The Lévy-Khintchine formula

Definition.

A cylindrical measure $\mu \colon \mathfrak{Z}(U,U^*) \to [0,1]$ is called infinitely divisible if for each $k \in \mathbb{N}$ there exists a cylindrical measure μ_k such that $\mu = \mu_k^{*k}$.

Definition.

A cylindrical measure $\mu \colon \mathfrak{Z}(U,U^*) \to [0,1]$ is called infinitely divisible if for each $k \in \mathbb{N}$ there exists a cylindrical measure μ_k such that $\mu = \mu_k^{*k}$.

Equivalent:

for each
$$k\in\mathbb{N}$$
 there exists cyl. measure μ_k : $\varphi_\mu(u^*)=(\varphi_{\mu_k}(u^*))^k$ for all $u^*\in U^*$.

Definition.

A cylindrical measure $\mu \colon \mathfrak{Z}(U,U^*) \to [0,1]$ is called infinitely divisible if for each $k \in \mathbb{N}$ there exists a cylindrical measure μ_k such that $\mu = \mu_k^{*k}$.

Equivalent:

for each
$$k\in\mathbb{N}$$
 there exists cyl. measure μ_k : $\varphi_\mu(u^*)=(\varphi_{\mu_k}(u^*))^k$ for all $u^*\in U^*$.

$$\mu \text{ infinitely divisible } \Leftrightarrow \begin{array}{l} \mu \circ \pi_{u_1^*,\ldots,u_n^*}^{-1} \text{ is infinitely divisible} \\ \text{for all } u_1^*,\ldots,u_n^* \in U^* \text{ and } n \in \mathbb{N}. \end{array}$$

Definition.

A cylindrical measure $\mu \colon \mathfrak{Z}(U,U^*) \to [0,1]$ is called infinitely divisible if for each $k \in \mathbb{N}$ there exists a cylindrical measure μ_k such that $\mu = \mu_k^{*k}$.

Equivalent:

for each
$$k \in \mathbb{N}$$
 there exists cyl. measure μ_k : $\varphi_{\mu}(u^*) = (\varphi_{\mu_k}(u^*))^k$ for all $u^* \in U^*$.

$$\mu \text{ infinitely divisible } \Leftrightarrow \begin{array}{l} \mu \circ \pi_{u_1^*, \dots, u_n^*}^{-1} \text{ is infinitely divisible} \\ \text{for all } u_1^*, \dots, u_n^* \in U^* \text{ and } n \in \mathbb{N}. \end{array}$$

Example: if $(L(t):t\geqslant 0)$ is a cylindrical Lévy process then the cylindrical distribution of L(1) is infinitely divisible.

Cylindrical Lévy measure

Definition. Let

$$\mathfrak{Z}_*(U,U^*)$$

$$:= \left\{ \left\{ u \in U : \left(\langle u, u_1^* \rangle, \dots, \langle u, u_n^* \rangle \right) \in B \right\} : u_i^* \in U^*, B \in \mathfrak{B}(\mathbb{R}^n \setminus \{0\}) \right\}.$$

Cylindrical Lévy measure

Definition. Let

$$\mathfrak{Z}_*(U,U^*)$$

$$:= \left\{ \left\{ u \in U : \left(\langle u, u_1^* \rangle, \dots, \langle u, u_n^* \rangle \right) \in B \right\} : u_i^* \in U^*, B \in \mathfrak{B}(\mathbb{R}^n \setminus \{0\}) \right\}.$$

A set function $\lambda \colon \mathfrak{Z}_*(U,U^*) \to [0,\infty]$ is called a *cylindrical Lévy measure* if for all $u_1^*,\ldots,u_n^*\in U^*$ the map

$$\lambda_{u_1^*,...,u_n^*} \colon \mathfrak{B}(\mathbb{R}^n) \to [0,\infty], \qquad \lambda_{u_1^*,...,u_n^*}(B) = \lambda \circ \pi_{u_1^*,...,u_n^*}^{-1}(B \setminus \{0\})$$

defines a Lévy measure on $\mathfrak{B}(\mathbb{R}^n)$.

