The Lévy-Khintchine formula
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Infinitely divisible cylindrical measure

Definition.
A cylindrical measure p: 3(U,U*) — [0, 1] is called infinitely divisible if
for each k € N there exists a cylindrical measure i such that u = u;*.

Equivalent:

for each £ € N there exists cyl. measure pu:

(1 infinitely divisible <
pu(u*) = (g&uk(u*))k for all u* € U*.

pwom . isinfinitely divisible
e

forall uf.....u* € U* and n € N.
1 » Y'n

1 infinitely divisible <

Example: if (L(t) : t > 0) is a cylindrical Lévy process then the
cylindrical distribution of L(1) is infinitely divisible.
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Definition. Let
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Cylindrical Lévy measure

Definition. Let

3.(U,U7)
= {{u ceU: ((u,uj),...,{u,uy)) € B} : uj € U*, B € B(R" \{O})}

A set function \: 3.(U,U*) — [0, 0] is called a cylindrical Lévy measure

if for all ul,...,u; € U* the map
At t B(R™) = [0, 00], Xur,...ouz (B) :Aow—i},m, L(B\ {0})

defines a Lévy measure on B(R").



Infinitely divisible and cylindrical Lévy measure

Lemma. For each infinitely divisible cylindrical measure 1 there exists a

cylindrical Lévy measure A on 3.(U,U”) such that:

Aorm ! . =Lévy measure of pom . . on B(R"\{0})

17.-., n 1’-.-7 n

for all ui,...,u;, € U* and n € N.



Lévy-Khintchine formula

Theorem. For every infinitely divisible cylindrical measure 1 there exist
cylindrical measures 11, po such that = pq * s and

o (u”) = exp (= 3{Qu”,u")),

for a non-negative, symmetric operator (): U* — U, and

Pua(u) = exp (m<u*> + /U (1) =1 — i, w*) U (")) A(du>) ,

for a function a: U* — R, and a cylindrical Lévy measure A on 3. (U, U™).

Notation. Let L be a cylindrical Lévy process. The triplet (a, @, \) of
L(1) is called cylindrical characteristics of L.



Hedgehog processes

Theorem. Let H be a Hilbert space with an orthonormal basis (ej)ren

and let (/;)ren be a sequence of independent, real valued Lévy processes
with characteristics (b, 7%, A\r) for & € N. TFAE:

(a) For each (az)ren € £2(R) we have

] ILBR L) |0k bk >\k d
(i) g (o) o] [bi + / o BA(9)
(ii) (ri)ren € £°(R);

(iii) ,i/ﬁ (|ak6\2A 1) Me(df) < oo.

(b) For each t > 0 and h* € H* the sum

oo

L()h* :="> (e, h*)(t)

k=1

< OQ;

converges P-a.s.



Hedgehog processes

continues. If in this case the set {¢y (1) : k € N} is equicontinuous
at 0, then (L(¢) : t > 0) defines a cylindrical Lévy process in H with
cylindrical characteristics (a, @, 1) satisfying

a(h?) = ep h°) (bk ' /R B( Loy ((exs h*)8) — Ly (8)) Ak(d6)> |
Qh* =) (ex, h*)rrer, p)(dB) = (Ao mi(r*)™1) (dB),

for each h* € H*, where mi(h*): R — R is defined by my(h*)(B) =
<€k,h*>5.



Subordination

Theorem. Let W be a cylindrical Wiener process in U with covariance
operator C': U* — U which factorises through a Hilbert space 7 by
C = 1" for the embedding i: 57 — U. If £ is an independent, real
valued subordinator with characteristics («, 0, 0) then

L(t)u* = W((t))u" for all u™ e U*, t > 0,
defines a cylindrical Lévy process (L(t) : t > 0) with

SOL(t): U* — @7 SOL(t) (u*) — eXpP (_tT <%<CU*7 U*>)) ;

where 7(8) = aff + [, (1 — e P%) o(ds), and with cylindrical charac-
teristics (0,Q, 1) given by Q = aC and pu = (v ® o) o %, where
k: Ho x Ry — U is defined by k(h,s) := +/s ih and 7 denotes the
canonical cylindrical Gaussian measure on 7



Stochastic integration



Cylindrical semi-martingale but ...

