κ′

1 (s) lnµ+ κ1 (s) (ρ (t)− c)− 1
2κ1(s)θ

4
}
= 0
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Consequence: the MFC solution is given by:
• Value function:

φ(s, x , µ) = κ0 (s) + κ1 (s) lnµ

• Control:
ĉ(s) =

1
λ+ T − s

with {
κ′0 (s) =

1
2κ1(s)θ

4 + lnκ1 (s)− (ρ (s) + θ)κ1 (s)
κ0 (T ) = 0,

More details [Agram et al. 2022]
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Signatures of Paths

Consider a tensor algebra T (Rm) =
⊕∞

k=0(Rm)⊗k .

Definition

Let (X (t))t∈[0,T ] be a stochastic process with values in Rm and finite
p-variation. The signature S(X )a,b of X on an interval [a, b] ⊆ [0,T ] is an
element of T (Rm) defined by S(X )a,b = (1,X 1, . . . ,X k , . . .), where

X k =

∫
a<t1<···<tk<b

dX (t1)⊗ · · · ⊗ dX (tk).

We denote by SD
a,b(X ) = (1,X 1, . . . ,XD) the truncated signature of depth

D. It has dimension mD+1−1
m−1 .

Signature characterizes the path up to tree-like equivalence and is useful as
a feature set when working with paths
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Deep learning algorithm - continuous case

In the benchmark example, we set γ = 0. Algorithm is composed of three
main components

1 For SDE approximation, we use the Euler-Maruyama method.
2 The conditional expectation is estimated using signatures and Ridge

regression.
3 Control is learned with LSTM networks and stochastic gradient

descent
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Deep learning algorithm - continuous case

Algorithm Optimal control for common noise

Require: Learning rate η, signature depth D, LSTM networks {φn}0≤k≤N−1

and Brownian motions {B0,j
k }1≤j≤M

0≤k≤N , {B j
k}

1≤j≤M
0≤k≤N , {X j

0}1≤j≤M .
for 1 ≤ epoch ≤ P do

for 0 ≤ k ≤ N − 1 do
Compute optimal f ∗ by ridge regression for pairs SD

0,tk (t,B
0) and Xk

Set µj
k = f ∗

(
SD

0,tk (t,B
0,j )

)
Set ujk = φk(X

j
k , µ

j
k ; θ)

Set X j
k+1 = X j

k + [a(µj
k −X j

k) + ujk ]∆t + σρ∆B0,j
k + σ

√
1 − ρ2∆B j

k
end for
Using Monte Carlo obtain Ĵ = 1

M

∑M
j=1 J(u

j ,X j , µj)

Update θ = θ − η∇Ĵ
end for
return u,X , µ
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Deep learning algorithm - continuous case

(a) State process X (b) Control process u (c) Cond. expectation µ

Figur: Comparison between predicted and analytical solutions
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Deep learning algorithm - continuous case

The loss function also converges nicely towards the theoretical value of
0.011, as seen in the graph below.

Figur: Convergence of loss function towards its theoretical value
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Deep learning algorithm - with jump

Here we assume jumps do influence dynamics.The Euler-Maruyama
discretization changes into

X j
k+1 = X j

k + [a(µj
k − X j

k) + ujk ]∆t + σρ∆B0,j
k + σ

√
1 − ρ2∆B j

k (1)

+ γJ jk − λγν∆t ,

where J jk ∼ N (ν, β2) if Poisson process with rate λ has jump on the
interval [tk , tk + 1].
We use a different deep learning approach that fixes the estimation of
conditional expectation and only updates it on every few rounds of training.
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Deep learning algorithm - with jump

(a) State process X (b) Control process u (c) Cond. expectation µ

Figur: Comparison between predicted and analytical solutions
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Deep learning algorithm - with jump

The loss function still converges nicely but towards a bigger value due to
jumps

Figur: Convergence of the loss function
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Thank you for your attention
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