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Control of conditional McKean-Vlasov

A problem of conditional mean-field control or control of conditional
McKean-Vlasov equation consists in:

Dynamics (drift o, diffusion 3°, 3, jump coef. 7°,~, Brownian motion
B,common noise B°, compensated Poisson r.m. N, common jump
NO)

Let X" be the solution of the controlled conditional McKean-Vlasov
dynamics

dX(£) = 9X¥(2) = (e, X(8), e (1))l + B7(2, X(2), e, (1)) dB(2)
+ B X0, (DB + | (X () (). R, o)
+ [ A€ XE) e u(e), O, 4O, X(0) ~ o

ui = pe = LX(t) | B°)
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Cost function (profit rate f, bequest function g, control u, time
horizon T)

)
Sy = [ (e X0, 1wl + £OX(T), 7]

o = = E A
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LQ MFG with Common Noise

Example (Interbank borrowing/lending)

X =log-monetary reserve, u(t)=rate of borrowing/lending to central bank,
population state

dX(t) = [a(E[X(1)|G:] — X(t)) + u(t)]dt + opdB°(t) 4+ ov/1 — p2dB(t)
+ / CNO(dt, d¢) + / CN(dt, d¢)
R R

)
J(u(t) =E| /0 (5u(t)? ~ qu(e) (EIX(9)]Gd - X(1)
+ S(EIX(D]G: - X(8)?) de + = (EIX(8)|g7] — X(T))?

Continuous case [Carmona et al.,2015]
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Pontryagin maximum principle

Metric space of measures
® Wasserstein space: P2(R?) := {p € P(RY) : [pu|x|?p(dx) < +00}

® 2_\Wasserstein metric:

Wa (ji1, 2) = inf{( fys [x — y|? (b, dy))? : jo € Po(RY x RY)
with (- x RY) := p1, p(RY x -) := po}
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Hamiltonian

H(t, x, i, u, p, q, % r(-), r°(-))
= £(t, %, 1, u) + a(t, x, g, u)p + B°(t, x, 1, u)q° + B(t, x, p, u)q

[ e O + [ A(ex 0. OrO(dC)
BSDE
dp(t) = —[0H(t) + E0H(OX(D]de + ¢°(£)dB(t) + q(t)dB(t)
+ [ P OR (e d0) + [ (e, Ofi(ee. d),

p(T) = 0xg(X(T). 1(T)) + E[0,8(X(T), n(T))X(T)]
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Theorem (Sufficient maximum principle)

Let ii be an admissible control with corresponding controlled state and

adjoint processes. Suppose that for each t € [0, T]|
@ (Convexity) The functions

(x,p,u) — H(t)
(on) = ealon)

are convex dt @ P a.e.

® (Minimum conditions)
E[A(t)] = ess infE[H(t)),

dt ® P a.e. Then (i is an optimal control for our problem.
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Adjoint equation

dY(t) = —[aY(t) + BE[Y(t)|B°] + cZ°(t) + dE[Z°(t)|B°] + mZ(t)
+ nE[Z(t)|B] + ~(t)]dt + Z°(t)dBO(t) + Z(t)dB(t)

Y(T)=¢
Question
What is the closed formula for linear BSDE with common noise? J

Non-common noise [Agram et al. 2022]
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Weighted Sobolev space M is the pre-Hilbert space of random measures
on R" equipped with the norm

~ 2
Il == BL [ 1P ab)

A0 i= [ e uldgi y R,

where xy = x -y = x1y1 + x2¥2 + ... + XpYn is the scalar product in R".
If p,n € M:

ot =B | ReEDI )P )

where, Re(z) denotes the real part and Z denotes the complex conjugate of
the complex number z.
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Fokker Planck SPIDE

Fokker Planck equation:

dpe = Agpuedt + A dBO(t) + /k Ab e NO(dt, d¢)
R

where
Apju = ~Dlay] + 3DI((8° + #2)
2
+ 30 [ {0 =+ DO i o ()
=1’R
and

* * (0
Ajp = —D[Bou], Az =p"") —p
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Dynamic programming

dY(t) = F(Y(t))dt + G(Y(t))dB(t) + /Rk H(Y (), QN(dt, d()

dt 1 O1xm
= dX(t)]{a(Y(t)) dt + B(Y(t))]dB(t)
d:u't Asl"l’t Aiutvoao“vo
O1xk | _
+ [ ! AY(E).2) ] N(dt, dz)
R A$14,0,0,...,0

.
Hy) = B[ [ s+ £.X(6) e el + £(X(T). o)

More details [Agram et al. 2024]
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Hamilton-Jacobi-Bellman equation

f(y’ Zl\(y)) + Lﬁ(y)()/o\(}/) =0, (ﬁ( T, x, ,U) = g(X,H)

Here
@ J * 1 d T P
= 9 g M¢7A0M>+§j§1(55 )j,nm
d
+ %Zﬁ;,la%wﬂ%/\m + 3(Ain, (D, Ap))
j=1
d