If L is a cylindrical Lévy process then (L(t)u* :t > 0) is a Lévy process

In R for each u* € U* which satisfies

L' =tre+ [ 8Nodg)+ [ BNu(t.ds)

1BI<1 18]>1

where 7« € R and, with AL(s)u™ := L(s)u™ — L(s—)u",

= Y 1p(AL(s)u*), t>0,B€cB(R).

sEOt

But the map u* — Ny«(t, B) is not linear in general.



Approaches to stochastic integration

e Semi-martingale approach: Meyer (1962, 1967, ..), Kunita and
Watanabe (1967,..), Doleans-Dade (1970), 1t6 (1965)...
integrator = martingale + bounded variation process
martingales — rich structure, finite expectation
bounded variation processes — pathwise integration
Reversed semi-martingale approach: Protter (1986)
Good integrators

e Vector-valued measure approach: Métivier and Pellaumail (1980), ...
stochastic integral as measure in the space of random variables

e Decoupling approach: Kwapien and Woyczynski (1991)
decoupling inequalities and tangent processes

e Daniell integration approach: Bichteler (2002)

mimics Daniell integration in calculus



Stochastic integration

w.r.t. cylindrical martingales:
e M. Métivier, J. Pellaumail, 1980
e G. Kallianpur, J. Xiong, 1996

e R. Mikulevicius, B. L. Rozovskii, 1998.

w.r.t. cylindrical Lévy processes:
e A. Jakubowski, M. Riedle, 2017

e G. Bodo, M. Riedle, 2022 (work in progress)



Induced cylindrical random variables
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Example: induced cylindrical random variable

Example: Let X : Q) — U be a (genuine) random variable. Then
Z:U* = L%(Q; R), Zu* = (X, u”)
defines a cylindrical random variable.

But: not for every cylindrical random variable Z : U* — L%(9Q; R) there
exists a classical random variable X : 2 — U satisfying

Zu* = (X, u™) for all ™ € U™.



Theorem: induced cylindrical random variable

Theorem: For a cylindrical random variable Z: U* — L%(Q;R) the

following are equivalent:

(a) there exists a random variable X : Q — U such that
Zu* = (X, u") for all u* € U™

(b) the cylindrical distribution of Z extends to a Radon measure on B(U).

Definition: in this case, Z is called induced by X.



Induced random variables and operator theory

Let T: U — V be a linear, continuous operator and Z: U* — L%(Q; R)
a cylindrical random variable. Then

TZ :V* — LY (4 R), (TZ)v* == Z(T*v")

defines a cylindrical random variable T'Z on V.



Induced random variables and operator theory

Let T: U — V be a linear, continuous operator and Z: U* — L%(Q; R)

a cylindrical random variable. Then
TZ :V* — LY (4 R), (TZ)v* == Z(T*v")

defines a cylindrical random variable T'Z on V.

Definition. The cylindrical random variable T'Z is induced by a

genuine random variable X: Q) — V if

(TZ)v* = (X,v™) P-as. for all v* € V™.



Radonified increments

Let G, H be Hilbert spaces,

L be a cylindrical Lévy process on G with characteristics (a, Q, \),
F': G — H be a Hilbert-Schmidt operator.

Then for each 0 < s <t there exists a random variable X : (2 — H such

(L(t) — L(s)) (F*h*) = (X,h*)  forall h* € H*.



Radonified increments

Let G, H be Hilbert spaces,

L be a cylindrical Lévy process on G with characteristics (a, Q, M),
F': G — H be a Hilbert-Schmidt operator.