Infinitely divisible and cylindrical Lévy measure

Lemma. For each infinitely divisible cylindrical measure μ there exists a cylindrical Lévy measure λ on $\mathfrak{Z}_*(U,U^*)$ such that:

$$\lambda \circ \pi_{u_1^*,\dots,u_n^*}^{-1} = \text{L\'evy measure of } \mu \circ \pi_{u_1^*,\dots,u_n^*}^{-1} \quad \text{on } \ \mathfrak{B}(\mathbb{R}^n \setminus \{0\})$$

for all $u_1^*, \ldots, u_n^* \in U^*$ and $n \in \mathbb{N}$.

Lévy-Khintchine formula

Theorem. For every infinitely divisible cylindrical measure μ there exist cylindrical measures μ_1 , μ_2 such that $\mu = \mu_1 * \mu_2$ and

$$\varphi_{\mu_1}(u^*) = \exp\left(-\frac{1}{2}\langle Qu^*, u^*\rangle\right),$$

for a non-negative, symmetric operator $Q\colon U^* \to U$, and

$$\varphi_{\mu_2}(u^*) = \exp\left(ia(u^*) + \int_U \left(e^{i\langle u, u^*\rangle} - 1 - i\langle u, u^*\rangle \,\mathbb{1}_{B_{\mathbb{R}}}(\langle u, u^*\rangle)\right) \,\lambda(\mathrm{d}u)\right),$$

for a function $a: U^* \to \mathbb{R}$, and a cylindrical Lévy measure λ on $\mathfrak{Z}_*(U, U^*)$.

Notation. Let L be a cylindrical Lévy process. The triplet (a, Q, λ) of L(1) is called cylindrical characteristics of L.

Hedgehog processes

Theorem. Let H be a Hilbert space with an orthonormal basis $(e_k)_{k\in\mathbb{N}}$ and let $(\ell_k)_{k\in\mathbb{N}}$ be a sequence of independent, real valued Lévy processes with characteristics (b_k, r_k, λ_k) for $k \in \mathbb{N}$. TFAE:

(a) For each $(\alpha_k)_{k\in\mathbb{N}}\in\ell^2(\mathbb{R})$ we have

(i)
$$\sum_{k=1}^{\infty} \mathbb{1}_{B_{\mathbb{R}}}(\alpha_k) |\alpha_k| \left| b_k + \int_{1<|\beta| \leqslant |\alpha_k|^{-1}} \beta \lambda_k(\mathrm{d}\beta) \right| < \infty;$$

(ii) $(r_k)_{k\in\mathbb{N}}\in\ell^\infty(\mathbb{R});$

(iii)
$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} \left(|\alpha_k \beta|^2 \wedge 1 \right) \, \lambda_k(\mathrm{d}\beta) < \infty.$$

(b) For each $t \ge 0$ and $h^* \in H^*$ the sum

$$L(t)h^* := \sum_{k=1}^{\infty} \langle e_k, h^* \rangle \ell_k(t)$$

converges P-a.s.

Hedgehog processes

continues. If in this case the set $\{\varphi_{\ell_k(1)}: k \in \mathbb{N}\}$ is equicontinuous at 0, then $(L(t): t \geq 0)$ defines a cylindrical Lévy process in H with cylindrical characteristics (a, Q, μ) satisfying

$$a(h^*) = \sum_{k=1}^{\infty} \langle e_k, h^* \rangle \left(b_k + \int_{\mathbb{R}} \beta \left(\mathbb{1}_{B_{\mathbb{R}}} (\langle e_k, h^* \rangle \beta) - \mathbb{1}_{B_{\mathbb{R}}} (\beta) \right) \lambda_k(\mathrm{d}\beta) \right),$$

$$Qh^* = \sum_{k=1}^{\infty} \langle e_k, h^* \rangle r_k e_k, \qquad h^*(\mu)(\mathrm{d}\beta) = \sum_{k=1}^{\infty} \left(\lambda_k \circ m_k(h^*)^{-1} \right) (\mathrm{d}\beta),$$

for each $h^* \in H^*$, where $m_k(h^*) \colon \mathbb{R} \to \mathbb{R}$ is defined by $m_k(h^*)(\beta) = \langle e_k, h^* \rangle \beta$.