+ /R lsx 9Dt Ag) = (s, 1) = Yo (s, x, 1) — (Asp. D) o

j=1

k d
+Z/Rk{ (5:x + 91, 1)) = (s, %, 1) = Z;Vy)a%jso(s,x,u)}yg(dz)
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Interbank Systemic Risk Model - borrowing/lending

Example (Interbank borrowing/lending)

X =log-monetary reserve, u(t)=rate of borrowing/lending to central bank,
population state

dX(t) = [a(E[X(t)|B°] — X(t)) + u(t)]dt + opdB°(t) + o\/1 — p2dB(t)
+ [ CHitde,dc)
R

The goal is to minimize

.
() =E| /0 (Gu(t)? — qu(t) (EIX(1) B% - X(1))

+ S(BIX(0)]B%) — X(6)2) de + S (BIX(1) 8% — X(T))?]
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An optimal consumption/harvesting problem

dX(t) = E[X(t)|B%] [ (p(t) — c(t)) dt + 0dBO(t) + oo (t) dB (t)

+ [ 20 (6.0 (e )

J(c)=E VOTm (c()E[X(£)|B°]) dt + Aln (E (X (T) \BOD
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® The value function has a special form (ansatz):

@ (s,x, 1) = Ko (s) + K1 (s)Inp

ko (s),#1 (s) are C deterministic functions
® Hamilton-Jacobi-Bellman equation:

1+ g (s) + w1 (s) Inp+ ra () (p (t) — ) — %m(s)e“} =0
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Consequence: the MFC solution is given by:

e Value function:

(p(S,X,,U,) = Ko (5) + K1 (5) In

e Control: )
c(s) = ———
A+ T—s
with

{ ko (s) = 3r1(s)0* +Iny (s) — (p(s) + ) (s)
KO (T) =

o

i

More details [Agram et al. 2022]

N. Agram Deep learning and stochastic control KTH 19 /29



Table of Contents

@ Signatures and Deep learning

o = = E A
N. Agram Deep learning and stochastic control



Signatures of Paths

Consider a tensor algebra T(R™) = @7 ,(R™)®k.
Definition

Let (X(t))tcpo, 7] be a stochastic process with values in R™ and finite
p-variation. The signature S(X), of X on an interval [a, b] C [0, T] is an
element of T(R™) defined by S(X)a = (1, X1,..., Xk, ...), where

Xk :/ dX(t1) ® - - - ® dX(tx).
a<lt1<--<t<b

We denote by Sfb(X) = (1,X1,..., XP) the truncated signature of depth

: : D41_
D. It has dimension ™ — Y

o

Signature characterizes the path up to tree-like equivalence and is useful as
a feature set when working with paths
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Deep learning algorithm - continuous case

In the benchmark example, we set v = 0. Algorithm is composed of three
main components

@ For SDE approximation, we use the Euler-Maruyama method.

® The conditional expectation is estimated using signatures and Ridge
regression.

© Control is learned with LSTM networks and stochastic gradient
descent
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Deep learning algorithm - continuous case

Algorithm Optimal control for common noise

Require: Learning rate 7, signature depth D, LSTM networks {¢p }o<k<n—1
and Brownian motions {Bg’j}é%i% {Bk (léfki’\,”v {Xé}lﬁjSM_
for 1 < epoch < P do
for0< k< N-1do

Compute optimal f* by ridge regression for pairs S@tk(t, B%) and X

Set if = f* (5“ © Bo,)>

Set Uf( = k(X knu'k' 9)
Set X/, = X{ + [a(1d}, — X[) + u}]A¢ + 0pABY +0\/1 — p2AB]
end for
Using Monte Carlo obtain J = 1 i ZM J(, X9, )
Update § = 0 — an
end for
return u, X, i
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Deep learning algorithm - continuous case

(a) State process X (b) Control process u (c) Cond. expectation p

Figur: Comparison between predicted and analytical solutions
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Deep learning algorithm - continuous case

The loss function also converges nicely towards the theoretical value of
0.011, as seen in the graph below.
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Deep learning algorithm - with jump

Here we assume jumps do influence dynamics.The Euler-Maruyama
discretization changes into

Xy =X + a0 — X)) + )]A + 0pABY + 0/1— 2AB, (1)
+ ’y'f//( - A/YVAD
where Jf( ~ N (v, 3?) if Poisson process with rate \ has jump on the
interval [k, tx + 1].

We use a different deep learning approach that fixes the estimation of
conditional expectation and only updates it on every few rounds of training.
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Deep learning algorithm - with jump
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Figur: Comparison between predicted and analytical solutions
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Deep learning algorithm - with jump

The loss function still converges nicely but towards a bigger value due to

jumps
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Figur: Convergence of the loss function
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Thank you for your attention

o = = = T 9ac
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