Then for each 0 < s < ¢ there exists a random variable X : () — H such
(L(t) — L(s)) (F*h*) = (X, h") for all h* € H”.

In this case, X is infinitely divisible with genuine characteristics
(t = s)(ar, QF, AF):

(ap, ") = a(F*h*) + /H (o 1) (1 () — Ly (o 7)) (Ao FY)(dh),

QF — FQF*v
Arp=AoF~t on B(H\{0}).
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Stochastic integral: definition

Let G, H be Hilbert spaces. A deterministic, simple function is of the form
n—1
¥ [0,T] = Lo(GLH), () = Y FyLisy0,,,)(1),
i=1
where 0 =t; < --- <t, =T and F; € Lo(G, H). Letting
¢ n—1
I(1)(¢) == /o YdL = Z Fi(L(tis1 At) — L(ti A t)),
i=1

define I(1)) == (I(¥))(t) : t € [0,T)).

Definition. A function ¢: [0,T] — Lo(G, H) is integrable if there exists
a sequence (1) of deterministic simple functions such that

(1) (¢,,) converges to 1) Lebesgue a.e.;
(2) (I(2)y,)) is Cauchy in the space of H-valued semi-martinagles.
In this case: () := lim, oo I(Vn).



Stochastic integral: modular space

A modular m is a function such that
M, == {¢:[0,T) = Lo(G, H) : m(y)) < oo}

is a complete linear space with norm ||¢||, := inf {5 >0: m(¥) < 5}.

S



Stochastic integral: modular space

A modular m is a function such that
M, == {¥:[0,T) = Lo(G, H) : m(y)) < oo}

is a complete linear space with norm ||¢||, := inf {5 >0: m(¥) < 5}.

S

Example (1): Bochner spaces:

m(i) = / ()| de.

Example (2): Musielak-Orlicz spaces:

for a nice function x: [0,7] x Ly(G, H) — R.



Stochastic integral: deterministic integrands
A modular m is a function such that
M, == {Y:[0,T) = Lo(G, H) : m(y)) < oo}
is a complete linear space with norm |9, := inf {5 >0 : m(%) < 5}.

Proposition. For a cylindrical Lévy process L on GG with characteristics (a, Q, \)
and F': G — H Hilbert-Schmidt define

BUF) 1) 1= a(F 0 + [ (1) (L () = L (1, 1°) (Ao F ) ().
Then, for U: [0,T] — Lo(G, H),

mr (V) ::/ sup ||[b(TW(t))|| dt+/0 tr[QUT(t)] dt

T: H—H

// (1] A1) (Ao ™ <>><dh>+/0 (IW(0)]] 5 A 1) dt

defines a modular.



Stochastic integral: deterministic integrands

A modular m is a function such that

M, == {¥:[0,T) = Lo(G, H) : m(y)) < oo}
is a complete linear space with norm |[¢||, := inf {5 >0 m(%) < 5}.

Example. Let L be the canonical a-stable cylindrical process with
characteristic function ¢p1)(h) = exp(—||h|") for some a € (0,2).
Then

M,,, = {xp: 0,T] — Lo(G, H) : /OT 1W()]|% 4 dt < oo} .



Stochastic integral: deterministic integrands

Proposition. Let L be a cylindrical Lévy process with modular my.
Then for every sequence (1) of deterministic, simple functions v,, the

following are equivalent:
(1) (#4,) is Cauchy in the modular space M, ;
(2) (I(1y,)) is Cauchy in the space S of semi-martingales on H.



Stochastic integral: deterministic integrands

Proposition. Let L be a cylindrical Lévy process with modular my.
Then for every sequence (1) of deterministic, simple functions v,, the

following are equivalent:
(1) (#4,) is Cauchy in the modular space M, ;
(2) (I(1y,)) is Cauchy in the space S of semi-martingales on H.

Theorem. A function ¢: [0,T] — Lo(G, H) is integrable w.r.t. L if and
only if v € M,,, .