Subordination

Theorem. Let W be a cylindrical Wiener process in U with covariance operator $C\colon U^*\to U$ which factorises through a Hilbert space $\mathscr H$ by $C=ii^*$ for the embedding $i\colon \mathscr H\to U$. If ℓ is an independent, real valued subordinator with characteristics $(\alpha,0,\varrho)$ then

$$L(t)u^* := W(\ell(t))u^* \qquad \text{for all } u^* \in U^*, \ t \geqslant 0,$$

defines a cylindrical Lévy process $(L(t): t \ge 0)$ with

$$\varphi_{L(t)} \colon U^* \to \mathbb{C}, \qquad \varphi_{L(t)}(u^*) = \exp\left(-t\tau\left(\frac{1}{2}\langle Cu^*, u^*\rangle\right)\right),$$

where $\tau(\beta) = \alpha\beta + \int_0^\infty (1 - e^{-\beta s}) \,\varrho(\mathrm{d}s)$, and with cylindrical characteristics $(0,Q,\mu)$ given by $Q = \alpha C$ and $\mu = (\gamma \otimes \varrho) \circ \kappa^{-1}$, where $\kappa \colon H_C \times \mathbb{R}_+ \to U$ is defined by $\kappa(h,s) := \sqrt{s} \ ih$ and γ denotes the canonical cylindrical Gaussian measure on \mathscr{H}

Stochastic integration

Cylindrical semi-martingale but ...

If L is a cylindrical Lévy process then $(L(t)u^*:t\geqslant 0)$ is a Lévy process in $\mathbb R$ for each $u^*\in U^*$ which satisfies

$$L(t)u^* = tr_{u^*} + \int_{|\beta| \le 1} \beta \, \widetilde{N}_{u^*}(t, d\beta) + \int_{|\beta| > 1} \beta \, N_{u^*}(t, d\beta),$$

where $r_{u^*} \in \mathbb{R}$ and, with $\Delta L(s)u^* := L(s)u^* - L(s-)u^*$,

$$N_{u^*}(t,B) := \sum_{s \in [0,t]} \mathbb{1}_B \left(\Delta L(s) u^* \right), \qquad t \geqslant 0, B \in \mathfrak{B}(\mathbb{R}).$$

But the map $u^* \mapsto N_{u^*}(t,B)$ is not linear in general.

Approaches to stochastic integration

- Semi-martingale approach: Meyer (1962, 1967, ..), Kunita and Watanabe (1967,..), Doleans-Dade (1970), Itô (1965)...
 integrator = martingale + bounded variation process martingales → rich structure, finite expectation bounded variation processes → pathwise integration Reversed semi-martingale approach: Protter (1986)
 Good integrators
- Vector-valued measure approach: Métivier and Pellaumail (1980), ... stochastic integral as measure in the space of random variables
- Decoupling approach: Kwapien and Woyczyński (1991) decoupling inequalities and tangent processes
- Daniell integration approach: Bichteler (2002)
 mimics Daniell integration in calculus

Stochastic integration

w.r.t. cylindrical martingales:

- M. Métivier, J. Pellaumail, 1980
- G. Kallianpur, J. Xiong, 1996
- R. Mikulevicius, B. L. Rozovskii, 1998.

w.r.t. cylindrical Lévy processes:

- A. Jakubowski, M. Riedle, 2017
- G. Bodo, M. Riedle, 2022 (work in progress)

Induced cylindrical random variables

Example: induced cylindrical random variable

Example: Let $X:\Omega \to U$ be a (genuine) random variable. Then

$$Z: U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Zu^* := \langle X, u^* \rangle$$

defines a cylindrical random variable.

Example: induced cylindrical random variable

Example: Let $X:\Omega \to U$ be a (genuine) random variable. Then

$$Z: U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Zu^* := \langle X, u^* \rangle$$

defines a cylindrical random variable.

But: not for every cylindrical random variable $Z:U^*\to L^0_P(\Omega;\mathbb{R})$ there exists a classical random variable $X:\Omega\to U$ satisfying

$$Zu^* = \langle X, u^* \rangle$$
 for all $u^* \in U^*$.

Theorem: induced cylindrical random variable

Theorem: For a cylindrical random variable $Z\colon U^*\to L^0_P(\Omega;\mathbb{R})$ the following are equivalent:

(a) there exists a random variable $X:\Omega\to U$ such that

$$Zu^* = \langle X, u^* \rangle$$
 for all $u^* \in U^*$;

(b) the cylindrical distribution of Z extends to a Radon measure on $\mathfrak{B}(U)$.

Definition: in this case, Z is called induced by X.

Induced random variables and operator theory

Let $T\colon U\to V$ be a linear, continuous operator and $Z\colon U^*\to L^0_P(\Omega;\mathbb{R})$ a cylindrical random variable. Then

$$TZ: V^* \to L_P^0(\Omega; \mathbb{R}), \qquad (TZ)v^* := Z(T^*v^*)$$

defines a cylindrical random variable TZ on V.

Induced random variables and operator theory

Let $T\colon U\to V$ be a linear, continuous operator and $Z\colon U^*\to L^0_P(\Omega;\mathbb{R})$ a cylindrical random variable. Then

$$TZ: V^* \to L_P^0(\Omega; \mathbb{R}), \qquad (TZ)v^* := Z(T^*v^*)$$

defines a cylindrical random variable TZ on V.

Definition. The cylindrical random variable TZ is induced by a genuine random variable $X:\Omega\to V$ if

$$(TZ)v^* = \langle X, v^* \rangle$$
 P-a.s. for all $v^* \in V^*$.

Radonified increments

Let G, H be Hilbert spaces,

L be a cylindrical Lévy process on G with characteristics (a, Q, λ) ,

 $F: G \to H$ be a Hilbert-Schmidt operator.

Then for each $0 \le s \le t$ there exists a random variable $X: \Omega \to H$ such

$$(L(t) - L(s))(F^*h^*) = \langle X, h^* \rangle$$
 for all $h^* \in H^*$.

Radonified increments

Let G, H be Hilbert spaces,

L be a cylindrical Lévy process on G with characteristics (a, Q, λ) ,

 $F: G \to H$ be a Hilbert-Schmidt operator.

Then for each $0 \le s \le t$ there exists a random variable $X: \Omega \to H$ such

$$(L(t) - L(s))(F^*h^*) = \langle X, h^* \rangle$$
 for all $h^* \in H^*$.

In this case, X is infinitely divisible with genuine characteristics $(t-s)(a_F,Q_F,\lambda_F)$:

$$\begin{split} \langle a_F,h^*\rangle &= a(F^*h^*) + \int_H \langle h,h^*\rangle \big(\,\mathbbm{1}_{B_H}(h) - \mathbbm{1}_{B_{\mathbb{R}}}(\langle h,h^*\rangle)\big) \,(\lambda\circ F^{-1})(\mathrm{d}h), \\ Q_F &= FQF^*, \\ \lambda_F &= \lambda\circ F^{-1} \quad \text{on} \ \mathfrak{B}(H\setminus\{0\}). \end{split}$$

Stochastic integral: definition

Let G, H be Hilbert spaces. A deterministic, simple function is of the form

$$\psi \colon [0,T] \to L_2(G,H), \qquad \psi(t) = \sum_{i=1}^{n-1} F_i \, \mathbb{1}_{(t_i,t_{i+1}]}(t),$$

where $0 = t_1 < \cdots < t_n = T$ and $F_i \in L_2(G, H)$.

Stochastic integral: definition

Let G, H be Hilbert spaces. A deterministic, simple function is of the form

$$\psi \colon [0,T] \to L_2(G,H), \qquad \psi(t) = \sum_{i=1}^{n-1} F_i \, \mathbb{1}_{(t_i,t_{i+1}]}(t),$$

where $0 = t_1 < \cdots < t_n = T$ and $F_i \in L_2(G, H)$. Letting

$$I(\psi)(t) := \int_0^t \psi \, dL := \sum_{i=1}^{n-1} F_i \big(L(t_{i+1} \wedge t) - L(t_i \wedge t) \big),$$

define $I(\psi) := (I(\psi)(t) : t \in [0,T])$.

Stochastic integral: definition

Let G, H be Hilbert spaces. A deterministic, simple function is of the form

$$\psi \colon [0,T] \to L_2(G,H), \qquad \psi(t) = \sum_{i=1}^{n-1} F_i \, \mathbb{1}_{(t_i,t_{i+1}]}(t),$$

where $0 = t_1 < \cdots < t_n = T$ and $F_i \in L_2(G, H)$. Letting

$$I(\psi)(t) := \int_0^t \psi \, dL := \sum_{i=1}^{n-1} F_i \big(L(t_{i+1} \wedge t) - L(t_i \wedge t) \big),$$

define $I(\psi) := (I(\psi)(t) : t \in [0,T])$.

Definition. A function $\psi \colon [0,T] \to L_2(G,H)$ is integrable if there exists a sequence (ψ_n) of deterministic simple functions such that

- (1) (ψ_n) converges to ψ Lebesgue a.e.;
- (2) $(I(\psi_n))$ is Cauchy in the space of H-valued semi-martinagles.

In this case: $I(\psi) := \lim_{n \to \infty} I(\psi_n)$.

Stochastic integral: modular space

A modular m is a function such that

$$M_m := \{ \psi \colon [0, T] \to L_2(G, H) \colon m(\psi) < \infty \}$$

is a complete linear space with norm $\|\psi\|_m:=\inf\left\{\varepsilon>0:\,m(\frac{\psi}{\varepsilon})<\varepsilon\right\}.$

Stochastic integral: modular space

A modular m is a function such that

$$M_m := \{ \psi \colon [0, T] \to L_2(G, H) \colon m(\psi) < \infty \}$$

is a complete linear space with norm $\|\psi\|_m:=\inf\Big\{arepsilon>0:\, m(\frac{\psi}{arepsilon})<arepsilon\Big\}.$

Example (1): Bochner spaces:

$$m(\psi) = \int_0^T \|\psi(t)\|^p dt.$$

Example (2): Musielak-Orlicz spaces:

$$m(\psi) = \int_0^T \kappa(t, \psi(t)) dt,$$

for a nice function $\kappa \colon [0,T] \times L_2(G,H) \to \mathbb{R}$.

A modular m is a function such that

$$M_m := \{ \psi \colon [0, T] \to L_2(G, H) \colon m(\psi) < \infty \}$$

is a complete linear space with norm $\|\psi\|_m:=\inf\Big\{\varepsilon>0:\,m(\frac{\psi}{\varepsilon})<\varepsilon\Big\}.$

Proposition. For a cylindrical Lévy process L on G with characteristics (a,Q,λ) and $F:G\to H$ Hilbert-Schmidt define

$$\langle b(F), h^* \rangle := a(F^*h^*) + \int_H \langle h, h^* \rangle \left(\mathbb{1}_{B_H}(h) - \mathbb{1}_{B_{\mathbb{R}}}(\langle h, h^* \rangle) \right) (\lambda \circ F^{-1}) (\mathrm{d}h).$$

Then, for $\Psi \colon [0,T] \to L_2(G,H)$,

$$m_{L}(\Psi) := \int_{0}^{T} \sup_{T \colon H \to H} \|b(T\Psi(t))\| dt + \int_{0}^{T} \operatorname{tr}[Q\Psi^{*}(t)] dt + \int_{0}^{T} \int_{H} (\|h\|^{2} \wedge 1)(\lambda \circ \Psi^{-1}(t))(dh) + \int_{0}^{T} (\|\Psi(t)\|_{HS} \wedge 1) dt$$

defines a modular.

A modular m is a function such that

$$M_m := \{ \psi \colon [0, T] \to L_2(G, H) \colon m(\psi) < \infty \}$$

is a complete linear space with norm $\|\psi\|_m:=\inf\left\{\varepsilon>0:\,m(\frac{\psi}{\varepsilon})<\varepsilon\right\}.$

Example. Let L be the canonical α -stable cylindrical process with characteristic function $\varphi_{L(1)}(h) = \exp(-\|h\|^{\alpha})$ for some $\alpha \in (0,2)$. Then

$$M_{m_L} = \left\{ \Psi \colon [0, T] \to L_2(G, H) \colon \int_0^T \|\Psi(t)\|_{HS}^{\alpha} dt < \infty \right\}.$$

Proposition. Let L be a cylindrical Lévy process with modular m_L . Then for every sequence (ψ_n) of deterministic, simple functions ψ_n the following are equivalent:

- (1) (ψ_n) is Cauchy in the modular space M_{m_L} ;
- (2) $(I(\psi_n))$ is Cauchy in the space S of semi-martingales on H.

Proposition. Let L be a cylindrical Lévy process with modular m_L . Then for every sequence (ψ_n) of deterministic, simple functions ψ_n the following are equivalent:

- (1) (ψ_n) is Cauchy in the modular space M_{m_L} ;
- (2) $(I(\psi_n))$ is Cauchy in the space S of semi-martingales on H.

Theorem. A function $\psi \colon [0,T] \to L_2(G,H)$ is integrable w.r.t. L if and only if $\psi \in M_{m_L}$.